
IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 1 of 209

IST PROJECT 2001-35399

A Governmental Knowledge-based Platform for Public

Sector Online Services

Project Number: IST-2001-35399
Project Title: A Governmental Knowledge-based Platform for Public

Sector Online Services
Deliverable Type: Public

Deliverable Number: D51-D61
Contractual Date of
Delivery:

31-1-2003

Actual Date of Delivery: 28-2-2003
Title of Deliverable: Low-level Specifications of SmartGov Services and

Applications and the Knowledge-Based Core Platform
WP contributing to the
Deliverable:

WP5-WP6

Nature of the Deliverable: Report
Editor(s): Stelios Gorilas
Author(s): Stelios Gorilas, Pablo Fernadez Pardo, Tomas Pariente

Lobo, Costas Vassilakis, Akrivi Katifori, Anna Charissi,
George Lepouras, Stathis Rouvas, , Nick Adams, John
Fraser, Ann Makynthos,

Abstract: This deliverable constitutes the Software Architecture Document of the

SmartGov platform. It is a holistic approach and reports the outcome of the analysis and

design phase of both the SmartGov services and applications as well as the Knowledge

based components.

Project funded by the European Community under the “Information

Society Technologies” Programme (1998-2002)

 Copyright by the SmartGov Consortium.

The SmartGov Consortium consists of:

Partner’s Name Acronym Role Country

University of Athens UoA Project Coordinator Greece

T-Systems Nova TNB Partner Germany

Indra Sistemas S.A. Indra Partner Spain

Archetypon S.A. ARC Partner Greece

Napier University NU Partner UK

General Secretariat for Information Systems GSIS Partner Greece

City of Edinburgh Council CEC Partner UK

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 2 of 209

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 3 of 209

 Table of Contents

Executive Summary... 10
1 Introduction... 11
2 SmartGov Platform Architecture ... 12

2.1 Overview of the Platform .. 12
2.2 Methodology ... 13

2.2.1 Class Diagram .. 15
2.2.2 Sequence Diagram .. 16
2.2.3 Implementation Diagram.. 16

2.2.3.1 Component diagram ... 16
2.2.3.2 Deployment diagram... 17

2.3 Use-case view ... 17
2.3.1 The Transaction Service Lifecycle .. 17
2.3.2 The phases of developing a transaction service 19

2.3.2.1 Creation of a service ... 19
2.3.2.2 Creation of a service process model 19
2.3.2.3 Development of Transaction Service Components 19
2.3.2.4 Integration .. 25
2.3.2.5 Testing, Evaluation, Deployment, Operation and Maintenance,

Feedback and Improvement ... 27
2.3.2.6 Link Establishment Between Form Layout and Form Semantics

 27
2.3.2.7 Maintaining the associations between visual elements and

SmartGov entities ... 36
2.3.3 The Front-End Navigation Diagrams... 36

2.4 Logical view .. 44
2.4.1 Introduction ... 44
2.4.2 Architecturally Significant Design Packages 45

2.4.2.1 The STRUTS Framework .. 45
2.4.2.2 The XML Doc Repository .. 49
2.4.2.3 The SmartGov Front-End ... 52
2.4.2.4 SmartGov Agent – Information Interchange Gateway.......... 70
2.4.2.5 The Integrator.. 80

2.5 Implementation View ... 92
2.5.1 The SmartGov Front-End.. 92
2.5.2 Integrator .. 97
2.5.3 SmartGov Agent – Information Interchange Gateway 99

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 4 of 209

2.5.3.1 Software module structure... 99
2.5.3.2 SGA-IIG Communication Details100
2.5.3.3 Remote administration of the IIG.....................................122
2.5.3.4 Summary ...125

2.6 Process View ..125
2.6.1 The SmartGov Front-End...125
2.6.2 The Integrator ...126
2.6.3 SmartGov Agent - Information Interchange Gateway................127

2.6.3.1 Synchronous communication...127
2.6.3.2 Asynchronous communication ...128
2.6.3.3 Periodic events..129
2.6.3.4 Notifications..129
2.6.3.5 Logging facilities..130

2.7 Deployment View..130
2.7.1 SmartGov Front-End...131
2.7.2 Integrator ...132
2.7.3 SmartGov Agent - Information Interchange Gateway................132

2.7.3.1 Service delivery platform..132
2.7.3.2 Organisational Information System Environment133

2.8 Data view ..136
2.8.1 Introduction ..136
2.8.2 Modelling of Transaction Services ...137
2.8.3 Modeling of Forms..140
2.8.4 Modelling of Generic TSEs ...143
2.8.5 Modelling of Instantiated TSEs ...146

2.8.5.1 Inheritance rules for TSE instantiation..............................149
2.8.6 Modelling of Generic TSE Groups..150

2.8.6.1 Repetition information for groups152
2.8.7 Modelling of Instantiated TSE Groups......................................153

2.8.7.1 Inheritance Rules for TSE Groups156
2.8.8 Utility types...157

2.8.8.1 Complex Type administrativeInfo.....................................157
2.8.8.2 Complex Type containedTSE ...157
2.8.8.3 Complex Type formSet ...157
2.8.8.4 Complex Type formStatistics...158
2.8.8.5 Complex Type KUToHelpItem..158
2.8.8.6 Complex Type lifeCycleType..158

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 5 of 209

2.8.8.7 Complex Type method ...159
2.8.8.8 Complex Type multilingualText..160
2.8.8.9 Complex Type repetitionInformation160
2.8.8.10 Complex Type TSEDataType ...161
2.8.8.11 Complex Type TSEGroupStatistics162
2.8.8.12 Complex Type TSEStatistics ..162
2.8.8.13 Complex Type TSEToFormElement...................................163
2.8.8.14 Complex Type TSStatistics..163
2.8.8.15 Complex Type validationMethod164
2.8.8.16 Complex Type validationMethodStatistics..........................165

2.8.9 Modeling of Knowledge Units ...165
2.8.10 Modeling of Taxonomy ..188
2.8.11 Modeling of Taxonomy node ..191
2.8.12 Modeling of Workflow..194
2.8.13 RDBMS Data Model...204

2.8.13.1 Users, Roles, and Work Groups204
2.8.13.2 Service Design Environment Statistics..............................206

3 Conclusions ..208
4 References..209

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 6 of 209

Table of Figures

Figure 1 Overview of the SmartGov platform .. 12
Figure 2. The 5+1 views of Architecture ... 15
Figure 3 – XML description of a form.. 27
Figure 4 – XML description of two TSEs .. 28
Figure 5 – Rendering of identification data form in a browser.......................... 28
Figure 6 – XHTML code for identification data form.. 29
Figure 7 – Transformed XHTML code for mapping form elements to TSEs 34
Figure 8 – Rendered form for the purposes of mapping 35
Figure 9 – Main SmartGov Front-End Navigation Diagram 37
Figure 10 – Portal Navigation Diagram Explanation.. 38
Figure 11 – SmartGov Menu Front-End Navigation Diagram............................ 39
Figure 12 – SmartGov Task List Front-End Navigation Diagram....................... 40
Figure 13 – KU Life-Cycle ... 40
Figure 14 – SmartGov TS Editor Front-End Navigation Diagram 41
Figure 15 – SmartGov Form Editor Front-End Navigation Diagram................... 41
Figure 16 – TS Editor Diagram Explanation... 42
Figure 17 – Form Editor Diagram Explanation ... 43
Figure 18 – SmartGov Managerial Statistics Front-End Navigation Diagram 44
Figure 19. The Model-View-Controller Architecture .. 46
Figure 20 The Struts Architecture .. 47
Figure 21. The XML Doc Repository Architecture ... 50
Figure 22 XML Doc Repository API class diagram... 51
Figure 23 – SmartGov Front-End logical architecture components 53
Figure 24 – SmartGov Front-End interaction between components architecture. 54
Figure 25 – Example of use of Struts in the Front-end tool 56
Figure 26 –Sequence diagram using Struts in the Front-end tool 58
Figure 27 – SmartGov service design objects logical class diagram.................. 59
Figure 28 – SmartGov Knowledge Objects logical class diagram 61
Figure 29 – SmartGov KM & Services relationships logical class diagram 62
Figure 30 – SmartGov life-cycle rules .. 62
Figure 31 – SmartGov life-cycle logical class diagram 63
Figure 32 – SmartGov and Delivery Environment Role architecture.................. 64
Figure 33 – User and Roles logical class diagram... 66
Figure 34 – SmartGov Front-End XML data access logical class diagram........... 69
Figure 35: Communication with installed IT systems...................................... 71

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 7 of 209

Figure 36: Placement of SmartGov Agents in the overall architecture 71
Figure 37 – Class diagram for the SGA package .. 76
Figure 38 – The IIG package class diagram .. 77
Figure 39 – Class diagram for the SGA package .. 78
Figure 40. The software environment of the integrator................................... 81
Figure 41 Performing TSE mappings .. 83
Figure 42 Struts Files Generator classes... 84
Figure 43 Transforming an XHTML template to a JSP page.............................. 85
Figure 44 Creation of internationalized resources .. 86
Figure 45 Development of a custom validation language 87
Figure 46 Generation of Java validation code from the custom SmartGovValLang

... 89
Figure 47 Action Form Java file generator... 90
Figure 48 Generating a DB schema and relevant DB access objects 91
Figure 49 – Three layer Front-end structure implementation diagram 93
Figure 50 – Front-end Presentation Layer implementation diagram.................. 94
Figure 51 –Front-end Business Layer implementation diagram........................ 95
Figure 52 –Front-end Data Layer implementation diagram 97
Figure 53 Integrator implementation diagram... 98
Figure 54 SGA-IIG: Sequence of messages needed for a generalized form of

communication...100
Figure 55 SGA modules ..106
Figure 56 IIG overview...108
Figure 57 IIG modules..110
Figure 58 General Structure of the SGA and the IIG-PAQ............................111
Figure 59 IIG modules..117
Figure 60 – SmartGov Front-end web application schema..............................126
Figure 61 SmartGov platform network topology ..131
Figure 62 – SmartGov Roles, Groups and Users database schema.206
Figure 63 – Service design environment statistics database schema.207

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 8 of 209

List of Acronyms

Acronym Explanation

APAQ Adelante (Outgoing) Pending Actions Queue

API Application Programming Interface

EPAQ Entra (Incoming) Pending Actions Queue

IIG Information Interchange Gateway

IIG-MYP Information Interchange Gateway – Minimal Yoking Processor

IIG-NI Information Interchange Gateway Notification Initiator

IIG-SEP Information Interchange Gateway – Separate External Process

IT Information Technology

JSP Java Server Page

KU Knowledge unit

MVC Model-View-Controller

PAQ Pending actions queue (in the context of the SmartGov Agent

and the Information Interchange Gateway)

PAQUED Pending Actions Queue Dispatcher (in the context of the

SmartGov Agent and the Information Interchange Gateway)

SGA SmartGov agent

SGA-NI SmartGov Agent Notification Interceptor

SGovApp SmartGov application

TS Transaction service

TSE Transaction service element

XML Extensible Markup Language

JSP Java Server Page

XHTML eXtensible Hypertext Markup Language

RUP Rational Unified Process

UML Unified Modeling Language

WAP Wireless Application Protocol

XSLT Extensible Style sheet Language Template

WML Wireless Markup Language

JDBC Java Database Connectivity

API Application Programming Interface

RDBMS Relational Database Management System

LDAP Lightweight Directory Access Protocol

DSN Data source name

SOAP Simple Object Access Protocol

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 9 of 209

DDL Data Definition Language

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 10 of 209

Executive Summary
The SmartGov project, fully entitled as “A Governmental Knowledge-based

Platform for Public Sector Online Services”, commenced on the 1st of February

2002. In the workpackages that have been completed insofar, the state of the art

has been reviewed (WP3), the current status of the participating public authorities

has been captured (WP3), the user requirements have been analysed (WP4) and

the high-level specifications of the system have been derived (WP4). This

document, which reports on work carried out in WP5 and WP6 provides detailed

system specifications for the architectural modules identified in WP4 as parts of

the SmartGov platform.

The low-level specifications of the platform documented in this deliverable

address different views of each architectural module, tackling all functionality,

modelling, management, development and deployment aspects. Each view may

be considered individually, enabling thus more fine-grained task allocation and

increasing the degree of parallelism that can be achieved in the implementation

phase. The system specifications reported in this deliverable constitute a roadmap

for the implementation phase, since they not only provide the implementation

details for each individual module, but they also document the interfaces through

which different modules interact (procedure calls, shared objects in persistent

storage, messages exchanged), catering thus for module interoperability.

In order to enhance the document readability, a brief summary of the platform

architecture, as derived in WP4, is included at the beginning of section 2.

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 11 of 209

1 Introduction

The present deliverable constitutes the Software Architecture document of the

SmartGov platform. It is the result of the first iteration of the analysis and design

phase as implied by the Rational Unified Process [RUP]. In the context of the

SmartGov project it comprises an interim report of the two development work

packages namely “WP5: Development of SmartGov Knowledge-Based Core

Components” and “WP6: Development of SmartGov Applications and Services”. In

fact it is a joint deliverable of the two work packages in contrast with what was

stated in the technical annex. The decision to join the two deliverables was taken

in order to avoid redundancy between the different documents since there is a

significant overlapping between the two concepts behind the two work packages.

Thus in this document a holistic approach in the SmartGov platform is presented

based on different views of its architecture. In the use case view a user approach

of the platform is outlined. The basic features and principles of the platform are

presented. In the logical view of the platform the functionality of the platform is

given by presenting the architecturally significant components. Some of these

components have a very low level design to the point where classes, class

members and associations are presented. On the other hand other components

have not yet reached this level of design since they depend on the design of the

former. Elaboration of these will take place at the next iteration of the process.

The implementation view of the platform presents the software management of

the platform while the process view deals with the computer processes invoked

by the applications. In the deployment view of the platform the system topology

where the platform will be installed is presented. Finally in the data view section

the persistent storage of the platform is covered mainly presenting the XML

Schemas [XML] that outline the structure of the data needed for the creation of

e-forms applications.

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 12 of 209

2 SmartGov Platform Architecture

2.1 Overview of the Platform

In the following paragraphs, the high-level architecture of the SmartGov platform,

as documented in D4.1, is summarised. This section aims to provide the reader

with a global view of the SmartGov platform and outline the modules involved in

the development and delivery of transaction services. These modules are detailed

in the main part of this deliverable.

Installed IT
Systems

Other SmartGov
Systems

Service users

Knowledge &
Transaction

services
repositories

SmartGov System

Managers

External IT
Systems

IT staff

Domain
Experts

SmartGov
front-end Integrator

Dissemination
server

Communication services
(SmartGov Agent - Information

Interchange Gateway)

Figure 1 Overview of the SmartGov platform

Figure 1 illustrates the SmartGov platform architecture, in which the following

modules may be identified:

• The SmartGov knowledge and transaction services repositories. These are

general depots for storing organisational knowledge and information

pertaining to the transaction services that are developed using the

SmartGov platform. In order to provide a semantically rich environment

and facilitate extensibility and interoperability, all data is stored in XML

format.

• The SmartGov front-end, which constitutes of personalised application

development environments which are available to the actors involved in

the lifecycle of electronic transaction services, namely domain experts, IT

staff and managers. The actors employ the SmartGov front end to

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 13 of 209

populate, query and modify the knowledge and transaction services

repositories.

• The integrator, a software module that reads the contents of the

knowledge and transaction services repositories, and automatically

generates all necessary elements (files, objects, components etc) for a

fully operational transactional service. These elements are then deployed

on a dissemination server, initiating service delivery to the users.

• The communication services, comprising of two units, namely the

SmartGov agent and the information interchange gateway. This module

provides generic communication mechanisms with installed IT systems for

the purposes of data exchange, hiding idiosyncrasies and peculiarities of

information system platforms and facilitating resilience against temporary

failures.

2.2 Methodology

The SmartGov project will follow the Rational Unified Process after careful

consideration of available software engineering methods

[Pressman2000][Quadrani2000]. This approach states the software engineering

process as an incremental iterative process and uses the new standard: Unified

Modelling Language (UML). The incremental iterative process means that phases

of development are performed not strictly sequentially, but rather they are

partially overlapping. The project life is divided into small phases, which have to

be refined with the results of previous phases.

The main characteristics of the Unified Process are the following:

• The Unified Process is an iterative process. Given today's sophisticated

software systems, it is not possible to sequentially first define the entire

problem, design the entire solution, build the software, and finally test the

product. An iterative approach is required to allow an increasing

understanding of the problem through successive refinements and to

incrementally grow an effective solution over multiple iterations. This

approach gives better flexibility in accommodating new requirements or

tactical changes in business objectives and allows the project to identify

and resolve risks earlier.

• Activities of the Unified Process create and maintain models. Rather than

focusing on producing large amounts of paper documents, the Rational

Unified Process emphasises the development and maintenance of models -

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 14 of 209

semantically rich representations of the software system under

development.

• The Unified Process focuses on early development and base lining of a

robust software architecture, which facilitates parallel development,

minimises rework, increases reusability and maintainability. This

architecture is used to plan and manage the development around the use

of software components.

• Development activities of the Unified Process are driven by use cases. The

notions of use cases and scenarios drive the process flow from business

modelling and requirements through testing, and provides coherent and

traceable threads through both the development and the delivered system.

• The Unified Process supports object-oriented techniques. Several of the

models are object-oriented models, based on the concepts of objects,

classes, and associations between them. These models, like many other

technical artefacts, use the Unified Modelling Language (UML) as the

common notation.

• The Unified Process supports component-based software development.

Components are nontrivial modules, subsystems that fulfil a clear function,

that can be assembled in a well-defined architecture, either ad hoc, or

some component infrastructure such as the Internet, CORBA, COM/DCOM.

This way reusability of software is underpinned.

To support that methodology, we will use 5+1 views of software architecture as

shown in the following figure.

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 15 of 209

Data view

Persistent Storage

Logicalview

Functionality

Implementation view

Software management

Process view

Performance
Scalability

Throughput

Deployment view

System topology
Delivery, installation

Communication

Use Case View

Understandabiliy
Usability

Figure 2. The 5+1 views of Architecture

Within these views of the Architecture some of the UML graphical notations are

used in order to formally illustrate aspects of the system. Within this section the

used graphical notations are briefly revisited.

2.2.1 Class Diagram

A class diagram is a graphic representation of the static structural model. It

shows classes and interfaces, along with their internal structure and relationships.

Classes represent types of objects that are handled in a system. A class diagram

does not show temporal information, it describes only the classification. The

instances of those types (objects) are instantiated only on the runtime and are

represented by an object and interaction diagrams.

Classes can be related to each other in a number of ways: associated (connected

to each other), dependent (one class depends/uses another class), specialized

(one class is a subtype of another class), or packaged (grouped together as a unit

- package). A class diagram does not express anything specific about the

relationships of a given object, but it does abstractly describe the potential

relationships of one object to other objects.

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 16 of 209

A system typically has a number of class diagrams - not all classes are inserted

into a single class diagram. A class may have multiple levels of meaning and

participate in several class diagrams.

2.2.2 Sequence Diagram

A sequence diagram shows interaction information with an emphasis on the time

sequence. The diagram has two dimensions: the vertical axis represents time,

while the horizontal axis represents participating objects. The time axis could be

an actual reference point (by placing the time moments labels as text boxes).

Horizontal ordering of the objects is not significant to the operation, and may be

rearranged as necessary.

2.2.3 Implementation Diagram

Implementation diagrams help the developer describe the logical software

structure inside a computer or across a large distributed system. Implementation

diagrams show aspects of implementation, including source code structure and

run-time implementation structure. They come in two forms: 1) component

diagrams show the structure of the code itself and 2) deployment diagrams show

the structure of the run-time system. They may also be applied in a broader

sense to business modeling in which the "code" components are the business

procedures and documents, while the "run-time structure" comprises the

organizational units and resources (human and other) of the business.

2.2.3.1 Component diagram

A component diagram represents a physical structure of a code (as opposed to

the class diagram, which portrays the logical structure) in terms of code

components and their relationships within the implementation environment. A

component can be a source code component, a binary component, or an

executable component. A component contains information about the logical class

or classes that it implements, thus creating a mapping from a logical view to a

component view. Dependencies between the components are shown, making it

easy to analyze how a change in one component affects the others. Components

may also be shown with any of the interfaces that they expose. Components, as

with almost any other model element, can be grouped into packages, much like

classes or use cases. Component diagrams are used in the later phases of the

software development, when there is a need to divide up classes among different

components. When working with the CASE facilities, components are used for file-

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 17 of 209

class mapping during code generation, reverse engineering, and round-trip

engineering operations.

2.2.3.2 Deployment diagram

Deployment diagrams show the physical layout of the various hardware

components (nodes) that compose a system, as well as the distribution of

executable programs (software components) on this hardware. You may show the

actual computers and devices (nodes), along with the connections they have to

each other, thus specifying system topology. Inside nodes, the executable

components and objects are located in a way that shows where the software units

are residing and on which nodes they are executed. You may also show

dependencies between the components. Deployment diagrams are crucial when

dealing with distributed systems.

2.3 Use-case view

2.3.1 The Transaction Service Lifecycle

Within the lifecycle of a transaction service (i.e. a service that includes filling and

submission of forms, whose data are then processed by an organisational back-

end system), the following phases may be identified:

1. The manager decides about a new service

2. The manager creates a working group, of domain experts, IT staff,

managers and service workers.

3. The group creates the service requirements

4. The group creates the service specifications (process model)

5. The group develops the transaction service components

a. Forms (domain experts and possibly IT staff)

b. KUs: Knowledge Units (working group)

c. TSEs: Transaction Service Elements (domain experts)

d. Validation checks (IT staff and domain experts)

e. Links to back-end systems (Domain experts and possibly IT staff)

f. Managerial statistics (Managers and Domain experts)

g. IT-related statistics.

6. Integration of components

7. Testing

8. Evaluation

9. Deployment

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 18 of 209

10. Operation and maintenance

11. Feedback

12. Improvement

13. Discontinuation of a service

Not all of these phases will (or can) be supported by the SmartGov platform. In

particular, phases 1-2 involve managerial actions, such as feasibility studies and

human resource management. Within phases 3 and 4 the initial definitions and

documentation (KUs) are collected and entered in the SmartGov platform. The

SmartGov platform comes into full play during phases 5 and 6, where the various

transaction service components are developed and integrated. After the

integration step in phase 6, the electronic service is instantiated and installed on

an internally accessible server for testing and evaluation. These phases may

trigger further actions within phase 5, producing new versions of the electronic

service, which are again tested and evaluated internally in phases 7 and 8

respectively. The SmartGov platform will not provide tools for service testing and

evaluation, but is responsible for generating the instantiated service version.

When the service has reached a satisfactory state, it is deployed on a publicly

accessible server (phase 9) so that it can be delivered to the end-users. Service

deployment is similar to installing the service on the test environment of phases 7

and 8, with the only difference being the accessibility (and possibly the scale) of

the server.

Once deployed a service enters the operation and maintenance phase (10),

during which end users access the service. Throughout the operation and

maintenance phase, feedback is collected both by end users and via the statistics

collection mechanisms of the SmartGov platform (phase 11), which will be

exploited for service improvement (phase 12). In these phases, the SmartGov

platform offers support for statistics collection, user account management and

database backup and recovery.

Finally, a service may be discontinued due to becoming obsolete due to legislation

changes, owing to deadline expiration or even because it has not been proven to

be popular enough to justify its delivery and maintenance costs. In all cases,

delivery of the service through the dissemination platform should cease and,

depending on (a) the possibility that the service will go live again and (b)

organisational policy, it might be required that the SmartGov platform objects

crafted specifically for this service will be purged.

In the following paragraphs, phases 3, 4, 5 and 6 will be covered in more detail.

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 19 of 209

2.3.2 The phases of developing a transaction service

2.3.2.1 Creation of a service

The creation of a service within the SmartGov platform takes place during phase

3. In this phase, the service name is entered, along with a high-level description

of it. The description may document the overall service functionality, the result of

the feasibility study and so on. Finally, some keywords may be entered, which will

be drawn from the terms in the knowledge taxonomy or domain map.

2.3.2.2 Creation of a service process model

The service process model is created during phase 4. During this phase, the

service operation, the roles involved, the business rules governing the service and

the data that must be presented and/or collected are identified and documented.

Portions of the documentation (e.g. supporting legislation, information regarding

the workflow, service development expected time schedule) may be stored within

the SmartGov platform as knowledge units associated with the whole service.

2.3.2.3 Development of Transaction Service Components

During this phase the various components of the electronic service are taking a

concrete form within the SmartGov platform. The following paragraphs elaborate

on the process of creating the different elements. It is important to note that,

once the service process model has been defined within phase 4, the individual

stages within phase 5 need not be carried out sequentially. For instance, the form

layout may be developed in parallel with the TSEs or the KUs that will be placed

on the form, and links to external IT systems can be established independently of

all other activities.

Restrictions are placed on the development timeline only when a specific object

depends on the existence of another: for instance a validation check involving two

TSEs cannot be modelled until both involved TSEs have been defined.

2.3.2.3.1 Forms

Forms are the basic presentation and interaction unit for the end user of the

transaction service. In the context of the SmartGov platform, a form is divided in

two parts:

1. The semantic part, which defines what information is entered in the form,

the validation checks that apply to the form and the knowledge units,

which will be presented to the user.

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 20 of 209

2. the layout part, which defines the appearance of the elements on the

client device through which the electronic service is accessed.

Although in an ideal world both these parts would be developed in an

integrated environment, in the context of the SmartGov project this is not

feasible because (a) developing a web page editor with modeling power and

user friendliness comparable to the commercial tools service designers are

used to work with, is a huge task outside the scope of the project (b) devoting

person power in development of such a module is not in line with the

objectives of the key action (c) existing products are “closed” platforms and

cannot be extended. Taking these into account, the two parts will be

developed independently as follows:

1. The semantic part is developed using the SmartGov development

platform.

2. The layout part is developed outside the SmartGov platform using any

appropriate tool for form layout definition that targets the dissemination

channel through which the service will be delivered. For example, if the

service will be delivered through the WWW, HTML form editors should be

employed (e.g. DreamWeaver, FrontPage, vi etc.); if the service will be

delivered through the WAP, a WAP page editor (3TL WBuilder, Rasquares

Wap, vi etc) might be used. For services that will be deployed through

multiple dissemination channels, appropriate form sets should be

developed, one for each dissemination channel.

Since the two parts will be developed independently, there is a need to integrate

them, by establishing links between the elements of the semantic part and the

elements of the layout part. This procedure is covered in 2.3.2.3.6. The

development of both parts should adhere to the results produced by the service

process model creation phase, so these parts will be consistent with one another.

Any inconsistencies between the semantic part and the layout part (such as a

reference from the layout portion to a TSE or KU that does not exist) will be

detected at the integration phase, and users will be advised on the actions that

need to be taken to resolve the inconsistencies.

2.3.2.3.2 TSEs

Transaction service elements will be the basic building blocks for transaction

services. TSEs will be mainly defined by domain experts, and their work will be

complemented by IT staff, who will code the IT related portions, and by service

workers, who may contribute by adding knowledge units that will serve as help

items for the end-users of the transaction service. TSEs will be defined by

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 21 of 209

assigning values to properties, through an appropriate set of forms (or a series of

web pages, if a web interface is implemented).

Some properties of a TSE (which might be contributed by different roles) are

mandatory. These may be defined in any order, after the TSE is created. The

SmartGov platform will not impose any restrictions on the definition order. The

only requirement is that at service instantiation time, all mandatory attributes

must have been properly defined. In any other case, errors will be reported by

the integrator (discussed in a subsequent paragraph).

2.3.2.3.3 TSE groups

With layout definition being developed outside the SmartGov platform, a TSE

group defines the following:

Ø a set of TSEs that appear together within services

Ø Repetition information, indicating whether only one instance or multiple

instances of the member TSEs is required. For groups allowing multiple

instances, the member TSEs actually form a table row, which is repeated

as many times as needed, and may be used to model “detail” sections,

e.g. the items that are included in an order along with their prices, the

customers of an enterprise together with the net value and the tax due for

the transactions conducted with each one etc. The repetition information

may indicate the initial, minimum and maximum number of instances and

the step for adding new rows in the group.

Ø Validation checks that must hold among the elements of this set

Ø Knowledge units that apply to the set of TSEs, rather than to individual

elements (e.g. for a TSE group representing a citizen’s identification data,

a KU containing the law that states which information is considered as

“required identification data” may be defined)

It is worth noting that a single TSE may participate in more than one TSE group,

thus the relationship between TSEs and TSE groups is of cardinality “many-to-

many”. For instance, the identification number of a citizen may appear in the TSE

group “Personal Identification Data” and in the TSE group “Page footer”, which

can be placed on the bottom of a page to provide an immediate reference to the

service context. TSE groups may not be nested, i.e. a TSE group may only

contain individual TSEs, not TSE groups. This restriction leads to a more

comprehensible and easy-to-manage framework for SmartGov platform users to

work in, while it does not downgrade the platform functionality since (a) the same

result may be obtained by adding the individual TSEs belonging to the source

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 22 of 209

group to the target group and (b) the cases that such a functionality will be

needed will be –if exist at all- rare.

TSE groups with no repetition requirements are not an indispensable element of

the SmartGov platform; they are provided for convenience purposes, since the

working team will be able to package in a single entity all the necessary

information for TSEs that usually appear together. Determination of whether a set

of TSEs should be packed in a group with no repetition specification should follow

some “rules of thumb”, such as “if some TSEs will be frequently used together, it

will be beneficial if they were grouped together once and used thereafter as a

single entity”.

2.3.2.3.4 Validation checks

Validation checks may apply to individual TSEs, TSE groups, forms or services.

Validation checks pertinent to specific TSEs will mainly check the data type

(integer, string, date etc) and the value range of the data entered. These

validation checks may be considered as properties of the relevant TSEs.

Validation checks applying to TSE groups, forms or services will mainly check if a

certain relationship between different TSEs holds. The TSEs referenced in the

validation check should all appear in the object within which the validation check

is defined; for example, a validation check defined at TSE group level should only

reference TSEs participating in the TSE group.

Validation checks may be entered either via a graphical interface or in textual

form, using a validation rules language that should be defined. In both cases, the

definition of complex validation checks will be carried out by IT staff, rather than

domain experts. IT staff should be allowed to code validation checks directly in

the language used by the service delivery platform (e.g. PHP, Java etc.) if this is

found to be convenient, or if the coding language/environment provided is not

expressive enough to implement the desired functionality.

For the purpose of determining how much functionality is needed by the coding

language/environment, we have computed some statistics on the validation

checks that apply to the Greek tax return forms and VAT declaration forms. These

statistics have shown that 82% of the total checks fall into one of the categories

(1-4) described below, leaving an 18% in category 5.

1. Value range check. The value of a field is required to be between a

specific lower and upper bound.

2. A Requires B. If a value is entered in field A then a value must be

entered in field B. For example, if the Married indication is checked, the

Wife’s Name field must be also filled in.

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 23 of 209

3. A Precludes B. If a value is entered in field A then field B should be left

blank. For instance, if the user fills in the field profits from trade

business, the field losses from trade business should not be filled in,

since an enterprise may not have simultaneously profits and losses from

the same activity.

4. A cmp Β * c, where A and B are form fields, cmp is a relational operator

(=, ≠, >, ≥, <, ≤) and c is a constant value. This validation check

category allows for modeling of arithmetic constraints on form fields such

as the expenses declared for transports must be less than or equal to the

total expenses (in this case, c = 1), or pre-paid taxes may not be more

than 45% of the total income (c = 0.45). Note that a TSE may contain

the result of a computation on other TSEs, e.g. the sum of a column table

or the product of two TSEs, thus this construct is highly expressive.

5. Custom check. This category of validation checks is used to model any

constraint that does not fall in groups (1–4).

Based on these results we propose that the development environment should

provide the means to express any check in categories (1-4), and allow the

coding of checks in category 5 in any format appropriate for direct embedding

in the code that will be generated for the service delivery environment.

2.3.2.3.5 KUs

Every entity within the SmartGov platform may be associated with any number of

knowledge units. These knowledge units may pertain to procedures in the

SmartGov platform (e.g. how a TSE is created), to specific items (e.g. for a TSE

representing the passport number, an associated KU may describe the format of

the passport number or contain the relevant legislation), or constitute help for the

end users of the transaction service (e.g. KUs with descriptions, examples etc).

Every member of the working group may contribute to the population of the KU

repository depending on their position and skills; for example, domain experts are

the most suitable ones for providing legislation-related KUs, whereas service

workers, having experience from interacting with citizens, are the most likely to

provide comprehensive lists of dos and don’ts to serve as help items.

While KUs may be developed independently of other SmartGov entities and linked

to them using an appropriate management tool, it is expected that in most cases

the working team will be willing to perform KU creation and linking while creating

or reviewing SmartGov entities. For instance, when creating the TSE representing

the passport number, the domain expert may create the KUs containing the

relevant legislation or link to them; when a service worker later reviews the TSE,

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 24 of 209

he/she may create KUs with examples for the service end-users. Therefore, the

process of creating/reviewing (editing) a SmartGov entity should provide facilities

for creating/linking KUs.

2.3.2.3.6 Links to back-end systems

Links to back-end systems should be established for the purposes of both

retrieving data from and storing data to either organisational or third party

systems. Links to back-end systems are defined mainly by the organisation’s IT

staff using the SmartGov agent technology. The IT staff should also provide the

appropriate SEPs that will be plugged in the Information Interchange Gateway

coupled with the organisational or third party system, and will actually implement

the request.

2.3.2.3.7 Managerial statistics (Managers and Domain experts)

In this stage managers and/or domain experts define the statistics that they need

to view, in order to assess the service operation.

Ø Number of submissions for a service

Ø Number of accesses to the service from a particular platform (e.g. desktop

vs. handheld, browser, delivery channel).

Ø Number of saved sessions that were not finally submitted

Ø Number of submissions that were rejected due to errors

Ø Number of submissions that involved warnings

Ø Number of times a form was requested

Ø Number of times a specific check failed

Ø Number of times a specific TSE was used

Ø Number of times a specific knowledge base item was accessed.

Ø Time taken to complete a specific form

The SmartGov platform should offer a set of pre-defined statistics, pertaining to

various SmartGov objects (transaction services, forms, KUs, TSEs etc). The

managers and domain experts should be able to enable the collection of any of

these statistics during service operation, for subsequent viewing and analysis.

The definition of ad-hoc statistics should be also supported, by providing a set of

guidelines through which the IT staff of the organization may insert appropriate

code that will collect and store the relevant data.

2.3.2.3.8 IT-related statistics.

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 25 of 209

In this stage IT staff define statistics that are of interest to them, for the

purposes of monitoring the behavior and optimizing the performance of the

SmartGov platform. These statistics may include (the list is not exhaustive):

Ø Time taken to serve a specific request

Ø Time taken to communicate with a back-end system

Ø Profiling of the pending actions queue size

Ø Number of communication failures with a specific IT system

For a more complete picture of the platform behaviour, the IT-related statistics

supported by the SmartGov platform should be examined in combination with the

statistics that may be gathered by the other software modules within the

platform, such as the operating system, web server, database server etc.

2.3.2.4 Integration

Once all necessary elements for a transaction service have been defined, the

integration phase will arrange for performing a synthesis of these elements into

an operational instance of the transaction service. In more detail, the integration

step will perform the following actions:

1. It will access the service definition, extracting from it the links to the

forms that implement the service, the validation checks pertaining to the

service as a whole and the associated KUs.

2. It will retrieve the form definitions and the definitions of the TSEs

appearing on each form, together with the associated validation checks

and KUs. If a TSE group has been placed on a form, all TSEs belonging to

the group will be retrieved, together along with their descriptions, KUs and

validation checks. KUs and validation checks pertaining to the TSE as a

whole will also be retrieved.

3. It will load the information regarding the statistics that need to be

collected.

Once this information is available to the integrator, the service instantiation task

may proceed. The integrator module will generate a page for each form defined

within the service, using the form layout specification. Forms belonging to the

same service will be suitably linked, based on form sequence information

specified for the service; “submit” buttons will also be placed on the forms that

have been designated to provide such functionality. At this stage, the

completeness of references to TSEs should be verified: each TSE declared to

participate in a form, should be linked with an element of the form layout. If this

is not the case, the SmartGov platform user should be informed of the

discrepancy, in order to amend the situation.

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 26 of 209

Validation checks defined at TSE level and form level will be used to generate

code that will validate user input. This code may be executed:

1. At the front-end (client-device side), if the service designers have

designated that this is desirable and if the client device supports active

features. Regarding the timing of the execution, these checks may be

performed either when the user changes a field value (usual case when

the validation check pertains to the field data type or the field value

range), or when the user leaves the page (typically when the validation

check involves multiple fields).

2. At the server-side. All input should be always validated at the server-side,

since in a distributed environment clients should be considered

untrustworthy, and thus the system may not rest on the perception that

all client-side checks have been properly executed. Server-side checks

may be run when the user leaves a page or when a final submission is

made, depending on the timing specified by the service designers.

The integrator will also generate code for the validation checks defined at service

level. These will be executed on the server-side upon the final submission, since

in general they involve TSEs appearing in different forms, which inhibits execution

at the front-end upon form change (it is not guaranteed that all involved values

will have been provided).

Finally code will be generated to arrange for the communication with third-party

systems through the SmartGov agent. This communication will be mainly

performed when the user invokes a service, in order to retrieve values for TSEs

that need to appear pre-filled in with values obtained from registries or

databases.

Knowledge units that are associated with TSEs, TSE groups, forms and the

transaction service and that have been designated as “help items for end-users”

should be appropriately linked to the forms. The integrator should arrange for the

proper generation of help pages from KUs (possibly translation of XML to HTML or

WML through XSLT templates) and embedding of the hyperlinks to the

appropriate anchors.

Statistics definitions will also be translated to pieces of code that will arrange for

collection and storage of relevant statistics. For example, if the sum of the values

filled in a specific form element has been requested to be computed, the

integrator will generate code that will add the value of each submitted form to a

database element; if the number of submissions should be counted, code will be

generated for adding up one to a specific database element upon submission.

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 27 of 209

Once the final pages and the associated programs have been generated, the files

produced may be installed on a restricted access server for testing and evaluation

purposes, or on a public access service for full service deployment.

2.3.2.5 Testing, Evaluation, Deployment, Operation and Maintenance,
Feedback and Improvement

These phases are not performed through the SmartGov platform; however the

SmartGov platform may provide input for some phases, such as the evaluation or

operation and maintenance phases, through statistics, error reporting, or issuing

notifications to the service administrators when changes that affect the service

operation occur.

2.3.2.6 Link Establishment Between Form Layout and Form Semantics

Since the two parts of a form (semantic and layout) are developed independently,

an integration step is required, in order to establish links between the elements of

the semantic part and the elements of the layout part.

As stated in section 2.3.2.3.1, the semantic part of a form defines what

information is entered in the form, the validation checks that apply to the form

and the knowledge units that will be presented to the user. This information may

be represented by an XML document, such as the one depicted in Figure 3.

<?xml version="1.0" encoding="ISO-885901"?>
<form>
 <formId>personalDataVAT</formId>
 <name>Personal Data for VAT Declaration</name>
 <includedTSE>VAT_TSE_surname</includedTSE>
 <includedTSE>VAT_TSE_name</includedTSE>
 <includedTSE>VAT_TSE_vat_id</includedTSE>
 <linkedKUNode>KU_essential_identification</linkedKUNode>
 <linkedKUNode>KU_vat_id_example</linkedKUNode>
 <workGroup>VAT task force</workgroup>
 <formLayout>http://devel-srv/e-svc/VAT/form1</formLayout>
</form>

Figure 3 – XML description of a form

The form description contains references to various SmartGov platform entities

(TSEs, KUs), which are described as XML documents in the SmartGov platform

database; example documents are presented in Figure 4. The form description

also contains one reference to the form layout, which is stored in an XHTML file.

This file has been developed outside the SmartGov platform using a suitable

XHTML editor. A possible rendering of the layout in a browser window is

illustrated in Figure 5, while the associated XHTML code is presented in Figure 6.

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 28 of 209

<?xml version="1.0" encoding="ISO-8859-1"?>
<instantiatedTSE>
 <instantiatedTSEId>VAT_TSE_surname</instantiatedTSEId>
 <instanceOf>SMARTGOV_generic_string</instanceOf>
 <name>Tax payer's surname in VAT form</name>
 <maxLength>32</maxLength>
 <linkedKUNode>KU_essential_identification</linkedKUNode>
 <linkedKUNode>KU_VAT_name_example</linkedKUNode>
 <isVisible>TRUE</isVisible>
 <isReadOnly>TRUE</isReadOnly>
 <isMandatory>TRUE</isMandatory>
 <workGroup>VAT task force</workgroup>
</instantiatedTSE>

<?xml version="1.0" encoding="ISO-8859-1"?>
<instantiatedTSE>
 <instantiatedTSEId>VAT_TSE_name</instantiatedTSEId>
 <instanceOf>SMARTGOV_generic_string</instanceOf>
 <name>Tax payer's name in VAT form</name>
 <maxLength>32</maxLength>
 <linkedKUNode>KU_essential_identification</linkedKUNode>
 <linkedKUNode>KU_VAT_name_example</linkedKUNode>
 <isVisible>TRUE</isVisible>
 <isReadOnly>TRUE</isReadOnly>
 <isMandatory>TRUE</isMandatory>
 <workGroup>VAT task force</workgroup>
</instantiatedTSE>

Figure 4 – XML description of two TSEs

Figure 5 – Rendering of identification data form in a browser

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 29 of 209

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>

<title>VAT statement - Personal data</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" href="html/colors.css" type="text/css">
</head>
<body bgcolor="#FFFFFF" text="#000000" background="html/images/back.gif">
<table width=700 border=0 align="center">
<tr>
 <td>
 <form name="form1" method="post" action="">
 <table border="0" cellspacing="1" cellpadding="1" width="700">
 <tr>
 <td class="colordark" colspan="3">
 TABLE 1. IDENTIFICATION DATA </td>
 </tr>
 <tr>
 <td class="colormedium" valign="middle" width="260">
 Surname:
 <input name="surname" size="30" maxlen="30">
 </td>
 <td class="colormedium" valign="middle" width="260">Name:
 <input name="name" size="30" maxlen="30">
 </td>
 <td class="colormedium" valign="middle" width="180">VAT Id:
 <input name="vat_id" size="9" maxlen="9">
 </td>
 </tr>
 </table>
 </form>
 </td>
</tr>
</table>
</body>
</html>

Figure 6 – XHTML code for identification data form

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 30 of 209

The issue at hand is establishing the links between (a) the input fields on the

form with the corresponding TSEs and (b) the help anchors on the form (marked

with the question mark icon) with the corresponding knowledge units. Two

options for achieving this goal are described in the following paragraphs.

1. The form layout designers are aware of the identities of the transaction

service elements and the knowledge units, as assigned and maintained by

the SmartGov platform and use these identities to tag the relevant items

on the form. For example, the form layout designers could use the id of

the TSEs as the name property of input fields, or the id of the KU as the

alt property of images. In this case, the processor can easily map each

layout item to the respective entity of the SmartGov platform. The

drawback of this approach is that form layout designers must deal with the

identities of the SmartGov platform (which will most probably be machine-

generated and thus counter-intuitive), and this will hinder the

development and maintenance process. Moreover, this will impose the

restriction that form layout can only proceed after the relevant entities

(TSEs and KUs) in the SmartGov platform have been defined.

2. The form layout designers proceed independently of any activities within

the SmartGov platform; the layout designers are not aware of any entities

of the SmartGov platform, but assign arbitrary values to attributes of the

form elements. (This is the case of Figure 6). The links between the layout

elements and the SmartGov platform entities may be established in an

intuitive manner using the following procedure:

a. A processor reads the definitions of TSEs and KUs pertaining to the

form in question (appropriate information exists within the

SmartGov “form” entity), extracting identifications and descriptions

(or any other human-readable form suitable for identifying the

SmartGov platform object). Note that TSEs may be included in the

form directly or indirectly, through their participation in a TSE

group that has been placed on the form.

b. The processor scans the form layout (HTML, WML, etc), locating

tags that correspond to input fields (e.g. <input>, <select> etc. for

HTML forms) to drop down-lists, whose selections correspond to the

TSE elements. The processor adds a “submit mappings” button for

notifying the SmartGov platform of the desired mappings, and

when this button is pressed, the mappings are sent to a program

that performs this exact function (storing of mappings). The

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 31 of 209

translated HTML code is illustrated in Figure 7 and will be presented

to the SmartGov platform user as depicted in Figure 8. Note that in

the option parts of the drop-down lists the TSE ids are used as

values, whereas the textual portion of the option (the label

presented to the user) is the TSE description, as found in the XML

description of the TSE.

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 33 of 209

<head>
<title>VAT statement - Personal data</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link rel="stylesheet" href="html/colors.css" type="text/css">

</head>
<body bgcolor="#FFFFFF" text="#000000" background="html/images/back.gif">
<table width=700 border=0 align="center">
<tr>
 <td>
 <form name="form1" method="post" action="/bin/layoutMapper.jsp">
 <input type="hidden" name="SmartGovFormName" value="personal_data_vat">
 <table border="0" cellspacing="1" cellpadding="1" width="700">
 <tr>
 <td class="colordark" colspan="3">
 TABLE 1. IDENTIFICATION DATA</td>
 </tr>
 <tr>
 <td class="colormedium" valign="middle" width="260">
 Surname:

 <select name="surname">
 <option value="null">Please select a TSE</option>
 <option value="VAT_TSE_surname">Tax payer's surname in VAT form</option>
 <option value="VAT_TSE_name">Tax payer's name in VAT form</option>
 <option value="VAT_TSE_vat_id">Tax payer's VAT id in VAT form</option>
 </select>

 </td>
 <td class="colormedium" valign="middle" width="260">Name:

 <select name="name">
 <option value="null">Please select a TSE</option>
 <option value="VAT_TSE_surname">Tax payer's surname in VAT form</option>
 <option value="VAT_TSE_name">Tax payer's name in VAT form</option>
 <option value="VAT_TSE_vat_id">Tax payer's VAT id in VAT form</option>

IST PROJECT 2001-35399 SMARTGOV 13 February 2003

 SMARTGOV Consortium Page 34 of 209

 </select>

 </td>
 <td class="colormedium" valign="middle" width="180">VAT Id:

 <select name="vatid">
 <option value="null">Please select a TSE</option>
 <option value="VAT_TSE_surname">Tax payer's surname in VAT form</option>
 <option value="VAT_TSE_name">Tax payer's name in VAT form</option>
 <option value="VAT_TSE_vat_id">Tax payer's VAT id in VAT form</option>
 </select>

 </td>
 </tr>
 </table>
<hr width="100%">
<div align="right"><input type="submit" value="Submit mappings"></div>
</form>
</td>
</tr>
</table>
</body>
</html>

Figure 7 – Transformed XHTML code for mapping form elements to TSEs

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 35 of 209

Figure 8 – Rendered form for the purposes of mapping

By comparing Figure 5 and Figure 8 it can be seen that the XHTML page

may be slightly distorted (e.g. question mark icons appear on a separate

line from the associated input elements), since the size of the input

element on the original form may be different than the size required by

the drop-down list widget on the transformed form. However, the analogy

to the original form is quite clear.

The final step is mapping of the help anchors to knowledge units. A similar

approach to the mapping of the form elements to TSEs may be used. The

processor must be aware of the text used in the form layout description as a help

anchor (in the previous example the text is a reference to the question mark

image, expressed in the HTML jargon as

). These help anchors will be

replaced by drop down lists, whose items will be a list of the KUs pertinent to the

form (this includes all KUs related to the service, the form and any TSE groups or

TSEs placed on the form). In this case, the layout is bound to be more distorted,

since help anchors are usually quite small, compared to the textual descriptions of

KUs. However, alternative approaches may be used, such as displaying the form

in its original layout and popping up a new window with the selections when the

user clicks on the anchor.

At the end of the link establishment process, the SmartGov platform should verify

that all TSEs declared in the form’s semantic part to participate in the form have

counterparts in the layout part. If some TSEs remain unmapped, notification

messages should be issued to the SmartGov platform user.

When all form elements have been mapped to TSEs and KUs, as appropriate, the

integrator may proceed as described in section 2.3.2.4.

This approach may be followed for WML documents; in this case, the processor’s

job of scanning the layout code for user input tags is much simpler, since the only

such tags in WML are input, optgroup, option and select. Considering the

limited expressiveness of WML and the restricted hardware it is usually processed

on, only simple services should be considered for deployment through WML

channels.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 36 of 209

2.3.2.7 Maintaining the associations between visual elements and SmartGov
entities

The procedure described in section 2.3.2.6 establishes links between the visual

elements appearing on the form and the SmartGov platform entities (TSEs and

KUs). It is important for the purposes of service maintainance that these links are

“remembered” by the SmartGov platform so that, in the event of some service

modification, the domain experts and/or KU staff involved in the maintenance

process will only have to add/delete/modify the mappings that have changed, as

compared to the last version, and not perform the whole process anew.

The maintenance of the association between XHTML form elements (input areas,

drop down lists etc.) and TSEs is straightforward, since (a) the TSEs have a

unique identity within the SmartGov environment and (b) the XHTML form

elements have a name, which identifies them uniquely within the scope of the

form. Thus, it suffices to record within the SmartGov platform the association

between each TSE identifier and the corresponding XHTML form element name.

For KU form anchors, however, there is no guarantee that the visual element will

have a unique identity, since this anchor may be a piece of text, an image, or any

other allowable XHTML entity; moreover, the same XHTML entity may be used as

a placeholder for multiple KU anchors. In order to tackle this issue, the SmartGov

platform may insert into the XHTML file unique identities for the KU anchors. The

association between these unique identities and the KU identifiers will then be

saved within the SmartGov platform to maintain the association between KUs and

their anchors. The identities will be inserted as XHTML comments within the

XHTML file, thus no modification to the visual layout or the form semantics will

result.

For example, consider the XHTML code of Figure 6, in which KU anchors are

denoted through the XHTML code fragment <img src="html/images/qmark.gif"
alt="?">, the mapping procedure will generate for each KU anchor a unique id

(the uniqueness constraint must hold in the scope of the form) and will expand

each occurrence of the code fragment with an XHTML code fragment of the form

<!—- KUREF id="uid" --><!-- /KUREF -->
where uid is the unique id generated for this specific instance of a KU anchor.

2.3.3 The Front-End Navigation Diagrams

The main goal of the SmartGov platform is to provide a smart environment to

develop and deliver transactional services. In order to do that, an integrated and

unified environment that allows service development and knowledge creation and

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 37 of 209

retrieval is needed. The SmartGov Front-End is an environment that is going to

support several phases of the Transaction Service Life-cycle, and some other

issues as well:

• Work Group management

• SmartGov User management and Service Roles management stored in an

RDBMS as explained in 2.8.13.1

• Taxonomy editing tool.

• Transaction services components development (TSs, Forms, TSEs, TSE

Groups, Validation Checks, definition of statistics).

• Knowledge acquisition (KU editing tool).

• Retrieval facilities (via Taxonomies).

• Knowledge and TS life-cycle tool.

The following figures give a general view of navigation diagrams regarding the

SmartGov Front-End:

Figure 9 – Main SmartGov Front-End Navigation Diagram

As shown in the previous figure, after a valid SmartGov user is logged in the

system, a Portal page is shown. Depending on the user profile (their role in the

system, as Manager, Domain Expert, IT Staff, and Service Workers) different

information will be shown. From this portal there are several ways to act:

• Selecting menu options from the Menu

• Performing task from the Task List

• Selecting a TS to edit from the Service List

• Retrieving a SmartGov object from the Taxonomy Retrieval tool.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 38 of 209

Figure 10 shows a closer view of the Portal capabilities.

Figure 10 – Portal Navigation Diagram Explanation

Regarding Figure 10, several ways to access to the SmartGov data are shown:

• From the menu placed in the Portal the different editors (TS, Form, TSE,

TSE Group, KU, Taxonomy, User, and Work Group) can be accesed.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 39 of 209

• The Work Group selector will allow to change the current Work Group in

wich the logged user is working in. This change drives to update the list of

available services (related with the work group).

• From the List of Services, the TS editor can be accessed

• From the Taxonomy Retrieval tool, navigation to all SmartGov categorized

objects is provide.

• From the Task List, access to the life-cycle of TSs and KUs is available.

Figure 11 – SmartGov Menu Front-End Navigation Diagram

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 40 of 209

Figure 12 – SmartGov Task List Front-End Navigation Diagram

Several options will be available from the Portal Menu as it is shown in Figure 12.

These options are role sensitive. Thus depending on the role of the user

(Manager, Domain Expert, IT Staff, or Service Workers) some options will be

unavailable. For instance, a Service Worker will not be able to edit the Work

Group, User, and Service Roles Management, or modify the taxonomy using the

Taxonomy Editor.

The Task List (Figure 12) gives access to the KU and TS approval cycle. Before

making the knowledge or the Transaction Service ready to be deployed to the

production environment, KUs and TSs must complete its life-cycle as is shown in

Figure 13 (KU Life-Cycle). After this cycle the quality, accuracy, and content of

the KU or TS should be sufficient to be deployed.

The approval cycle will be performed following the work group hierarchy,

according to the specified permits (modifiers, reviewers, approvers) stored in the

SmartGov User-Roles system. The life-cycle business rules will be stored in a

configuration XML file, because the rules of approval could change in the future.

Figure 13 – KU Life-Cycle

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 41 of 209

Figure 14 – SmartGov TS Editor Front-End Navigation Diagram

Figure 15 – SmartGov Form Editor Front-End Navigation Diagram

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 42 of 209

The two previous figures showed all the capabilities of the Transaction Service

Editor. All links between pages are shown (except perhaps some connections

between instantiated TSE and TSE Groups with elements like KUs or Validation

Checks). In the following figures a closer view of this editor is shown.

Figure 16 – TS Editor Diagram Explanation

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 43 of 209

Figure 17 – Form Editor Diagram Explanation

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 44 of 209

Figure 18 – SmartGov Managerial Statistics Front-End Navigation

Diagram

The definition of managerial statistics is shown in the previous figure. Notice that

this definition implies just a formal gathering of statistics criteria. The integrator

will be responsible for implementing the collection of the statistics based on the

descriptions defined here.

2.4 Logical view

2.4.1 Introduction

This section describes the architecturally significant parts of the design model,

and their decomposition into subsystems and packages. For some packages, their

decomposition into classes and class utilities are also given. Some architecturally

significant classes are introduced here and their responsibilities, as well as a few

very important relationships, operations, and attributes are given. The first

architecturally significant package is the Jakarta STRUTS MVC Framework

[Struts]. Due to its extensive usage and important role within many of the design

elements of the platform Struts is presented in section 2.4.2.1. After that the XML

repository, which will store all the XML documents needed by the platform, is

presented. The XML repository will be accessed by the SmartGov front-end tool,

presented right after, which will provide a user-friendly interface allowing the

management of the aforementioned XML documents. After that the agents

allowing inter-communication with installed IT legacy systems are presented.

Finally the presentation of the integrator follows. This component will be

responsible for the generation of the final e-forms service accessible by the

citizens.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 45 of 209

2.4.2 Architecturally Significant Design Packages

2.4.2.1 The STRUTS Framework

The Struts framework provides the invisible underpinnings that a web application

needs in order to be extensible, re-usable and eliminates several dangers faced in

the development of such applications. Struts helps in creating an extensible

development environment for an application, based on published standards and

proven design patterns. Its basic principle is the support of the Model-View-

Controller design pattern and that is why in the next section this pattern is

introduced.

2.4.2.1.1 The Model View Controller Framework

The Model-View-Controller architecture is a widely-used architectural approach for

interactive applications. It divides functionality among objects involved in

maintaining and presenting data to minimize the degree of coupling between the

objects. The architecture maps traditional application tasks--input, processing,

and output--to the graphical user interaction model. They also map into the

domain of multitier Web-based enterprise applications.

The MVC architecture divides applications into three layers--model, view, and

controller--and decouples their respective responsibilities. Each layer handles

specific tasks and has specific responsibilities to the other areas.

• A model represents business data and business logic or operations that

govern access and modification of this business data. Often the model

serves as a software approximation to real-world functionality. The model

notifies views when it changes and provides the ability for the view to

query the model about its state. It also provides the ability for the

controller to access application functionality encapsulated by the model.

• A view renders the contents of a model. It accesses data from the model

and specifies how that data should be presented. It updates data

presentation when the model changes. A view also forwards user input to

a controller.

• A controller defines application behavior. It dispatches user requests and

selects views for presentation. It interprets user inputs and maps them

into actions to be performed by the model. In a stand-alone GUI client,

user inputs include button clicks and menu selections. In a Web

application, they are HTTP GET and POST requests to the Web tier. A

controller selects the next view to display based on the user interactions

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 46 of 209

and the outcome of the model operations. An application typically has one

controller for each set of related functionality. Some applications use a

separate controller for each client type, because view interaction and

selection often vary between client types.

Figure 19 depicts the relationships between the model, view, and controller layers

of an MVC application.

Separating responsibilities among model, view, and controller objects reduces

code duplication and makes applications easier to maintain. It also makes

handling data easier, whether adding new data sources or changing data

presentation, because business logic is kept separate from data. It is easier to

support new client types, because it is not necessary to change the business logic

with the addition of each new type of client.

Figure 19. The Model-View-Controller Architecture

2.4.2.1.2 An Introduction to Struts

The core of the Struts framework is a flexible control layer based on standard

technologies like Java Servlets, JavaBeans, ResourceBundles, [J2EE] and

Extensible Markup Language (XML).

Struts encourages application architectures based on the Model 2 approach, a

variation of the classic Model-View-Controller (MVC) design paradigm. Struts

provides its own Controller component and integrates with other technologies to

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 47 of 209

provide the Model and the View. For the Model, Struts can interact with any

standard data access technology, including Enterprise Java Beans, JDBC, and

Object Relational Bridge. For the View, Struts works well with JavaServer Pages,

Velocity Templates, XSLT, and other presentation systems.

Figure 20illustrates the Struts architecture.

Figure 20 The Struts Architecture

There are three major components in Struts, the servlet controller (controller),

the JSPs (View), and the application business logic (Model). The controller

bundles and routes HTTP requests to other objects in the framework. It also

parses the configuration file (Struts-config.xml), which contains action mappings

that are used to turn HTTP requests into application actions.

On the other hand the model of the system is divided into concepts that keep the

internal state of the system and actions that can change that state. These are

represented by Java Beans. In the specific case that a Forms application is

developed these beans are ActionForm Beans, which extend the ActionForm Class

within the framework implementation. In conjunction to the aforementioned

beans the business logic beans also exist. These encapsulate the functional logic

of the application as method calls on JavaBeans designed for this purpose.For

accessing relational Databases Struts allows the definition of datasources from

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 48 of 209

within its standard configuration file. A simple JDBC connection pool is also

provided.

As far as the view part of the application, Struts provides the means for building

internationalized applications. In fact it builds upon the Java platform using the

following components:

• Locale - fundamental Java class that supports internationalization

• ResourceBundle - supports messages in multiple languages

• PropertyResourceBundle - standard implementation of ResourceBundle

that allows you to define resources using the same "name=value" syntax

used to initialize properties files

• MessageFormat - allows you to replace portions of a message string with

arguments specified at run time

• MessageResources - lets you treat a set of resource bundles like a

database, and allows you to request a particular message string for a

particular Locale

The Struts framework also provides a number of Tag libraries to assist in coding

JSPs efficiently. These are:

• HTML Tags: The tags in the Struts HTML library form a bridge between a

JSP view and the other components of a Web application. Since a dynamic

Web application often depends on gathering data from a user, input forms

play an important role in the Struts framework. Consequently, the

majority of the HTML tags involve HTML forms. Other important issues

addressed by the Struts-HTML tags are messages, error messages,

hyperlinking and internationalization.

• Bean Tags: The "struts-bean" tag library provides substantial

enhancements to the basic capability provided by <jsp:useBean>.

• Logic Tags: The Logic tag library contains tags that are useful in managing

conditional generation of output text, looping over object collections for

repetitive generation of output text, and application flow management.

• Template Tags: The Template tag library contains three tags: put, get,

and insert. Put tags put content into request scope, which is retrieved by a

get tag in a different JSP page (the template). That template is included

with the insert tag

• Custom Tags: Allow the definition of custom actions performed by the JSP

that contains them

More information on the Struts Framework can be found at [Struts].

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 49 of 209

2.4.2.2 The XML Doc Repository

The XML doc repository is the component responsible for storing the XML

documents mentioned previously in this document. It provides an Application

Program(ming) Interface (API) to the SmartGov Front end tool. This API aims to

facilitate creation, deletion, retrieval and alteration of the specified XML

documents. The SmartGov Front-end is a web application addressed to the

Domain Experts and Managers of the platform and basically constitutes the GUI

(Graphical User Interface) of the repository. It also facilitates additional

functionality, which is described in detail in section 2.4.2.3.

Following the API calls made by the SmartGov Front-end, the XML Doc Repository

mechanism subsequently takes over the responsibility to handle with skill the XML

documents in a transparent way, applying an inherent efficient storage

mechanism based on indexes.

The overall architecture of the SmartGov XML doc Repository is shown in the

following figure.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 50 of 209

XML Doc Repository

SmartGov
Front-end

XML Doc Repository
API XML Doc

XMLSchema

create,
retrieve,
update,
delete

XML
Doc

object

XML
Document

Figure 21. The XML Doc Repository Architecture

The SmartGov Front-end passes XML doc java objects to the XML Doc Repository

API. The structure of the XML Doc objects is dependent on the specific XML doc

structure that is each time created or retrieved and is generated by the Castor

tool. In other words XML Doc objects are the representation of the XML

documents in Java language. These objects comply with the object model

generated by the castor framework. Castor is an open source data binding

framework, which maps a Java object model to and from XML, according to a

given XML schema. For further information about Castor, the reader should refer

to the [Castor] After receiving an XML Doc object, the XML Doc Repository objects

construct on the fly the respective XML document and perform the action

requested by the front-end (insertion, deletion or modification).

In the following figure a class diagram of the XML Doc Repository API

implementation is given.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 51 of 209

Figure 22 XML Doc Repository API class diagram

2.4.2.2.1 The XMLStoreFactory Class

The XMLStoreFactory class is a convenience class that provides access to

implementations of the XMLStore Interface and configuration data through the

class XMLStoreConfig. XMLStoreFactory instantiates an XMLStore object through

the method newXMLStore(XMLStoreConfig).

2.4.2.2.2 The XMLStoreConfig Class

The XMLStoreConfig Object associated with the XMLStoreConfig Class is a generic

object that can store whatever configuration data (String name, Object value)

properties required by the underlying implementation of the XMLStore Interface.

For example it may store configuration properties such as the full name of the

class that implements the XMLStore Interface and in the case that the storage is

done in a database XMLStoreConfig stores database configuration data such as

the Class name of the JDBC Driver, the Class name of the DataSource and other

configuration parameters.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 52 of 209

2.4.2.2.3 The XMLStore Interface

The XMLStore public interface provides the API for persisting XML documents in a

Database (RDBMS).

2.4.2.2.4 The Indexer Class

The Indexer class provides an index on the stored XML documents

2.4.2.2.5 The XMLStoreDocument Interface

Represents a document handled by an implementation of the XmlStore interface.

2.4.2.2.6 The XMLStoreException Class

The XMLStoreException class represents a general exception type that the

XMLStore can throw.

2.4.2.2.7 The XMLStoreConfigurationException Class

The XMLStoreConfigurationException class extends the XMLStoreException class.

When thrown, indicates inconsistency in the underlying XmlStore's configuration.

2.4.2.3 The SmartGov Front-End

The SmartGov Front-End, as it is stated in 2.4.2.2, is an integrated and unified

environment that provides to the SmartGov users a light HTML interface that will

allow service development and knowledge creation and retrieval. The following

tools related with the service development will be supported in the SmartGov

platform:

• Work Group management.

• SmartGov User management and Service Roles management.

• Taxonomy editing tool.

• Transaction services components development (TSs, Forms, TSEs, TSE

Groups, Validation Checks, definition of statistics).

• Knowledge acquisition (KU editing tool).

• Retrieval facilities (via Taxonomies).

• Knowledge and TS life-cycle tool.

The logical architecture of the front-end is shown in Figure 23 and Figure 24:

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 53 of 209

Figure 23 – SmartGov Front-End logical architecture components

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 54 of 209

Figure 24 – SmartGov Front-End interaction between components architecture

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 55 of 209

2.4.2.3.1 Presentation Layer (Struts)

The SmartGov Front-end will be developed according to the MVC (Model-View-

Controller) architecture, a standard approach for developing applications. This

architecture will also be used in the Delivery Environment. Even the same MVC

framework will be used in both environments: Struts, by the Jakarta Apache

project (see [Struts])

Though the general lines about this architecture and framework are explained in

the aforementioned paragraph, a deeper introduction to the framework will be

carried out here.

2.4.2.3.1.1 Using Struts in the Front-End tool

Struts framework provides the central element in the MVC architecture, the

controller, which is responsible for distributing requests and responses to the

appropriate components. This controller can be customized with an XML file,

configuring the actions that it is able to carry out, and the corresponding views to

show the results.

Thus, developing a set of classes is required to add new actions to the

application. These classes are:

§ Action class: When the controller decides which action must be

performed, it calls the perform method in the class that extends

org.apache.struts.action.Action. In this method, the corresponding checks

and calls to business logic classes will be done. Considering the return

values from the business logic and the configuration established in the

struts XML file, the next view to be shown to the user is decided.

§ ActionForm class: This is a bean that encapsulates the access to the

different fields in a Web form. Using Struts JSP Tags in collaboration with a

class that extends org.apache.struts.action.ActionForm allows to automate

the communication from the action to the form and vice versa.

This class allows set/get the fields in the form with the corresponding

methods, and adds a method to validate the modified / inserted data.

Therefore, for each action that has to be implemented in the front-end, we will

require these two classes, besides the required business logic classes. Using this

approach, we will keep our business logic completely isolated from the Web

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 56 of 209

environment, and it will be possible reusing it in the future in other non-Web

environment (Desktop application, wap…).

2.4.2.3.1.2 Example of use

In order to show how Struts works in the SmartGov Front-End tool, an example,

in this case Logging on the application, is explained.

Figure 25 – Example of use of Struts in the Front-end tool

As it was aforementioned, two classes are required: LogonAction and LogonForm.

It also requires a JSP page with a logon form including two fields: username and

password. Once developed the JSP page, using Struts JSP tags specially

developed to create forms, mapping these fields in the LogonForm class is

needed, so the corresponding methods get/setUsername and get/setPassword

must be added.

Now in the LogonAction class, in its perform method, the appropriated validation

methods must be included and also the corresponding calls to the business logic

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 57 of 209

classes. For example, it must be checked that the user and the password fields

are not empty, and, afterwards, a call to the User class (to check if the password

is correct) is needed. Finally, according to the return from this call, the action

class will direct the response to the Portal main page or to an error page.

It is important to point out that the Action class will contain client-related

validations (in this example, checking that the fields are not empty) and that

these validations may be implemented also in the Action Form class. However,

the logic-related validations –those imposed by the business rules like, for

example, that the password has to coincide with the database one, or even that

the password must be at least six characters…- have to be included in business

logic classes, because in this way these validations are applied always

independently of the Presentation layer used (Web, wap, console application…)

A sequence diagram showing this approach is shown in Figure 26:

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 58 of 209

Figure 26 –Sequence diagram using Struts in the Front-end tool

2.4.2.3.2 Business Layer

2.4.2.3.2.1 SmartGov Service Design Model

The SmartGov front-end deals with the definition and design of several

components of the electronic service that are going to take a concrete form within

the SmartGov platform. These elements are the TSs, Forms, TSEs, TSE Groups,

Instantiated TSE, and Instantiated TSE Groups, as it was aforementioned.

In the following figure a class diagram of the service design model regarding just

the more important methods, and relationships between the service components

is shown.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 59 of 209

Figure 27 – SmartGov service design objects logical class diagram

2.4.2.3.2.2 SmartGov Knowledge Model

Knowledge related with e-services, or with the SmartGov platform, and SmartGov

objects is going to be stored through Knowledge Units (KUs). Those KUs could be

related with several SmartGov objects:

• Knowledge related with the SmartGov platform: those KUs will be a kind of

system “help” that will be related with every SmartGov page, field or

design object that needs this kind of help. They will be deployed with the

SmartGov development environment as a part of the platform.

• Knowledge related with service objects: TS, Forms, TSE, TSE Groups or

service KUs. This knowledge will be created by the users that are going to

develop a service within the SmartGov platform. Some of these KUs can

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 60 of 209

be mapped of the help anchors to a form. These mapped KUs should be

deployed with the service.

To categorize and recover knowledge and other SmartGov objects, a Taxonomy

Editor will be developed. The SmartGov taxonomies will have a tree-like

appearance. This editor will deal with several issues:

• Create, modify, and delete a taxonomy. Add and remove existing Nodes to

the taxonomy.

• Create and delete Nodes.

The Taxonomy management should enforce some measures to assure the data

integrity, like not deleting a node having objects related with it.

Other facilities related with taxonomies will be provided:

• Node selection tool to allow linking to SmartGov objects.

• Retrieval tool to choose which one among the SmartGov taxonomies the

user wants to navigate.

• Retrieval tool to navigate through taxonomy nodes and allow retrieving of

SmartGov objects.

In the following figures two classes diagrams of the KM model and the

relationship with the service design model are given.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 61 of 209

Figure 28 – SmartGov Knowledge Objects logical class diagram

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 62 of 209

Figure 29 – SmartGov KM & Services relationships logical class diagram

2.4.2.3.2.3 SmartGov Life-cycle Model

To fulfil the required life-cycle for SmartGov objects (TSs and KUs), several

workflow capabilities must be developed.

The life-cycle business rules will be stored in a configuration XML file, because the

rules of approval could change in the future. These rules follow the next

paradigm:

Figure 30 – SmartGov life-cycle rules

As it can be seen in Figure 30, there are two different Processes in SmartGov: TS,

and KU life-cycle. Those processes will have defined States (Editing, Reviewing,

Approving, Approved), and Process Roles (Editor, Reviewer, Approver). The

changes between and Initial State to a Next State will be driven by Actions (Send

to Review, Review, Approve). Those are the available Transitions, that could be

performed by the users associated to the Process Roles. Users (Performers) and

Roles should match with the users and roles defined in the RDBMS system (see

2.8.13.1).

From the SmartGov Portal, a Task List tool gives access to the KU and TS

approval cycle. The task list is designed to retrieve and manage all tasks

delivered to any kind of object, although in SmartGov just two objects (KUs and

TSs) have a defined life-cycle. For this purpose a interface is defined to specify

the characteristics that must be fulfilled by any object that needs to implement

this functionality.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 63 of 209

Figure 31 – SmartGov life-cycle logical class diagram

2.4.2.3.2.4 Users, Work Groups and Roles Model

SmartGov has to ensure a correct management of users and profiles to allow

access to the service design environment to the users with SmartGov roles

(Managers, Domain Experts, IT Staff, and Service Workers). Furthermore support

for entity life-cycle and workflow capabilities have to be provided.

In the following figure a logical architecture diagram of the Role and User model

is given.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 64 of 209

Figure 32 – SmartGov and Delivery Environment Role architecture

This proposed framework is based in the following premises:

• The SmartGov development environment user and roles model is

independent of the user authentication system used in the service delivery

environment.

• The SmartGov platform provides a role system for services and a mapping

tool to link users to Service Roles. Thus SmartGov service designers will

be able to define roles for the service and link these roles to the end-

users. This will enable to management of service access control.

Communication between Service Roles and the end-users of the

implemented service in the Delivery Environment will require some

development of an additional service (implementation of an interface) that

will be hosted in the SmartGov Delivery platform.

This approach fulfils the required needs:

• SmartGov Roles, Work Group and User management.

• Facilitates life-cycle or basic workflow capabilities via Service Roles.

• Isolates and simultaneously connects the SmartGov Service Role with the

User System in Delivery Environment. This provides roles functionality, but

using the organization User System directly.

It is necessary to develop the following components:

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 65 of 209

• SmartGov Roles, Work Group, and SmartGov User Management.

• Service Roles Management.

• Connectors between roles:

o With SmartGov User System

o With the Delivery Environment User System (during deployment)

A class diagram showing the most important classes, methods, and properties of

the user and role management is shown in Figure 33.

Regarding the user and Roles system, a mechanism to connect outer user

systems has been developed. It consist on two interfaces, OuterUserSystem and

OuterUser. The first one defines an outer user system in which the users of

SmartGov platform are stored, and it can be asked to obtain a OuterUser object

for an specific user, and so access the data for this user.

In order to integrate a new outer user system with the platform a implementation

of these interfaces must be developed. Then the users will be imported into the

SmartGov user system and they all will be included in the same group

(UserGroup, not WorkGroup), with the corresponding reference to the class that

implements OuterUserSystem interface.

The two different classes UserGroup and WorkGroup are related with the two

types of groups that will coexist in the system:

§ User Groups, used to associate users coming from the same outer system.

§ Work Groups, joining all the users involved in the design of the same

services, knowledge…

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 66 of 209

Figure 33 – User and Roles logical class diagram

2.4.2.3.2.5 Service Design environment Statistics

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 67 of 209

Statistics about KU, Taxonomies, and Taxonomy Nodes will be collected in the

SmartGov Service Design environment. Those statistics will gather information

about the use of Knowledge and taxonomies (categorization). This information

will be useful to knowledge administrators (usually managers or domain experts)

to refine, evaluate the quality, and the use of KUs, Taxonomies and Taxonomy

Nodes, and will also lead to accurate estimations of the complexity, elevance, and

richness of the KUs.

Regarding the SmartGov service design environment statistics, a specific storage

in the SmartGov server will be provided. This information is going to be stored in

a statistics database. The business-logic called from the Front-End tool will deal

with the storage of this data. For example, when a Manager invokes a KU from a

TS, a counter should be incremented. These statistics will be system-defined.

2.4.2.3.3 Storage Layer (Castor & XML Doc Repository or RDBMS)

2.4.2.3.3.1 Introduction

In order to assure the persistence of all the SmartGov data, a combined strategy

will be used: some data will be stored in a XML Doc Repository (mainly SmartGov

objects) and the rest in a RDBMS.

This split is due to the natural characteristics of the information that will be

stored:

• The data that will be stored in the XML Doc Repository (see 2.4.2.2) fits

exactly with the XML nature. For example, each SmartGov object is a

document itself, and a XML file allows to describe all its characteristics,

with the required flexibility. Most SmartGov data (TS, Forms, TSE, TSE

Groups, KU and Taxonomy) is stored in the XML Doc Repository as it can

be seen in the Data view section.

The XML Repository also will be used to save the life-cycle processes

definition, because this information rarely will change, so a XML file is a

perfect place to hold it. Using Castor, and the API provided by the XML

Doc Respository (see 2.4.2.2), the XML data is accessible.

• A RDBMS, on the contrary, fits with a more strictly structured information,

relationships, and stronger security, making also easier access and update

each piece of data. Therefore, it will be used to store users, roles and work

group data, because this information requires continuous accesses, and

maintain strong referential integrity that a XML approach would not be so

suitable. A JDBC driver will be used to give access to the RDBMS system.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 68 of 209

Consequently, the SmartGov Front-end we will combine these two strategies,

making the most of each of them.

2.4.2.3.3.2 XML Storage using Castor

The two key technologies that will be used in the XML Storage are the XML

Repository and Castor framework. These two modules cover the two main stages

required to access XML-stored data:

• Locating the particular XML file that contains the required data (XML Doc

Repository).

• Accessing the different data inside the file, navigating the different nodes

in the tree structure (Castor).

The XML Doc repository has been described earlier in this document (paragraph

2.4.2.2 so only Castor framework will be described deeply next.

Castor framework, as aforementioned, is an open source data-binding framework,

which maps a Java object model to and from XML. Given a XML Schema, Castor is

able to process it and generate all the code required to access and modify files

that fit the schema. Thus, the XML Schemas defined in the SmartGov platform

(see paragraph 2.8) can be automatically mapped to classes. And these classes

can be updated whenever is required with every change in the XML Schemas.

Given that these classes provide data access, only adding business logic is

required. With this aim, the automatically generated classes will be used, trying

to keep business logic and data access loosely coupled. Using as starting point

the Data Access Object and Factory Methods patterns, a mechanism to make

independent business logic and objects retrieval will be developed. Thus, the data

layer can be modified, extended or adapted when needed without requiring

changes in the Business objects.

Therefore, with the generated Java classes and the ARC XML Doc Repository all

the requirements for XML files storage and retrieval are solved.

Figure 34 shows the proposed architecture, with the complete implementation for

the TS storage.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 69 of 209

Figure 34 – SmartGov Front-End XML data access logical class diagram

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 70 of 209

2.4.2.3.3.3 RDBMS Storage

A Relational Database Management System (RDBMS) will be used to store the

roles, groups and users data. We will have two separated models, though they

work in deep relation.

• A general model that must be included in every SmartGov platform

installation. It keeps all the data concerning roles, groups, and an auxiliary

table to make available connections with outer user systems (LDAP,

database…)

• A user’s data model that keeps all the information related to SmartGov

users. This table and the corresponding module may be used when using

and outer user system is not necessary. Therefore, from the Front-end,

the users will be able to manage this user information.

This module and table can be replaced by a LDAP or another similar

system. An interface will be defined, and each new user system that will

be incorporated to the SmartGov platform will require an additional

development to implement this interface, adapted to the particular

characteristics of the system.

These two models will be stored in a RDBMS because continuous accesses (and

probably changes) will be required, and using XML would not be the best

approach.

2.4.2.4 SmartGov Agent – Information Interchange Gateway

When a SmartGov installation is deployed, it is expected to exchange data with

an organizational IT system. Usually this IT system will be the “back-end” system

for the organization, from which citizen or enterprise registry data will be

retrieved and to which transactional data will be stored. Different organizations

have diverse back-end systems, with substantial differences or idiosyncrasies,

which hinder the use of a common framework for communicating with them.

Moreover, communication should take place in a high level of abstraction, without

involving design and implementation details of the installed IT system.

One scheme for achieving the aforementioned goals is to employ two software

modules, the SmartGov Agent and the Information Interchange Gateway. The

SmartGov Agent is an integral part of the SmartGov platform, enabling the

submission of requests to external systems and the retrieval of the respective

results. The Information Interchange Gateway is attached to the installed IT

system and arranges for interception of the requests originating from the

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 71 of 209

SmartGov agents, their execution and the returning of the appropriate results.

Communication between the SmartGov agent and the Information Exchange

Gateway may be performed using any standard data exchange protocol, such as

WDDX, XML etc. The architecture of a SmartGov platform involving the SmartGov

agent, the Information Exchange Gateway and an Installed IT system is depicted

in Figure 35, while a more detailed positioning of these modules within the

SmartGov platform is illustrated in Figure 36.

SmartGov
Platform

SmartGov
Agent

Installed IT
System

Information
Interchange

Gateway

WDDX, XML, ...

Figure 35: Communication with installed IT systems

Figure 36: Placement of SmartGov Agents in the overall architecture

The Information Interchange Gateway publishes an exported service list, which

defines the requests that it is willing to accept and serve. The exported service

list is retrievable through a call to the IIG management interface. Each service is

described by its name, a set of input parameters packed in an XML message and

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 72 of 209

a result, which is also returned as an XML document. Requests from the

SmartGov agent to the Information Exchange Gateway include the request name

and the (request-specific) set of input parameters (an XML document). Upon

reception of such a request, the Information Exchange Gateway verifies that the

invoked service is included within the exported service list and invokes a

procedure, which performs the requested task and returns the results, which are

then forwarded to the SmartGov agent. The procedures that actually execute the

requested tasks will be coded by the organization's IT staff (or will be outsourced)

and they practically encapsulate all the internal details and peculiarities of the

installed IT system. This approach is well proven for interconnecting

heterogeneous information systems (e.g. CORBA [Bolton2001], RPC [Sun2000]).

In the following paragraphs the SmartGov Agent and the Information Interchange

Gateway are described in more detail.

2.4.2.4.1 SmartGov agent

The SmartGov agent accepts requests from the SmartGov platform for

communication with external IT systems and arranges for the communication to

be performed. Each such request contains a function name, designating the

service to be invoked and may define parameters to be passed to the service,

while the service may return results that must be returned to the caller. Upon

receipt of a request the SmartGov agent should perform the following functions:

1. Locate the information system to which a request should be made. The

requested service may be offered by one or more IT systems. The

SmartGov agent should determine which IT systems offer the requested

service, select the most appropriate one and direct the request to it.

Service-to-IT systems mappings are determined via configuration files.

2. Collect the message provided in the context of the invocation. The

SmartGov agent should retrieve from the SmartGov platform the message

that should be sent to the IT system, in order for the request to be

fulfilled. The SmartGov agent requires that the message collected should

be a valid XML message, but does not process or modify its contents in

any way.

3. Invoke the service on the IT system and collect the response. The request

is sent to the IT system and the reply is colleted. Communication errors

are also handled in this stage.

4. Extract the results contained within the reply and return them to the

caller. The SmartGov agent receives the reply to the called method and

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 73 of 209

arranges for it to be delivered to the calling SmartGov application. Again,

the SmartGov agent requires that the reply is a valid XML message but

does not process or modify its contents in any way.

The SmartGov agent is also responsible for handling triggering events that may

affect service operation. For instance, if a service is dependent on a specific law,

the SmartGov agent may accept notifications from a legal document database

indicating that a specific law is revised or complemented, and will arrange for

appropriately reporting to the SmartGov platform administrators.

2.4.2.4.2 Information Interchange Gateway

The Information Interchange Gateway is attached to the IT system that offers

services that may be invoked from the SmartGov platform. If multiple IT systems

should offer services for SmartGov platforms, then each such system should run a

separate instance of the Information Interchange Gateway. The Information

Interchange Gateway should encompass the following functionalities:

1. Service directory. The Information Interchange Gateway offers through

the service directory a list of the services offered by the specific IT system

to SmartGov platforms. Each service within this list is described by its

name, a set of input parameters packed in an XML message and a result,

which is also returned as an XML document.

2. Service execution. Once a service invocation from a SmartGov platform

has been received, the Information Interchange Gateway should arrange

for the execution of the appropriate code fragment that implements the

service. As a first step, the values of the parameters accompanying the

request should be extracted, and the appropriate code fragment, its

execution method and the parameter passing convention that must be

employed should be determined. For instance, if the code fragment is an

external program, parameters may passed as command line arguments

and results might be returned through the program’s output; if the code

fragment is compiled into a dynamically loadable library, it will be

necessary to load the library and invoke the corresponding entry point

within it, passing the parameters through the stack.

3. Remote administration facility. This facility enables the installation, de-

installation and modification of services offered by the Information

Interchange Gateway, without the need for other types of access to the IT

system. In order to add a new service administrators should be able to

provide a description the new service, including its name, parameters,

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 74 of 209

results and invocation method, together with the code fragment that

implements this service. The code fragment might be in source form, in

which case an appropriate set of commands to transform it in an

executable form should be provided. Service de-installation only requires

the service name, whereas service modification may be implemented

through de-installation followed by a new installation. In all cases,

administration facilities are accessed after suitable authentication.

In the event of modifications to the installed IT system, it is expected that

the administrators of the installed IT system will notify the administrators

of the SmartGov platform, providing any necessary information for

bringing the service implementations up to date.

2.4.2.4.3 Technical considerations

SmartGov agents and Information Interchange gateways act on XML-messages

they receive or are themselves originators of such messages. These XML-

messages will typically have a control and a data part. It is the responsibility of

the SmartGov Agent and the Information Interchange Gateway to interpret the

control part and act accordingly.

SGA and IIG communicate through XML messages, thus 7-bit clean plain ASCII

messages are exchanged between these entities. Taking this into account, any

error-free communication channel is sufficient for the exchange of these

messages, such as TCP-IP sockets, however the use of higher-lever abstractions

such as RMI will be considered in the implementation phase.

Specialized or idiosyncratic data formats as well as access to data sources (such

as databases or remote systems) are delegated to appropriate SmartGov Agents

specifically crafted. Inevitably, this will result in specialized IT staff involvement.

The Project's goal is to facilitate the work of IT staff by providing basic, general-

purpose mechanisms as well as the XML-messaging infrastructure for

communication with other parts of the SmartGov Platform. Frequently used and

foreseeable actions could be represented in an abstract form to facilitate easier

and speedier development. For example, a generalized method for accessing

databases could be provided in the form of a DSN (Data-Source-Name).

As is usually the case in Public Administrations, there are already data centres

operating under IT staff that closely guards access to resources for stability,

performance, security and other reasons. Update of the SmartGov Agent that sits

within these systems is not expected to be a frequent event. Therefore,

SmartGov Agents should allow for remote updating of themselves through specific

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 75 of 209

messages in XML format. W3C specifications of XML-RPC and/or SOAP could be of

help in this area.

So far, it has been implied that all necessary information for an e-service to

operate is present locally within the SmartGov deployment platform, i.e. it has

already been collected from 3rd party systems and stored in a readily accessible

storage area by previous actions of appropriate SmartGov Agents. If

communication with remote systems is needed, synchronous or asynchronous

communication with these systems will be initiated upon receipt of the relevant

request.

The amount of effort required for bridging an installed IT system to the IIG

depends on the technologies employed by the installed IT system and the

complexity of the requested operation. If the installed IT system is a database

with JDBC capabilities, from which data must be retrieved (or into which data

must be stored) the effort will be minimal since the task is reduced to adding

some lines of Java code with JDBC invocations to a given template (which will be

documented within the SmartGov platform). For more idiosyncratic systems, the

process is expected to be slightly more complicated but templates and guidelines

for the situations that are anticipated to occur frequently will be provided.

2.4.2.4.4 Invoking services offered by the SmartGov Agent and the

Information Interchange Gateway

Programs executing either in the context of the SmartGov service delivery

environment or in the context of the organisational information system may

invoke services offered by the SmartGov Agent and the Information Interchange

Gateway, in order to complete tasks specified by the implemented services

business logic. These invocations are realised using an API offered by the

SmartGov platform, which encompasses all the necessary classes and methods

for performing the required actions. This API is subdivided into three packages,

which offer the functionalities for submitting requests to the SmartGov agent,

posting notifications to the SmartGov service delivery environment and arranging

for recording messages to the platform log. These packages are discussed in the

following paragraphs.

2.4.2.4.4.1 The SGA package

The SGA package enables applications running on the SmartGov service delivery

environment to submit requests to the SmartGov agent. These requests will be

forwarded for further processing to the appropriate organisational information

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 76 of 209

system and the results will be collected and returned to the submitting

application. The class diagram for this package is illustrated in the following

figure.

Figure 37 – Class diagram for the SGA package

The SGA package contains three classes, and more specifically:

• The SGAgentFactory class; this is a convenience class that provides access

to implementations of the SGAgent interface. SGAgentFactory instantiates

an SGAgent object through the newSGAgent() method.

• The SGAgent class. This class provides the SGAppToSGAgentRequest()

method that arranges for the submission of the request and the returning

of the result. Additionally, this class exports symbolic constants that may

be used for designating the real time and persistence requirements for the

submitted requests.

• The SGAgentException class, which models a generic exception type that

may be thrown by methods in SGAgentFactory or SGAgent.

2.4.2.4.4.2 The IIG package

The IIG package enables applications running on the organisational information

system environment to post notifications that will be finally received by the

SmartGov service delivery environment. The class diagram for this package is

depicted in the following figure.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 77 of 209

Figure 38 – The IIG package class diagram

The SGA package contains three classes, and more specifically:

• The IIGNIFactory class; this is a convenience class that provides access to

implementations of the IIGNI interface. IIGNIFactory instantiates an IIGNI

object through the newIIGNI() method.

• The IIGNI class. This class provides the IIGToSGAGentNotification()

method that arranges for posting a specified notification to the SmartGov

service delivery environment.

• The IIGNIException class, which models a generic exception type that may

be thrown by methods in IIGNIFactory or IIGNI.

2.4.2.4.4.3 The SGLogging package

The SGLogging package enables applications running on the SmartGov service

delivery environment or in the environment of the organisational information

system to record messages in a platform log. The class diagram for this package

is presented in the following figure.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 78 of 209

Figure 39 – Class diagram for the SGA package

The SGLogging package contains three classes, and more specifically:

• The SGLoggerFactory class; this is a convenience class that provides

access to implementations of the SGLogger interface. SGLoggerFactory

instantiates an SGLogger object through the newSGLogger() method.

• The SGLogger class. This class provides the logMessage() method that

arranges for recording a specified message in the platform log.

Additionally, this class exports symbolic constants that may be used for

designating the event type and the criticality level associated with the

event described by the message.

• The SGLoggerException class, which models a generic exception type that

may be thrown by methods in SGLoggerFactory or SGLogger.

2.4.2.4.5 A modelling example for the SmartGov agent and the

Information Interchange Gateway

In SmartGov project D4.1 the VIES (VAT Information Exchange System) system

has been analysed as a candidate for a pilot implementation within the SmartGov

project. The requirements for such an application to be developed, regarding the

communication between the SmartGov service delivery environment and the

installed organisational IT system are as follows:

1. Users should be able to register to the electronic service, providing some

personal identification data (which should be known only to them and the

taxation authorities). The data from each registration request should be

forwarded to the organisational IT system.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 79 of 209

2. After processing the registration data, the organisational information

system should return the results to the SmartGov service delivery

environment, indicating which registration requests should be honoured

and which should be rejected (due to incorrect data supplied, attempt to

re-register an already registered user etc).

3. When a registered user requests to submit a new declaration, the user’s

personal details should be fetched from the organisational information

system’s registries, in order to appear pre-filled in the corresponding form

fields.

4. When the user submits a new declaration, the content provided by the

user should be sent to the organisational information system for storage.

5. A registered user should be able to retrieve the description of the

submitted declarations.

6. A registered user should be able to retrieve the contents of a specific

declaration that has been submitted.

In order to provide this functionality, the following services should be offered by

the IIG attached to the organisational information system:

1. a service that accepts the user registration details and stores them. These

details will be then processed by the organisation’s back end, as specified

by organisational policies. This service is invoked synchronously by the

programs in the SmartGov service delivery environment, when the user

“submits” the registration form.

2. a service that will return to the SmartGov service delivery environment the

lists of correctly verified and rejected user registrations. This service is

invoked by a specially designed program that runs on the SmartGov

service delivery environment and whose execution is triggered by a

notification event, as explained later in this section.

3. a service accepting a user’s identification and returning the user’s personal

details. This service is invoked synchronously by the programs in the

SmartGov service delivery environment, when the user chooses to start

filling a new declaration.

4. a service accepting a user’s identification and a declaration’s data and

storing these data in the organisational information system, tagged with

the user’s identification. This service is invoked synchronously by the

programs in the SmartGov service delivery environment, when the user

submits a new declaration.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 80 of 209

5. a service accepting a user’s identification and returning the description of

the documents submitted by the specific user. This service is invoked

synchronously by the programs in the SmartGov service delivery

environment, when the user chooses to view a list of submitted

declarations.

6. a service accepting a user’s identification and a declaration’s identification

and returning the contents of the designated declaration. This service is

invoked synchronously by the programs in the SmartGov service delivery

environment, when the user chooses to view a specific declarations.

These functionalities offered by the IIG will be complemented by a notification

event that is posted from the organisational information system’s environment

and signifies that the user registration requests have been processed and the

corresponding “accepted” and “rejected” lists have been formulated. The

SmartGov agent should be additionally configured so that upon the reception of

such a notification event, a process will be initiated that will invoke service 2

(retrieval of the lists of correctly verified and rejected user registrations). This

lists will be further processed by this program to produce usernames and

passwords for the accepted users and communicate these credentials to the

submitters of the corresponding requests, and notify the submitters of rejected

requests that their attempt has failed.

2.4.2.5 The Integrator

The integrator is the heart of the SmartGov development platform. Its task is to

automatically generate the necessary files, objects, and components in order to

create a fully operational e-forms web application. The Integrator will have a very

minimal interface integrated in the Front-end described in section 2.3.3 and will

be loosely coupled with this application in the sense that the input of the

integrator will be the output of the front-end tool. In more detail, the integrator

will have to access the XML repository in order to retrieve the necessary

documents that are stored there by the SmartGov front-end tool. As described in

previous sections these documents define an e-forms web application in a

structured way and include all the information that the integrator component

needs. The aim of the integrator is then to generate all the necessary files-objects

that the STRUTS framework requires in order to operate.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 81 of 209

XML Doc Repository

CASTOR
XML2JAVA
BINDING

FRAMEWORK

XERCES
PARSER

XML
Documents

XML
Doc

beans

XML
Doc

objects

XML REPOSITORY API
OBJECTS

INTEGRATOR

{struts-config.xml}
{Application Resources

Property Files}
{bussiness_objects.java}

{action_classes.java}
{JSP pages}

JAKARTA
ANTSmartGov

ANT
Task

STRUTS
Framework

JAKARTA
TOMCAT

WEB_APPLICA
TION.WAR

Figure 40. The software environment of the integrator

In Figure 40 the software environment of the integrator is shown along with the

input and output that is expected of it. It should be clarified at this point that the

integrator will output text or XML files and not compiled class files. This is the

task of the following component as depicted in the figure logical flow, which is the

Jakarta ANT. ANT is a Java-based built tool. It uses XML based configuration files

calling out a target tree where various tasks get executed. Each task is run by an

object that implements a particular Task interface. Ant includes a number of

ready to run tasks like archiving tasks, compile tasks, deployment tasks and

many more. However it also provides an API in order to write your own tasks

(additional information about ANT can be fount at [Ant]). In the context of

SmartGov a new SmartGov ANT task will be developed in order to compile all the

generated files of the integrator. This task will be started transparently by the

Integrator and at the end will produce a WAR file and place it in the file structure

of the Jakarta tomcat server. This way the web application will be straightly

available to all end users.

2.4.2.5.1 Associating Layout with TSEs

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 82 of 209

The first task of the integrator is to associate the layout template, which is in

XHTML format with all the TSEs relevant to it as explained in section 2.3.2.7. The

procedure for achieving this is shown in the next sequence diagram (Figure 41).

At the start of the procedure the user requests the XHTML template associated

with a particular form. The Front-end components of the integrators access then

the XML repository API and obtain the XHTML template, which is then presented

to the user. The user then initiates the procedure of mapping the form elements

of the XHTML template with the relevant TSEs. For this purpose the XMLStore API

is called again and the value of the Included TSE element is extracted. At this

point a transformation of the XHTML file is needed in order for all form elements

to be substituted by a list box presenting to the use all available TSEs. This

transformation is accomplished with the use of an XSL engine, which in our case

is XALAN of the Apache XML project. Xalan-Java is an XSLT processor for

transforming XML documents into HTML, text, or other XML document types. It

implements the W3C Recommendations for XSL Transformations (XSLT) and the

XML Path Language (XPath). It can be used from the command line, in an applet

or a servlet, or as a module in other program(additional information about Xalan

can be fount at [Xalan]).

Using the Xalan-API the integrator performs the aforementioned transformation

and presents the resulted XHTML file to the user. The user is now capable of

performing the required associations and submit them to the integrator front-end

components. At this final stage the integrator invokes Xalan again in order to fill

in the TSE mappings element of the form.xml file and after that updates the XML

store with it.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 83 of 209

Figure 41 Performing TSE mappings

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 84 of 209

2.4.2.5.2 Generator’s Logical Architecture

As mentioned in previous sections the integrator will undertake the task of

generating all the files-objects that the Struts framework needs in order to

operate. This implies that JSP files, property files as well as java files will have to

be created and then passed to Ant in order for compilation packaging and

deployment to occur as mentioned earlier. To achieve this the integrator core

logic will have the logical structure depicted in the following figure.

Figure 42 Struts Files Generator classes

Each interface of the above is responsible for controlling the generation of a

distinct category of files that the Struts framework requires. Thus:

• The implementation of the StrutsJSPGenerator interface will undertake the

task of handling the generation of JSPs, which will be part of the View

components of the resulted Struts application.

• The implementation of the StrutsActionFormClassesGenerator interface will

be responsible for the generation of the ActionForm and Action Java files

part of the Struts model components.

• The implementation of the StrutsPropertyFilesGenerator will be responsible

for the generation of the property files that will cantain all the

internationalized resources of the web application

• The implementation of the StrutsConfigXMLGenerator will be responsible

for the generation of the Struts-config.xml file required for the

configuration of the controller servlet of the Struts application

• The implementation of the StrutsBussinessObjectsGenerator will be

responsible for generating the Java files that will constitute the the

business objects of the final application

2.4.2.5.3 Generating JSP files

In order for the integrator to be able to generate the JSP files required, the

procedure shown abstractly in the following sequence diagram will be followed.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 85 of 209

Figure 43 Transforming an XHTML template to a JSP page

The transformation required in this step also uses Xalan since the XHTML

template is a valid XML document. The purpose of this procedure is to replace all

the HTML form elements with the provided Struts Form tags. This will allow the

use of the Struts tag libraries, which enhance the functionality of the JSP pages

making them easier to integrate with the model components.

2.4.2.5.4 Generating the resources of the web application

Another important step in the configuration of the Struts Framework is the

creation of the property files that will hold the internationalized resources of the

web application. The procedure for achieving this is depicted in the following

figure.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 86 of 209

Figure 44 Creation of internationalized resources

When the process starts the StrutsPropertyFilesGenerator component accesses

the XMLStore in order to retrieve all the resources that the web application will

use in its view and require internationalization. It then uses a HashMap in order

to store all the value-key pairs. Finally for its supported locale it creates a

property file that will be used globally by the application. This property file will be

available at run time to the JSPs with the use of the ResourceBundle class called

through the relevant Struts tags (i.e. <error>, <message> etc..)

2.4.2.5.5 Generating the validation code

Another important part of the SmartGov platform will be the ability to provide to

the public employees an easy and user-friendly way to express validation

constraints. As described in section 2.3.2.3.4 the validation checks required by

this type of application fall, in their great majority, under four specific categories.

Based on this important conclusion a relatively simple validation language will be

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 87 of 209

developed to facilitate easy definition of validation checks. This language will be

called the SmartGov ValLang. For its realization the components depicted in the

following figure are needed.

SmartGovValLang
Grammar file

SmartGovValLang
Semantics

(Parsing Logic)

CC
(Compiler Generator) Tokenizer Generator

SmartGovLang
Parser

SmartGovValLang
Lexical Analyzer

SmartGovValLang
Semantics

for Java
(server-side validation)

SmartGovValLang
Semantics

forJavaScript
(client-side validation)

JavaCC

Figure 45 Development of a custom validation language

As shown in the figure the JavaCC tool will be used to assist in this task. Java

Compiler Compiler (JavaCC) is the most popular parser generator for use with

Java applications. It is a tool that reads a grammar specification and converts it

to a Java program that can recognize matches to the grammar. In addition to the

parser generator itself, JavaCC provides other standard capabilities related to

parser generation such as tree building (via a tool called JJTree included with

JavaCC), actions, debugging, etc (for more information on JavaCC consult

[javaCC]).

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 88 of 209

Thus the first stem is to write the SmartGovValLang Grammar file. This file will

then be fed into the JavaCC module. JavaCC includes both a compiler generator

(Compiler Compiler) as well as Tokenizer Generator. The first module is

equivalent to yacc (famous cc for use in C applications) and the second one to lex

(also used for C based custom languages). At the end JavaCC will generate the

SmartGovValLang Lexical Analyzer and the SmartGovValLang parser.

The final step then is to develop the SmartGovValLang Semantics which is a Java

module that will contain the parsing logic for the custom language. In other

words, in its specialization classes, is where the transformation of the

SmartGovValLang into Java for server validation or JavaScript for client validation

will take place.

The java code for server-side validation is always generated, whereas the

Javascript code for client-side validation will only be generated if the validation

check has been designated to be run both at the front-end and at the back-end.

In the following sequence diagram the procedure for ensuring server side

validation is depicted.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 89 of 209

Figure 46 Generation of Java validation code from the custom SmartGovValLang

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 90 of 209

2.4.2.5.6 Generation of the ActionForm Class File

The ActionForm class is needed in the Struts framework in order to make

available to the model and business objects all the parameters submitted by the

user client. Thus this java file must be populated with all the required getter and

setter methods for all the submitted parameters of the application. In relatively

small form application the ActionForm bean will be one, in bigger applications this

logic must be spanned in several bean classes. This procedure is depicted in the

following sequence diagram.

Figure 47 Action Form Java file generator

2.4.2.5.7 The Action Classes

The Action Classes required by Struts will not be generated in the manner that

other files will. Since in our case the generated applications will be only forms

applications a set of standard Action Classes will be developed and used

accordingly to all applications. The StrutsActionFormClassesGenerator will request

the appropriate classes from an Action Classes Handler and include them in the

application components.

2.4.2.5.8 Generating DB Schema and Relevant DB Access Objects

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 91 of 209

Apart from the components that are explicitly required by Struts in order to

operate, the final web application must have a data layer in order to support

persistence and storage of data. For this purpose an RDBMS will be used in which

data will be read, written and updated. Thus for each application that is

generated a corresponding DB Schema must also be generated along with DB

access beans that will provide JDBC access. This task will rely in the use of DDL

scripts that will be fed in the RDBMS and will cause the generation of the

database that will realize the data layer of the application. In order for this to be

realized a generic DDL template will be elaborated that will be customized for the

needs of each generated application. The aforementioned procedure is depicted in

the following sequence diagram.

Figure 48 Generating a DB schema and relevant DB access objects

2.4.2.5.9 Generation of the Struts-config XML File

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 92 of 209

The Struts-config XML file is required for the configuration of Struts. This file must

include all the ActionForm beans and Action classes implemented for the specific

application in the format defined in its Schema file. It also requires the Database

connections and datasources that the application will use for Database access.

The generation of this file will be handled by the StrutsConfigXMLGenerator

component. This components will access a proxy object, which will store all the

actions preformed by the other generators and thus will hold all the relevant data

required by the Struts Config file. Additionally a template of a generic Struts-

config file will be used and populated with the required configuration info.

The proxy object mentioned before will follow the Proxy design pattern and will

function as a mediator component for all the generators of the integrator. This

way it will log all action performed and will have complete knowledge of every file

generated.

2.5 Implementation View

2.5.1 The SmartGov Front-End

Taking as starting point the Logical view, the next diagrams show the basic

structure of the system.

The implementation view describes how the classes and logic in the Front-end

Logical View are physically implemented with source code. It also describes how

the implementation source is physically contained in files and packages, and how

these files combine to form components.

At the highest level, the Front-end application is comprised of three packages.

This first schema shows the general structure of the Front-end based in the usual

three layers structure.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 93 of 209

Figure 49 – Three layer Front-end structure implementation diagram

After this first introductory schema, each layer will be described deeply.

First of all, the presentation layer, whose structure is fixed by the use of Struts

framework. Thus, this layer will be composed by three big types of components:

§ Action classes.

§ ActionForm classes.

§ JSP pages.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 94 of 209

Figure 50 – Front-end Presentation Layer implementation diagram

As it can be seen in the previous diagram, the Action classes are responsible for

connecting to the business layer, following the Struts paradigm.

SmartGov Front-end’s business layer is implemented by combination of several

packages. The following component diagram shows how the packages in the

business layer are implemented and the connections between them.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 95 of 209

Figure 51 –Front-end Business Layer implementation diagram

In the diagram the five main packages can be seen: Task List, Roles-Group

Mgmt, User Mgmt, KM Model and Service Model.

In the diagram, relationships, by means of interfaces, between the different

packages are shown. These are the main relations:

§ TaskListObject and TaskListObjectType:

The Task List package can be used to manage different types of objects

(KUs and TSs in SmartGov platform). This package provides the required

functionality to control the actions that can be performed over an object

according to its current status, and also checks if a user has the required

permits to perform those actions.

To include an object type in the task list, two classes must be defined to

implement the mentioned interfaces. The first one must be implemented

by the objects that will be managed by the Task List (KU and TS classes).

The second interface, TaskListObjectType, will be implemented by auxiliary

classes (KUType and TSType). These classes will define configuration data

for the Task List, for instance, the process definition with the tasks, the

states and roles; and also will provide methods to retrieve a user’s task

list.

§ TaskListUser and TaskListRole:

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 96 of 209

In order to control user’s permits and the tasks that this user can perform

(defined by their roles) is necessary a User and Roles system. But, to keep

the packages loosely coupled, instead of using directly SmartGov Roles

user two interfaces has been defined. In SmartGov platform, the interfaces

will be implemented by the Roles and Groups package, whose classes

provide the required functionality.

§ OuterUser and OuterUserSystem:

The Roles and Groups Management package is designed to make it

independent of the used User System. In fact, it can use different User

Systems simultaneously. To achieve this, the corresponding classes

implementing this two interfaces have to be defined, to connect the outer

system with the SmartGov platform.

The first interface, OuterUser, represents the user’s data in the outer

system. By means of the class that implements this interface, basic data

like the first name, surname, email address… all stored in the outer

system, may be accessed.

The second one, OuterUserSystem, follows the Factory pattern, and

provides access to implementation of the OuterUser interface. By means of

the classes implementing this interface, the system is able to create the

instances of the classes that implement OuterUser, that is, to create the

OuterUser objects.

The statistics package is responsible for collecting all the statistics in the design

environment about KM objects. Therefore, it will be connected with the KM

module. Probably a event-listener interaction will be defined.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 97 of 209

Figure 52 –Front-end Data Layer implementation diagram

To access to the data several interfaces between the business layer and the data

layer has been defined as it can be seen in the previous diagram.

§ XMLLoaders (ServiceObjectLoadersFactory,

LifeCycleLoadersFactory and KMLoadersFactory):

The XMLLoaders follows the Factory pattern to make the business objects

independent from the XML data source. These three interfaces are

factories to obtain loaders classes for each type of object, that will

implement the Loader interfaces defined in the logical view.

§ DB Connectors (UserSystemConnector, RoleSystemConnector and

StatisticsConnector):

The DBConnectors make the business objects independent from the RDBMS data

source. All the required methods to access data layer will be defined in these

three interfaces, that in SmartGov platform will be implemented by Database

Connectors, but that can be replaced whenever is required.

2.5.2 Integrator

In the following figure the implementation diagram of the integrator component is

shown.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 98 of 209

Figure 53 Integrator implementation diagram

The integrator is divided in five basic packages, which are responsible for

generating the components that the Struts framework requires. The JSP

generator package is responsible for the view components of the web application

along with the Properties Generator package, which will handle all the

internationalized resources. The Action Generator package will be handling the

model part of the web application while the Struts Config generator package will

generate the Struts-config.XML file required for the configuration of Struts. Finally

the Business Objects Generator will handle the generation of the business objects

that the application requires. All the aforementioned components will be the

implementations of their corresponding interfaces and will use the XML Loaders

package described in section 2.5.1.

The SmartGovValLang package is the package containing the classes and logic to

interpret the custom validation language of the SmartGov platform to the

JavaScript and Java necessary for client and server side validation

correspondingly.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 99 of 209

2.5.3 SmartGov Agent – Information Interchange Gateway

2.5.3.1 Software module structure

In this section we summarise the software components that comprise the

SmartGov Agent and the Information Interchange Gateway, and give details on

the operation of each one. We also list the software components of the SmartGov

platform and external IT systems that interact with the SmartGov Agent and the

Information Interchange Gateway.

1. SmartGov application (SGoVApp). Any application (delivered service) within

the SmartGov service delivery platform. This is implemented as programs in

any language appropriate for the service delivery environment (e.g. java

server pages, servlets etc), which are spawned by the server employed in the

service delivery environment (e.g. web server, WAP server, etc).

2. SmartGov Agent (SGA). A class library containing the methods that allow

SmartGov applications to submit requests and retrieve results.

3. SGA Pending Actions Queue Dispatcher (SGA-PAQUED). An autonomous

program that periodically scrutinises the pending actions queue on the

SmartGov service delivery platform, extracts actions that can be carried out,

and initiates their execution.

4. SGA Notifications Interceptor (SGA-NI). An autonomous program that

continuously runs on the SmartGov service delivery platform and listens for

notifications signifying that an external to the platform event has taken place.

The SGA-NI responds to these notifications by placing a suitable entry in the

SGA-PAQ, which will be handled by the SGA-PAQUED.

5. IIG Minimal Yoking Processor (IIG-MYP). An autonomous program that

continuously runs on the environment of the organisational IT system to

enable the reception of requests emerging from the SmartGov applications

and delivered through the SGA and the returning of the answers.

6. IIG-Separate External Process (IIG-SEP). Heavyweight or lightweight process

spawned by the IIG-MYP in order to fulfil a received request and produce the

reply.

7. IIG-Notification Initiator (IIG-NI). A process running in the environment of the

organisation’s information system and posts a notification event, whose final

destination is the SGA-NI, in order to signify that some event has taken place.

The IIG-NI sends the notification by calling an appropriate API to a library of

methods that arrange for posting the notification to the IIG, which in turn

forwards the notification to the SGA-NI.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 100 of 209

8. IIG Pending Actions Queue Dispatcher (IIG-PAQUED). An autonomous

program that periodically scrutinises the pending actions queue in the

environment of the organisation’s information system, extracts actions that

can be carried out, and initiates their execution.

9. SGA Logger and IIG Logger. Autonomous programs that continuously run on

the SmartGov service delivery platform environment and the organisational

information system environment, respectively, arranging for accepting

requests for event logging and storing the log request contents to persistent

storage.

In the following paragraphs these software modules and the communication

between them are presented in more details.

2.5.3.2 SGA-IIG Communication Details

Applications developed within the SmartGov Framework (SGoVApps) delegate all

communications with external IT systems to the SmartGov Agent (SGA). The SGA

communicates with the Information Interchange Gateway (IIG) and returns

results to the calling application, as shown in Figure 54.

 SGovApp SGA IIG

Pending Actions Queue

request

spooling

IT System

XML msg

custom msg

reply XML msg

custom msg

Figure 54 SGA-IIG: Sequence of messages needed for a generalized form of

communication

A generic communication event is an event that spans the SmartGov Platform and

reaches a 3rd party system. Initiation of communication may be initiated from the

SGoVApp (SmartGov Application) or from the IT system and each receiving party

has the responsibility of checking all necessary conditions that must hold for the

event to complete. There are several cases that need to be considered depending

on the initiator of the communication, the time-constraints that are put on it and

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 101 of 209

the periodicity of the event. In all these cases the same basic message format is

used while explicit provisions are made to cover for exceptional cases.

2.5.3.2.1 SGoVApp requests

A SGoVApp initiates communication sending requests to an SGA using messages

with the format shown in Table 1.

SGoVApp to SGA general message

<
 request_id,
 service_name,
 <XML_message>,
 real_time_indicator,
 persistence_indicator
>

where,

request_id A unique request identifier that serves to characterize
this request

service_name
A symbolic service name that the message refers to.

The receiving SGA is expected to forward the

encapsulated XML_message to the named service

<XML_message>

A message that contains all information that the

named service_name requires. The SGA does not

interpret this message, rather it is passed as is to the

next step

real_time_indicator

Indicates whether the communication event is

happening in real-time and consequently an

immediate response is expected. When this flag is

set, the SGA does not closes the communication

channel with the SGoVApp but it immediately

forwards the message to the appropriate IIG and

returns the result to the calling SGoVApp

persistence_indicator

Indicates whether the message should persist in case

of communication errors or other abruptions and

retransmitted later. If this flag is set, message is

stored in the Pending Actions Queue.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 102 of 209

A message in the above format basically means (to the SGA): "Using the request
identified as request_id, forward <XML_message> to the service service_name"

Table 1 Message format that a SGoVApp sends to an SGA

2.5.3.2.2 SGA: Handling SGoVApp requests

Upon receiving of such a message the SGA decides what to do with it. Its decision

is governed by auxiliary configuration data that bind the named service_name to

actual form of communication and actual IIG. These auxiliary configuration data

may be manifested through a variety of means. For example, they can be hard-

coded in to the SGA; they could reside into an external configuration file or in a

database, etc. The actual form will be selected in the development phase of the

SmartGov platform. These auxiliary configuration data are in fact a set of lookup

tables containing the information presented in Table 2, Table 3 Table 4.

SGA Services Configuration File

Contains tuples of the form:

<
 service_name,
 IIG_name,
 ordered_list_of_methods
>

where,

service_name A symbolic name. The SGA accepts requests for

communicate only with services declared here.

IIG_name A symbolic name referring to the actual IIG.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 103 of 209

order_list_of_methods

An ordered list of communication methods that can

be used to transmit data to designated IIG. Methods

are referred to with symbolic names.

A default fallback method

<store_to_local_data_store> is defined for all

services and if all else fails the data to be transmitted

are stored in the local repository for later processing.

We call this repository the Pending Actions Queue1

(PAQ). Messages with real_time_indicator set are

not stored to the PAQ unless the

persistence_indicator is also set. When these

messages are stored to the PAQ the

real_time_indicator is cleared, since obviously the

real-time restrictions does not hold anymore.

The semantics of these configuration tuples are: "The symbolic name

service_name corresponds to the IIG specified by IIG_name and use one of the

order_list_of_methods to communicate with it. Try the

ordered_list_of_methods sequentially, until one succeeds."

The symbolic name service_name reflects a certain business operation. There

may be more than one tuple for the same service_name, with different symbolic

IIG_names. The existence of such tuples means that the same service_name is

offered by all of the listed IIGs. As before, the selection algorithm depends on the

first found IIG that can complete the communication.

Table 2 Format of the SGA services configuration file

To fully resolve symbolic names referenced in the SGA Services Configuration

Files, the SGA uses the following configuration tables:

SGA Communication Methods
Configuration File

Contains tuples of the form:

<
 method,
 <more_info>
>

1 Another Pending Actions Queue is associated with the IIG. Although the same
name will be used, these constructs are different. The acronym PAQ will be used
for referring to such a queue. Where there is a need to refer to a specific queue
we will use the acronyms SGA-PAQ and IIG-PAQ accordingly.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 104 of 209

where,

method A symbolic name referring to the actual

communication method employed.

<more_info>

All physical level information required for

implementing the said method. For example, a URL

may be specified in case of a Web-Service, a filename

in case of off-line transmission of data, required

credentials for connecting to a database, etc.

The semantics of these configuration tuples are: "To implement the

communication method method use the <more_info> information." The actual

data of the <more_info> part will be determined at the development phase.

A special method store_to_local_data_store is always defined and contains all

needed information to store data received to a local data repository. The actual

implementation depends upon operating requirements. The SGA should support

as a means of storage at least storing to a file in the local machine and storing in

a database.

Obviously, the SGA supports only the methods that it knows about. This

knowledge is hard-coded in the software modules that implement it.

Table 3 Format of the SGA Communication Methods configuration file

SGA IIG Configuration File

Contains tuples of the form:

<
 IIG_name,
 <more_info>
>

where,

IIG_name A symbolic name referring to the actual IIG.

<more_info>

All physical level information required for initiating

communication with designated IIG. For example, it

may contain the DNS name, the IP address and port

the IIG listens to.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 105 of 209

The semantics of these configuration tuples are as follows: "The symbolic name

IIG_name correspdonds to the specific IIG specified by the <more_info> part".

The actual data of the <more_info> part will be determined at the development

phase.

This mapping between symbolic IIG names and actual manifestations is

maintained by the administrator of the SmartGov Platform, in cooperation with

the administrators of the IIG.

Table 4 The SGA IIG Configuration File

SGA Notification Interceptor
Configuration file

Contains tuples of the form:

<
 notification_name,
 < PAQ_entry >
>

where,

notification_name A symbolic name referring to a notification event that

may be received from an IIG.

< PAQ_entry >
The entry that will be inserted in the SGA PAQ as a

response to the reception of the designated

notification.

The semantics of these configuration tuples are as follows: "when the notification

notification_name is received, the PAQ_entry will be inserted into the SGA-

PAQ". This mapping between symbolic notification names and PAQ entries is

maintained by the administrator of the SmartGov Platform.

Table 5 The SGA Notification Interceptor Configuration File

A diagram depicting discussed modules of the SGA is shown in Figure 55.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 106 of 209

SGA
Security

Credentials
SGA

Pending Actions
Queue

request

Services

IIG

Comm.
Methods

Configuration
Files

st
or
e_
to
_l
oc

al
_d
at
a_

st
or

e
m

et
ho

d

Messages are stored to
the Pending Actions

Queue if delivery is not
possible at the moment

Figure 55 SGA modules

For each message that is received, an XML envelope is created comprising of the

original <XML_message> and the SGA Security Credentials. This new XML message

is forwarded to the IIG specified choosing one of the appropriate communication

methods.

2.5.3.2.3 Messages forwarded by SGA to the IIG

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 107 of 209

When all relevant configuration data has been collected, the SGA is ready to

transmit data to the IIG. For this purpose an XML message like the one specified

in Table 6.

SGA to IIG messages

Contains tuples of the form:

<
 service_name,
 <XML_message>,
 real_time_indicator
 <SGA_credentials>
>

where,

service_name A symbolic name referring to a business operation. It

should be the same name used in the initial request

<XML_message>
The same as the <XML_message> part of the original

request.

real_time_indicator

The same meaning and value as in original request.

The SGA expects to receive "immediate" answer from

the IIG. The IIG should process the message as soon

as it receives it and reply accordingly.

<SGA_credentials> A set of credentials, e.g. the public key of the SGA, to

prove the identity of the SGA that sends the message

The semantics of these tuples are perceived by the IIG as follows: "In

<XML_message> are the data required to perform the operation implied by

service_name. The proof of identity of the request originator may be found in

<SGA_credentials>"

Table 6 SGA to IIG messages

2.5.3.2.4 IIG: Handling SGA messages

When the IIG receives a message the following actions are performed:

1. The message is assumed to be in XML format, so the IIG parses it and

validates it against the XML schema used for this message exchange.

2. The <SGA_credentials> are checked to verify that the originator of the

message is valid.

3. The symbolic service_name is checked to verify that this IIG supports the

service specified.

4. If the above criteria are met, the <XML_message> part of the message is

parsed and forwarded for further processing

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 108 of 209

In the above sequence of events two modules can be identified. The first module,

which we will call MYP (Minimal Yoking Processor), is responsible for the parsing

of the XML message the IIG receives, for checking the validity of the contained

data and passing any data found to the second module. The second module,

which we will call SEP (Separate External Process), receives the data that the IIG-

MYP has prepared and performs any actual processing required. The SmartGov

Project provides the IIG-MYP, either the actual implementation or a reference

one2, while the IIG-SEP is developed and maintained by the IT staff of the Local

Authority.

The IIG, as specified so far, is depicted in the Figure 56.

XML
message

Actual communication
method is specified by
the IT staff of the Local

Authority

SEP

Process

MYP

XML parser,
Stage 1

validator

XML parser,
Stage 2

IIG

Figure 56 IIG overview

2 The SmartGov project will provide an actual working IIG-MYP implementation in
accordance with the overall development environment that will be selected for the
whole project. In the case that this implementation is not acceptable by the IT
staff of the Local Authority, the SmartGov project will provide assistance in the
form of detailed pseudo code. The transformation of this pseudo code to an actual
software module is left to the IT staff of the LA.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 109 of 209

2.5.3.2.4.1 IIG: Handling Synchronous (real-time) requests

The IIG needs to reply in real-time in requests that have the

real_time_indicator set. In the scope of the SmartGov Project "real time" has

the meaning of "as soon as possible". Real-time events are expected when there

is direct user interaction with a SGoVApp. For example, a user requesting a form

provided by a SGoVApp that must be pre-filled with some data. In such a case

the SGoVApp will initiate a real-time request to an SGA to fetch these data. The

request must be serviced immediately as the user is waiting now for the

completion of the operation to continue filling in the form. The SGA will forward

the request to the appropriate IIG and the later should return the results as soon

as possible. Furthermore, in scenarios where real-time requests appear it is

assumed that there is an available network connection, preferably low-latency

high-speed, between all involved parties, namely the SGoVApp, the SGA, the IIG-

MYP and IIG-SEP. Some of these modules may run on the same machine, in

which case the requirements for high speed and low latency are met. In all other

cases, the real_time_indicator is not set and no specific timing restrictions are

imposed upon the messages.

2.5.3.2.4.2 IIG: Handling Asynchronous (non-real-time) requests

When a non-real-time message is received, that is a message where the

real_time_indicator is not set, it is stored in a Pending Actions Queue (PAQ).

Storage takes place as soon as the message reaches the IIG and after the first

Stage of the IIG-MYP has been completed and therefore it has been identified

that it is not a real-time message. This way, the communication channel is freed

as soon as possible and the IIG is free to process urgent, i.e. real-time,

messages. Another advantage of this approach is that further processing of

messages in the PAQ can be aligned with local IT system policies.

Figure 57 illustrates the IIG modules discussed so far.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 110 of 209

XML
message

Actual communication
method is specified by
the IT staff of the Local

Authority

SEP

Process

MYP

XML parser,
Stage 1

validator

XML parser,
Stage 2

IIG

Figure 57 IIG modules

2.5.3.2.5 The Pending Actions Queue

The Pending Actions Queue (PAQ) serves as a temporary repository for storing

messages in cases where immediate processing is not possible or desirable. Both

the SGA-PAQ and the IIG-PAQ have similar structure and undergo similar

processing but reside in different physical locations. The SGA-PAQ resides within

the SmartGov Platform while the IIG-PAQ resides within the 3rd party IT system.

Processing of the messages stored in the PAQ is done through a scheduler which

is executed by the facilities provided by the underlying operating environment,

e.g. cron-scripts in a Unix environment or at initiated processes in an Windows

environment. Each PAQ is further partitioned into two separate queues. The

Entra-Queue (EQ) and the Adelante-Queue (AQ)3. Each queue is characterized as

3 The Entra-Queue and the Adelante-Queue are the Incoming and Outgoing
queues respectively.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 111 of 209

entra or adelante regarding the PAQ4 it refers to. Consequently, the messages

forwarded from the SGA-APAQ are inserted into the IIG-EPAQ and vice versa. In

Figure 58 a general structure of a PAQ is depicted.

SGA - PAQ

ΕQ AQ

IIG msg SGA msg

Scheduler invoked
processes

To SGA To IIG

SGA msg IT data

Scheduler invoked
processes

To IT To SGA

IIG - PAQ

ΕQ AQ

Figure 58 General Structure of the SGA and the IIG-PAQ

The periodicity of the scheduler invoked processes will be decided on the actual

implementation environment taking into account any peculiarities and constraints

placed by the actual working systems. Anyway, it is envisaged that the period of

invocation will be variant, ranging from minutes to days, depending upon the

processing requirements of each message class. For example, messages related

to warehouse stock updating maybe processed in 10 minutes interval while

messages related to certificate applications could be processed in a daily basis.

The message formats for the SGA-APAQ and the IIG-EPAQ have already been

discussed in paragraphs 2.5.3.2.1 and 2.5.3.2.3 respectively. The messages

referring to the SGA-EPAQ and IIG-APAQ will be discussed in the following

paragraphs.

2.5.3.2.6 IIG-The Pending Actions Queue

When the 3rd party IT system has finished processing of the messages forwarded

by the IIG, the results are returned to the calling IIG. The format of the result is

dependent on the 3rd party IT system and it is the responsibility of the IIG to re-

format them into XML messages and present them to the next layer.

Depending on the nature of the initial request results are either forwarded

immediately to the caller (real-time requests) or stored in the PAQ, in this case

the IIG-APAQ. In the latter case, only a notification may be returned.

4 We will use the following notation to refer to various queues. The notation EPAQ
refers to the EQ of the PAQ, while the notation APAQ refers to the AQ of the PAQ.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 112 of 209

In 2.5.3.2.4.2 it is stated that the IT staff of the organisation dictates the actual

communication method between the IIG and the 3rd party IT system. It is

assumed that this communication method provides for an indication of the service

on behalf of which the processing was done and thus the symbolic service name

for which the processing was done is known to the IIG. This symbolic service

name corresponds to the one used in the messages described in 2.5.3.2.3.

It must be noted that it is absolutely valid and very much possible for the 3rd

party IT system to generate messages that do have not been triggered by a

request from any SGoVApp. These kind of messages can, for example, happen

every time there is a need of updating data residing in the SmartGov Platform

with "fresh" data from the IT system. In these cases, notifications for the

SmartGov platform will be produced, which, when delivered to the SmartGov

platform, will trigger the appropriate action.

2.5.3.2.7 IIG: Handling replies from 3rd party IT systems

The actual data that the 3rd party IT system returns are not interpreted by the IIG

in anyway. They are just re-packaged into appropriate XML format and forwarded

to the relevant SGA. When the results enter the IIG, two facts are known. The

symbolic service name the results refer to and the actual results. These two facts

form the basis of the XML message that is formulated according to Table 7.

IIG to SGA message format

Contains tuples of the form:

<
 reply_id
 service_name,
 <results_in_XML>,
 real_time_indicator
 <IIG_credentials>
>

where,

Reply_id A unique reply identifier that serves to characterize

this reply

Service_name A symbolic name referring to a business operation. It

should be the same name used in the initial request

<results_in_XML>

The results of the processing done by the IT system

are encapsulated verbatim in an XML message. Only

an XML wrapper is placed around them to facilitate

communications

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 113 of 209

Real_time_indicator
The same meaning and value as in original request.

The IIG signifies that this is a response to an initial

real-time request.

A single tuple basically means: "In the <results_in_XML> are the results of the

processing required by the service service_name. You, the IIG as verified by the

<IIG_credentials>, can now forward this message as required by the

service_name".

A persistence indicator is not required here as it is assumed that all replies are

either immediately forwarded or stored into the IIG-APAQ to be forwarded at a

more convenient time.

Table 7 Format of the reply of the 3rd party IT system as re-formulated by

the IIG-MYP

This message is formulated by the IIG-MYP and not by the 3rd party IT system

processes.

The IIG, in order to forward this message, consults external configuration files

that are provided by the same methods as the SGA configuration files. In

analogous to the SGA configuration files, the IIG configuration files needed are:

• The IIG services configuration file

• The IIG communication methods configuration file

• The IIG SEP configuration file

The contents of these are presented in the following tables.

IIG Services Configuration File

Contains tuples of the form:

<
 service_name,
 SEP_name,
 ordered_list_of_methods
>

where,

service_name A symbolic name. The IIG accepts requests to

execute only services declared here.

SEP_name A symbolic name referring to the actual SEP that will

be executed as a response to the request.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 114 of 209

order_list_of_methods

An ordered list of communication methods that can

be used to transmit data to designated SEP. Methods

are referred to with symbolic names.

A default fallback method

<store_to_local_data_store> is defined for all

services and if all else fails the data to be transmitted

are stored in the local repository for later processing.

We call this repository the Pending Actions Queue

(PAQ). Messages with real_time_indicator set are

not stored to the PAQ unless the

persistence_indicator is also set. When these

messages are stored to the PAQ the

real_time_indicator is cleared, since obviously the

real-time restrictions does not hold anymore.

The semantics of these configuration tuples are: "The symbolic name

service_name will be serviced by the SEP named IIG_name; this will be invoked

using one of the order_list_of_methods, which will be tried sequentially, until

one succeeds."

The symbolic name service_name reflects a certain business operation. There

may be more than one tuple for the same service_name, with different symbolic

SEP_names. The existence of such tuples means that the same service_name is

implemented by all of the listed IIGs. As before, the selection algorithm depends

on the first found SEP that can be invoked.

Table 8 Format of the IIG Services configuration file

To fully resolve symbolic names referenced in the IIG Services Configuration

Files, the IIG uses the following configuration tables:

IIG Communication Methods
Configuration File

Contains tuples of the form:

<
 method,
 <more_info>
>

where,

method A symbolic name referring to the actual

communication method employed.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 115 of 209

<more_info>

All physical level information required for

implementing the said method. For example, a URL

may be specified in case of a Web-Service, a filename

in case of off-line transmission of data, required

credentials for connecting to a database, etc.

The semantics of these configuration tuples are: "To implement the

communication method method use the <more_info> information." The actual

data of the <more_info> part will be determined at the development phase.

Obviously, the IIG supports only the methods that it knows about. This

knowledge is hard-coded in the software modules that implement it.

Table 9 Format of the IIG Communication Methods configuration file

IIG SEP Configuration File

Contains tuples of the form:

<
 SEP_name,
 <more_info>
>

where,

IIG_name A symbolic name referring to the actual IIG.

<more_info>

All physical level information required for initiating

the designated SEP. For example, it may contain the

path to the executable program and parameters that

need to be passed to it.

The semantics of these configuration tuples are as follows: "The symbolic name

SEP_name corresponds to the specific program specified by the <more_info> part"

The actual data of the <more_info> part will be determined at the development

phase.

This mapping between symbolic SEP names and actual manifestations is

maintained by the administrator of the SmartGov Platform in cooperation with the

system administrators.

Table 10 The IIG SEP Configuration File

IIG Notification Initiator Configuration
File

Contains tuples of the form:

<
 notification_name,
 <SGA_NI_info>
>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 116 of 209

where,

notification_name A symbolic name for the notification event.

< SGA_NI_info >

All information required for connecting to the SGA

notification interceptor and delivering the requested

notification. For example, it may contain the IP

address and the port to connect to.

The semantics of these configuration tuples are as follows: "In order to deliver

the notification notification_name, a connection to the SGA-NI designated in the

SGA_NI_info should be established". The actual data of the < SGA_NI_info >

part will be determined at the development phase.

This mapping between symbolic notification names and the SGA NI information is

maintained by the IIG administrators.

Table 11 The IIG Notification Initiator Configuration File

The IIG modules defined are depicted in Figure 59.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 117 of 209

IIG
Security

Credentials

IIG-PAQ

XML
message

Actual communication
method is specified by
the IT staff of the Local

Authority

SEP

Process

MYP

XML parser,
Stage 1

validator

XML parser,
Stage 2

IIG

EPAQ

MYP

XML
message
formatter

message
handler

Configuration
Files

Services

SGA

Comm.
Methods

APAQ

Actual communication
method is specified by
the IT staff of the Local

Authority

XML
message

To SGA

Figure 59 IIG modules

2.5.3.2.8 SGA: Handling IIG messages

When an SGA receives a message from an IIG, the following actions are

performed:

• The message is assumed to be in XML format, so the SGA parses it

• The <IIG_credentials> are checked to verify that the originator of the

message is a known and valid IIG

• The symbolic name service_name is checked to verify that this SGA

handles messages for this service.

• If the above criteria are met, the XML message received is parsed and the

<results_in_XML> as well as the service_name are stored to the SGA-

EPAQ.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 118 of 209

Following the proposal of the IIG, a Minimal Yoking Processor (MYP) is also

required here. This SGA-MYP is responsible for the initial parsing of the XML reply,

the verification of the IIG credentials and the service_name suitability

requirement.

Messages received by an SGA that originate from an IIG are always stored in the

SGA-EPAQ. In the SmartGov Platform there is no provision for a specific process

that listens to messages. Therefore the extraction of the messages stored in the

EPAQ is the responsibility of processes invoked by the operating system's

scheduler.

2.5.3.2.9 Delivery of messages to the appropriate SGoVApp

In the case of real-time responses the application that made the original request

receives and handles the <results_in_XML>. Error conditions are specific to the

application and may require further communication. This communication is

handled in the same way as the normal one, exploiting the facilities offered by

the SGA and the IIG.

In all other cases, non-real-time messages, scheduler controlled processes are

periodically invoked to scan the SGA-EPAQ for messages. When such a message

is found, the service_name is checked and the relevant SGoVApp is called to

handle the <results_in_XML> part of the message. It is the responsibility of this

SGoVApp to parse the <results_in_XML> and to make any necessary integrity

checks. This application is not necessarily the same with the one that made the

original request. It is left to the implementation phase to decide whether the

producer and the consumer of the messages are one or separate applications. It

is envisaged, that replies that are not characterized as real-time will eventually be

stored in a local data repository for easy access to other SGoVApps.

2.5.3.2.10 Activity logging and statistics computation

For reasons of activity traceability and computation of statistical figures, the

SmartGov Agent and the Information Interchange gateway modules maintain log

files, in which information regarding the ongoing activities is recorded. The log

files maintained and the information recorded in these, are presented in the

following paragraphs.

2.5.3.2.10.1 The service delivery environment log files

Within the service delivery environment, the SGA, the SGA-PAQUED and the SGA-

NI add entries to the log files, recording information regarding the following

events:

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 119 of 209

• Submission of a request. For this event, the request id, the service name

requested, the real time and persistence indicators and the timestamp of

the request are recorded in the log file.

• Method invocation. When a request is received by the SGA, the

corresponding methods specified in its configuration files are tried, in order

to serve the request. For each such attempt, the id of the request being

served, the name and address of the peer system, the invoked service

name, the result status of the communication (success or failure) and the

time taken to complete the attempt (begin and end timestamps) are

recorded in the log file.

• Initiation of the SGA-PAQUED execution. When a fresh run of the SGA-

PAQUED is initiated, the corresponding event and the current timestamp

are recorded in the log file. For queue size profiling purposes, the number

of entries in the SGA-PAQ is also written in the log file entry.

• Process spawning. As a result of processing an SGA-PAQ entry, the SGA-

PAQUED may spawn a new lightweight or heavyweight process. For these

events, the SGA-PAQUED records the request id (extracted from the SGA-

PAQ entry), an identifier for the spawned process and the current

timestamp. We note here that the SGA-PAQUED is not able to monitor the

execution progress or the final termination status of these processes, thus

it is not possible for the SGA-PAQUED to log information regarding the

success, failure, or other details of the spawned process. However, the

SmartGov platform provides a library and an associated API that enable

the spawned processes to record any relevant information in the log file.

• Termination of the SGA-PAQUED execution. When the SGA-PAQUED has

examined all entries in the SGA-PAQ it terminates its execution, recording

in the log file the corresponding event and the current timestamp. For

queue size profiling purposes, the number of entries in the SGA-PAQ is

also written in the log file entry.

• Reception of a notification. Upon receipt of a notification, the SGA-NI

records in the log file the notification identification, the peer system name

and address and the current timestamp.

2.5.3.2.10.2 The organisational information system environment log files

Within the organizational information system environment, the IIG, the IIG-

PAQUED and the IIG-NI add entries to the log files, recording information

regarding the following events:

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 120 of 209

• Reception of a request. For this event, the request id, the service name

requested, the real time indicator and the timestamp of the request are

recorded in the log file.

• Completion of a request execution. When the IIG receives a request

having the real time indicator set to true, it spawns an IIG-SEP and

collects the reply. When the reply is collected, the request identifier and

the current timestamp are recorded in the log file.

• Initiation of the IIG-PAQUED execution. When the IIG-PAQUED is run

afresh, the corresponding event and the current timestamp are recorded in

the log file. For queue size profiling purposes, the number of entries in the

IIG-PAQ is also written in the log file entry.

• Process spawning. As a result of processing an IIG-PAQ entry, the IIG-

PAQUED may spawn a new lightweight or heavyweight process. For these

events, the IIG-PAQUED records the request id (extracted from the IIG-

PAQ entry), an identifier for the spawned process and the current

timestamp. We note here that the IIG-PAQUED is not able to monitor the

execution progress or the final termination status of these processes, thus

it is not possible for the IIG-PAQUED to log information regarding the

success, failure, or other details of the spawned process. However, the

SmartGov platform provides a library and an associated API that enable

the spawned processes to record any relevant information in the log file.

• Termination of the IIG-PAQUED execution. When the IIG-PAQUED has

examined all entries in the IIG-PAQ it terminates its execution, recording

in the log file the corresponding event and the current timestamp. For

queue size profiling purposes, the number of entries in the IIG-PAQ is also

written in the log file entry.

• Posting of a notification. When a notification is posted, the IIG-NI records

in the log file the notification identification, the peer system name and

address and the current timestamp. This logging facility is integrated in

the IIG-NI library, thus the invoking application need not take any extra

actions for this purpose.

2.5.3.2.10.3 The logging requests

A logging request posted by any application to the SmartGov libraries responsible

for implementing the logging process has the following format:

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 121 of 209

Logging message:

<
 eventCriticality
 message
>

where,

eventCriticality

This parameter characterises the associated message

in terms of its severity. It may be set to the following

values: SG_LOG_EMERG (an event requiring

immediate attention), SG_LOG_ALERT (an event

requiring attention), SG_LOG_ERROR (an error

condition), SG_LOG_WARNING (a warning message)

SG_LOG_INFO (an informational message) and

SG_LOG_DEBUG (IT staff use for debugging

purposes).

message A string that describes the event

The entries in the log file are supplemented with the current timestamp (as

perceived by the machine the logger process is run on) and the address of the

machine the message has originated from.

The libraries responsible for system logging must be able to locate the

communication details for contacting the logger process. To this end, a

configuration file is maintained on each system that logging requests may

originate from, containing these communication details. This configuration file

should reside on the directory pointed to by the SG_LOG_CONFIG environment

variable.

2.5.3.2.11 Global and Service-Specific Context

While the SmartGov agent communicates with the third-party IT systems in a

manner that is independent of (a) global parameters (e.g. the user that has

logged in, the strength of the authentication method etc) and (b) service-specific

parameters, such as the name of the service or the TSEs participating in it, it is

clear that the contents of the messages exchanged with the organisational or

third party IT systems will contain both global and service-specific context. For

instance, a request to retrieve the service user’s personal details from a registry

should contain some form of identification for the user (user name, user id etc),

which falls into the global context, whereas various elements of the reply should

be assigned as values to service-specific TSEs. These details are transparent to

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 122 of 209

the SmartGov Agent and the Information Interchange Gateway, and are

encapsulated in the XML messages that are transferred as request parameters or

received as replies. The software entities that invoke the SmartGov Agent are

responsible for:

1. formulating appropriately XML message that should be passed to the

invoked service as a parameter, and embed in it any pertinent global or

service-specific context.

2. extracting data from reply messages and modifying accordingly global or

service specific context (e.g. assigning values to TSEs).

2.5.3.3 Remote administration of the IIG

The IIG should provide facilities for remote administration, since access to the

premises and/or computer systems of the organisational IT systems may be

restricted. Since the operation of the IIG is fully controllable by configuration

files, it suffices to provide interfaces for the remote management of the content

of these configuration files. The management operations are built in the IIG-MYP,

which runs continuously on the environment of the organisational information

system, thus they are always available to the administrators. Access to these

operations is protected by authentication credentials and may be further

restricted through the use of firewalls or any other appropriate technology. The

administration interface offered by the IIG-MYP is detailed in the following

paragraphs.

2.5.3.3.1 Administering the IIG services configuration file

The IIG provides the following management functionality for the IIG services

configuration file:

• IIG_query_services(void). This method accepts no parameters and

returns a list of <service_name, SEP_name, ordered_list_of_methods>

triples.

• IIG_add_service(service_name, SEP_name, ordered_method_list) .

This method adds a new service to the IIG services configuration file, as

designated by the method parameters. The service name must not exist in

the IIG services configuration; additionally, the SEP_name and each of the

methods listed in the ordered_method_list should be defined in the

respective configuration file.
• IIG_modify_service(service_name, SEP_name,

ordered_method_list). This method modifies the service service_name

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 123 of 209

to map to the SEP_name which will be invoked using the methods dictated

in the ordered_method_list. The service_name must exist in the IIG

services configuration and the SEP_name and each of the methods listed in

the ordered_method_list should be defined in the respective

configuration file.
• IIG_remove_service(service_name). This method deletes the designated

service from the IIG services configuration file. The service name must be

defined in the IIG services configuration file.

2.5.3.3.2 Administering the IIG SEP configuration file

The IIG provides the following management functionality for the IIG SEP

configuration file:

• IIG_query_SEP(void). This method accepts no parameters and returns a

list of <SEP_name, <more_info>> pairs.

• IIG_add_SEP(SEP_name, more_info). This method adds a new SEP name

to the IIG SEP configuration file, as designated by the method parameters.

The SEP name must not exist in the IIG SEP configuration.
• IIG_modify_SEP(SEP_name, <more_info>). This method modifies the SEP

SEP_name to map to the information specified in <more_info>. The

SEP_name must exist in the IIG SEP configuration.
• IIG_remove_SEP(SEP_name). This method deletes the designated SEP

from the IIG SEP configuration file. The SEP name must be defined in the

IIG SEP configuration file.

2.5.3.3.3 Administering the IIG Methods configuration file

The IIG provides the following management functionality for the IIG Methods

configuration file:

• IIG_query_methods(void). This service accepts no parameters and

returns a list of <method_name, <more_info>> pairs.

• IIG_add_method(method_name, more_info). This service adds a new

method name to the IIG method configuration file, as designated by the

service parameters. The method name must not exist in the IIG method

configuration.
• IIG_modify_method(method_name, <more_info>). This service modifies

the method method_name to map to the information specified in

<more_info>. The method_name must exist in the IIG methods

configuration.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 124 of 209

• IIG_remove_method(method_name). This service deletes the designated

method from the IIG method configuration file. The method name must be

defined in the IIG methods configuration file.

2.5.3.3.4 Administering the IIG Notification Initiator configuration file

The IIG provides the following management functionality for the IIG Notification

Initiator configuration file:

• IIG_query_notfications(void). This service accepts no parameters and

returns a list of <notification_name, <SGA_NI_info>> pairs.

• IIG_add_notification(notification_name, SGA_NI_info) . This service

adds a new notification name to the IIG notification initiator configuration

file, as designated by the service parameters. The notification name must

not exist in the IIG notification initiator configuration.
• IIG_modify_notification(notification_name, <SGA_NI_info>) . This

service modifies the notification notification_name to post the

notification events to the SGA-NI designated by <SGA_NI_info>. The

notification_name must exist in the IIG notification initiator

configuration.
• IIG_remove_notification(notification_name). This service deletes the

designated notification from the IIG notification initiator configuration file.

The notification name must be defined in the IIG notification initiator

configuration file.

2.5.3.3.5 Supplementary remote administration functionalities

In addition to the remote administration functionality described in paragraphs

2.5.3.3.1 to 2.5.3.3.4, the IIG provides the following two remote administration

interfaces:

• IIG_reload_configuration(void). Via this service the IIG is instructed

to re-read its configuration files and modify its behaviour according to the

new contents of these files.

• IIG_run_PAQUED(void). Via this service an immediate execution of the

IIG PAQUED is requested, so that the IIG PAQ entries are examined. The

IIG reserves the right to ignore the request if the IIG PAQUED is already

running or if system load is excessively high. In these cases, an

appropriate indication is returned.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 125 of 209

2.5.3.4 Summary

A generic method of communication between application developed within the

SmartGov Platform and 3rd party IT systems has been described. It has been

assumed that these 3rd party IT systems operate under the control of a Local

Authority (LA) and that a direct communication link (network) would not always

be available. Thus provisions have been made to accommodate for alternative

method of communications, such as delayed forwarding (spooling) of messages,

sneaker-net type communications (floppy disks or tapes), etc. These alternate

methods can also be employed in cases where the 3rd party IT system is not

ready to receive messages from SGoVApps.

Communication relies upon two modules, namely the SmartGov Agent (SGA) and

the Information Interchange Gateway (IIG). These modules have been analyzed

and their components identified. The format of the messages exchanged has also

been specified.

Security mechanisms haven been specified as an integral part of the

communication. These mechanisms rely on the existence and verification of

appropriate credentials. The actual format of these credentials has not been

specified yet, but it has been assumed that the whole scheme will rely on existent

and tested approaches such as those used by the SSL and the SSH protocols.

Required operation system support has been identified in the form of the

scheduler. The scheduler is responsible for periodically invoking the relevant

processes to handle messages in various stages of communication. The local

administrators are responsible for proper scheduler configuration.

2.6 Process View

2.6.1 The SmartGov Front-End

In Figure 60, a schematic design of the basic process in a web application is

shown, customized for our application.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 126 of 209

Figure 60 – SmartGov Front-end web application schema

The management of the processes required to reply the HTTP Request is

responsibility of the web server. SmartGov front-end gives the ‘logic’, the

intelligence of the application, but all the internal processes required are provided

by the web server.

2.6.2 The Integrator

The integrator objects will live within the web container instance and thus all

processes will be handled transparently by the container implementation.

Accesses to the database server as well as the file system are also going to be

managed by the container instance through the relevant objects (JDBC objects for

the former and Java.io objects for the latter). The initiation of the process for the

integrator will be realized through a relevant HTTP request as shown in Figure 60

for the case of the Front-end.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 127 of 209

2.6.3 SmartGov Agent - Information Interchange Gateway

The SmartGov agent and the Information Interchange Gateway are the

components of the SmartGov platform that cater for the communication between

the service delivery environment and the organisation’s installed IT systems or

third-party IT systems external to the organisation. In the following paragraphs

the process view for these two components is described, organised by the

communication events. For each communication event, the involved software

modules (as listed in section 2.5.3.1) are identified and the actions taken by each

module are described.

2.6.3.1 Synchronous communication

The synchronous communication paradigm is employed when, in the context of

delivering some service to a user, a request must be forwarded from the service

delivery environment to an organisational or external IT system and this request

returns results that are needed in order to continue with delivering the service.

An example of such a request is the retrieval of the user’s personal data from a

registry, in order to be filled in the corresponding TSEs of a form. Process

interaction in this case commences as follows:

1. SmartGovApps invoke the SGA, asking for the request to be carried out, by

calling the appropriate Java class method of the SGA library. Parameters are

passed using the Java language calling convention. The invocation is

synchronous, therefore the execution of the invoking SmartGovApp is

suspended until the method execution is finished. Method execution takes

place within the control thread of the calling program.

2. The SGA assembles a message with all appropriate information needed for the

completion of the request, including the parameters passed by the programs

implementing service delivery and the pertinent configuration and

authentication data. This message sent to the IIG-MYP component through a

message passing mechanism. Execution of the SGA control thread

(effectively, the execution of the service delivery instance) is suspended until

the message is delivered and the reply collected, or a timeout expires with no

reply having been returned, in which case an exception is raised.

3. The IIG-MYP receives the message and spawns a new control thread for

handling the request. The new lightweight process will validate the received

message and the authentication data, extract the parameters that are

required for processing the request and spawn an IIG-SEP process that will

actually run the code fulfilling the task at hand. This code may be Java code

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 128 of 209

(and thus be able to be called as a Java method), an operating system

program (in which case a suitable system call must be performed etc). The

IIG-SEP calling details should be specified by the organisation’s IT staff.

Communication between the IIG-MYP and the IIG-SEP spawner is performed

through the Java language parameter passing mechanism in an asynchronous

manner, i.e. once the IIG-SEP spawner is initialised it completely detaches

from the IIG-MYP control thread and their execution continues independently

thereafter.

4. The IIG-SEP process returns the reply to its IIG-SEP spawner using a suitable

method; if the IIG-SEP process is a piece of Java code, results may be

returned through the Java method calling mechanism; for external operating

system processes pipes, sockets, intermediate files or any other appropriate

programming technique may be used. The IIG-SEP spawner returns the

results to the SGA through a message passing mechanism and terminates its

execution.

5. The SGA, having received the reply, exits the suspended state and becomes

runnable again. It extracts the reply from the received message and forwards

it to the calling SGovApp service instance through the Java method calling

mechanism, completing the synchronous communication cycle.

2.6.3.2 Asynchronous communication

The asynchronous communication paradigm is employed when, in the context of

delivering some service to a user, a request must be forwarded from the service

delivery environment to an organisational or external IT system but the results of

this request –or even its actual execution– are not required in order to continue

with the delivery of the service; the only requirement is that the request will be

eventually carried out. Process interaction in this case commences as follows:

1. SmartGovApps invoke the SGA, asking for the request to be carried out, as

described in item 1 of section 2.6.3.1.

2. The SGA assembles a message and passes it to the IIG-MYP as discussed in

item 2 of section 2.6.3.1.

3. The IIG-MYP receives the message and arranges for inserting the appropriate

information in the IIG-PAQ. Once this information has been inserted, a reply is

returned to the SGA indicating that the message has been received.

4. The SGA, having received the reply, exits the suspended state and becomes

runnable again, returning the control to the calling SGovApp service instance.

The actual execution of the request is, in this case, deferred until the

corresponding IIG-PAQ entry is processed by the IIG-PAQUED.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 129 of 209

2.6.3.3 Periodic events

The SmartGov architecture introduces two software modules that are run

periodically in order to identify and execute tasks that have been deferred. These

modules are the SGA-Pending Action Queue Dispatcher (SGA-PAQUED), running

within the service delivery environment and the IIG-Pending Action Queue

Dispatcher (IIG-PAQUED), running within the environment of the organisational

information system. Each of these modules awakens periodically (periodicity is

specified by the local IT staff) and scans through the corresponding action queue

to locate entries for actions that may be executed. When such an action is found,

a separate process is launched to actually execute the task at hand and the entry

is removed from the PAQ. Standard operating system facilities are employed for

parameter passing between the PAQUED and its child processes, while temporary

files may be used in order to pass large volumes of information to the child

processes. The child processes have no access to the internal structure or

contents of the PAQ. Periodic activation of the PAQUED modules relies on the

facilities offered by the underlying operating system for scheduled task execution.

2.6.3.4 Notifications

Processes running in the environment of the organisational information system

may post notification events to the service delivery environments signifying that

some action should be initiated (or may proceed) within the service delivery

environment. Processes send the notification events by employing he IIG-

Notification Initiator (IIG-NI), a library that contains classes and methods that

may be invoked by the processes and arrange for delivering the notifications to

the SmartGov service delivery environment. In more detail, the notification

posting cycle proceeds as follows:

1. Processes that need to post notification events invoke IIG-NI, asking for the

notification to be delivered by calling the appropriate Java class method of the

IIG-NI. Parameters (e.g. the name of the notification event) are passed using

the Java language calling convention. The invocation is synchronous, therefore

the execution of the invoking process is suspended until the method execution

is finished. Method execution takes place within the control thread of the

calling program.

2. The IIG-NI assembles a message with all appropriate information needed for

the delivery of the notification, including the name of the notification passed

by the invoking process and the pertinent configuration and authentication

data. This message sent to the local IIG, through a message passing

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 130 of 209

mechanism. Execution of the IIG-NI control thread (effectively, the execution

of the invoking process) is suspended until the message is delivered and the

reply collected, or a timeout expires with no acknowledgement having been

returned, in which case an exception is raised.

3. The IIG forwards the notification to the SGA Notification Interceptor (SGA-NI)

component. The SGA-NI receives the message and arranges for the insertion

of an entry into the SGA-PAQ. This entry will be later examined by the SGA-

PAQUED, as described in section 2.6.3.3, leading to the execution of an

appropriate action.

2.6.3.5 Logging facilities

Logging facilities are provided at both the SmartGov service delivery environment

and the organisational information system environment, in order to record and

document events that have taken place and relate to the SmartGov platform. A

logging request may be submitted by any program within the service delivery

environment and the organisational information system environment, in which

case the following procedure commences:

1. the calling application provides the message to be logged together with a

designation of each criticality to the API provided by the SmartGov

implementation. The calling application is suspended.

2. the procedure implementing the API locates the appropriate logging facility

(SGA logger or IIG logger) and communicates to it the criticality designation

and the message.

3. the logging facility arranges for storing the current timestamp, the criticality

designation and the message to some persistent storage.

4. an acknowledgement is returned to the calling application that the log request

has been honoured.

5. the calling application resumes its execution.

2.7 Deployment View

In the following figure a proposed network topology to host the various

components of the SmartGov platform is depicted. This topology ensures a high

level of security, while with the proper choice of hardware it will provide a

satisfactory performance. In the following sections of the deployment view the

specific needs of the major SmartGov platform components are presented.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 131 of 209

Figure 61 SmartGov platform network topology

2.7.1 SmartGov Front-End

The SmartGov Front-end is developed using the Struts MVC Framework as

starting point so the requirements will be fixed mainly by this architecture.

To run this front-end, a J2EE-compliant web server is required and also a

Database server. A dedicated database server is not required, so the Front-end

can use the same server that the other modules of SmartGov Platform. This

server will be accessed through a JBDC Driver.

The number of users of the system and the size of the organization will be the

key factor to evaluate the needs of our system: more concurrent users will

demand higher requirements in the web server, and also a bigger organization

will imply more services being developed, more knowledge stored, and thus

Production server
W eb server,servlet container

Stuts Components,
SmartGov Front-end,

Integrator,
XML Repository API objects

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 132 of 209

higher requirements. These requirements will have to be adjusted once a specific

web server platform has been decided (Tomcat-Apache, Weblogic…) and also may

be necessary to make some changes in configuration files to adapt the front-end.

Once the front-end has been developed, it will be necessary making load tests to

tune the requirements of the platform, according to the number of users and

services being developed. Anyway, the processes have, in the general case, small

footprints and are short-lived, so requirements should not be too different from

the usual ones for web applications specified for each web server platform.

For execution of components developed in the Java language, the Java 1.4

runtime environment should be available on the hosting machine. For database

access, the JDBC 3.0 API, bundled with the Java 1.4 runtime environment will be

used. Also Struts and Castor classes should be available.

During the development, the used platform is going to be Apache 2 + Tomcat 4.1

as web server, adding the Struts and Castor packages. Also will be used MySql as

database server. And finally, as aforementioned, the Java 1.4 runtime

environment, and the JDBC 3.0 API, bundled with the Java 1.4 runtime

environment, will be used.

2.7.2 Integrator

The integrator components will live within the instance of the servlet container.

All necessary objects will be loaded from there and will have access to the

database server through a JDBC driver and to the XML repository through the

XML Repository API objects. Also access will be provided to the dissemination

server of the platform in order for the integrator to deploy the generated web

application.

The integrator will make use of the Jakarta Ant module, the Jakarta Struts

Framework and will also require the Java 1.4 runtime environment and the JDBC

3.0 API.

2.7.3 SmartGov Agent - Information Interchange Gateway

In this section the requirements for the installation and execution of the

SmartGov Agent and the Information Interchange Gateway are described.

2.7.3.1 Service delivery platform

The SmartGov Agent class library component runs as an integral part of the

services delivered to the end users, thus no special provisions need to be made

for it, either in terms of hardware or in terms of software environment.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 133 of 209

The SGA-PAQUED is a separate process running periodically and accessing the

PAQ. As a result of its operation, additional processes may be spawned. These

services will have, in the general case, small footprints and be short-lived, thus

no significant overheads will be incurred; however, local IT staff associating CPU-

intensive or large-footprint processes with SGA-PAQ entries should consider the

processing, memory and storage requirements of these programs when sizing the

hardware.

For the management of the SGA-PAQ itself, database services need to be

available. To this end, a database server should be deployed providing JDBC

connectivity, in order to be accessible to the SGA-PAQUED. The database server

may be dedicated to the purpose of hosting the SGA-PAQ, or may offer database

services for other purposes.

In terms of host requirements, the SGA-PAQUED may be run on the machine that

offers the database services for storing the SGA-PAQ. In this case, the hardware

requirements of the machine will be primarily dictated by the database server,

plus a 15% increase in processor and memory requirements. Disk capacity will

not be affected, in general. If the SGA-PAQUED is hosted in a separate machine,

a minimum configuration for it would be a 1Ghz Pentium processor (or

equivalent) with 128 Mbytes of memory (unless the operating system installation

instructions suggest a larger amount of memory) and a 4 GB disk.

The SGA-NI is a daemon process listening for incoming notification events and

arranging for inserting the corresponding entries to the SGA-PAQ; its memory

footprint is expected to be small and its processing requirements minimal, thus it

may be hosted on the same machine that the SGA-PAQUED is run on.

The SGA-logger is a daemon process listening for incoming event logging

requests and arranges for storing the contents of these log requests to some

persistent storage. It is expected that its memory footprint will be small and its

processing requirements minimal, thus it may be hosted on the same machine

that the SGA-PAQUED is run on.

For execution of components developed in the Java language, the Java 1.4.1

runtime environment should be available on the hosting machine. For database

access, the JDBC 3.0 API, bundled with the Java 1.4.1 runtime environment will

be used.

2.7.3.2 Organisational Information System Environment

The organisational information system should host the IIG-MYP in order to be

able to receive and serve requests originating from the service delivery

environment. The IIG-MYP is a daemon process listening for incoming requests

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 134 of 209

and arranging for spawning a separate external process (SEP) or placing an

appropriate entry in the IIG-PAQ. The memory footprint and the processing

requirements of the IIG-MYP are minimal, for host sizing, however, two issues

should be considered:

• The invocation frequency, memory footprint and processing requirements

of the separate external processes. Usually, these processes will simply

access a registry for retrieval or update purposes, however batch

maintenance jobs may also be run.

• The storage and management of the IIG-PAQ database services need to be

available. To this end, a database server should be deployed providing

JDBC connectivity, in order to be accessible to the IIG-MYP. The database

server may be dedicated to the purpose of hosting the IIG-PAQ, or may

offer database services for other purposes.

The IIG-PAQ is also accessed by the IIG-PAQUED, a separate process running

periodically and accessing the PAQ. As a result of its operation, additional

processes may be spawned. These processes will have, in the general case, small

footprints and be short-lived, thus no significant overheads will be incurred;

however, local IT staff associating CPU-intensive or large-footprint processes with

IIG-PAQ entries (e.g. batch jobs) should consider the processing, memory and

storage requirements of these programs when sizing the hardware.

Overall, the IIG-MYP, IIG-SEPs, IIG-PAQEUD and IIG-PAQ may be hosted on a

single machine, whose hardware requirements will be largely dictated by the

database system that hosts the IIG-PAQ, plus a 30% increase in processing and

memory requirements, if IIG-SEPs are of medium frequency, small-footprint and

short-lived. If IIG-SEPs are very frequent, have large footprints or high demands

for processing power, a higher increase should be opted for, or tasks should be

split in two machines, one providing the database services and one hosting the

IIG-MYP, the IIG-SEP and the IIG-PAQUED.

The IIG-logger is a daemon process listening for incoming event logging requests

and arranges for storing the contents of these log requests to some persistent

storage. It is expected that its memory footprint will be small and its processing

requirements minimal, thus it may be hosted on the same machine that the SGA-

PAQUED is run on.

It should be noted here that some organisational information system platforms

may be able, in terms of software requirements and hardware capacity, to host

the IIG-MYP, IIG-SEP and the IIG-PAQUED; however, it is advised that especially

the IIG-MYP module is placed on a different machine than the organisational

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 135 of 209

information system, in order to facilitate the enforcement of strict security

measures and not jeopardise the integrity of the organisational information

system.

For execution of components developed in the Java language, the Java 1.4.1

runtime environment should be available on the hosting machine. For database

access, the JDBC 3.0 API, bundled with the Java 1.4.1 runtime environment will

be used.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 136 of 209

2.8 Data view

2.8.1 Introduction

The Data view documents the SmartGov data model. This involves mapping

classes and elements defined in the Logical view to XML Schemas or relational

tables in a relational database.

SmartGov use a database, a well known storage system, to store some its data

(Users, Roles and WorkGroup). The rest of data is stored in XML, that is validate

against XML Schemas, as it is stated in the XML Doc Repository chapter (2.4.2.2).

XML Schemas express shared vocabularies and allow machines to carry out rules

made by people. They provide a means for defining the structure, content and

semantics of XML documents. XML Schemas provides mechanisms for declaring,

defining and refining data types.

In the following chapters the commented structure of the relevant SmartGov XML

Schemas is explained

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 137 of 209

2.8.2 Modelling of Transaction Services

diagram

children TSId name description includedFormSets linkedKUNode linkedTaxonomyNode validationRule
authenticationRequirements preaction postaction allowSave allowEdit allowDelete deadline lifeCycle

statistics

identity

constraints

 Name Refer Selector Field(s)

key TSKey .//TS TSIId

keyref formKeyRef formKey .//TS/includedFormS

ets

formId

keyref TSLinkedKUNodeRef KUKey .//TS linkedKUNode

keyref TSLinkedTaxonomyNod

eRef

taxonomyNode

Key

.//TS linkedTaxonomyNode

source <xs:element name="TS">

 <xs:complexType>
 <xs:sequence>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 138 of 209

 <xs:element name="TSId" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="description" type="multilingualText" maxOccurs="unbounded"/>
 <xs:element name="includedFormSets" type="formSet" maxOccurs="unbounded"/>
 <xs:element name="linkedKUNode" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="linkedTaxonomyNode" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="validationRule" type="validationMethod" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="authenticationRequirements" type="xs:string"/>
 <xs:element name="preaction" type="method"/>
 <xs:element name="postaction" type="method"/>
 <xs:element name="allowSave" type="xs:boolean"/>
 <xs:element name="allowEdit" type="xs:boolean"/>
 <xs:element name="allowDelete" type="xs:boolean"/>
 <xs:element name="deadline" type="xs:date"/>
 <xs:element name="lifeCycle" type="lifeCycleType"/>
 <xs:element name="statistics" type="TSStatistics" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:key name="TSKey">
 <xs:selector xpath=".//TS"/>
 <xs:field xpath="TSIId"/>
 </xs:key>
 <xs:keyref name="formKeyRef" refer="formKey">
 <xs:selector xpath=".//TS/includedFormSets"/>
 <xs:field xpath="formId"/>
 </xs:keyref>
 <xs:keyref name="TSLinkedKUNodeRef" refer="KUKey">
 <xs:selector xpath=".//TS"/>
 <xs:field xpath="linkedKUNode"/>
 </xs:keyref>
 <xs:keyref name="TSLinkedTaxonomyNodeRef" refer="taxonomyNodeKey">
 <xs:selector xpath=".//TS"/>
 <xs:field xpath="linkedTaxonomyNode"/>
 </xs:keyref>
</xs:element>

The elements of the TS entity are described in the following paragraphs.

• TSId: a string-typed element in which the id of the Transaction Service

(TS) is stored.

• name: The name of the transaction service. The element type is string.

• description: The description of the transaction service. Descriptions in

multiple languages may be accommodated. The element type is

multilingualText.

• includedFormSets. This element contains one form set for each platform

that will be used for the dissemination of the service. Each form set is

tagged with the name of the target platform; for each platform one or

more forms may be used. The element type is formSet.

• linkedKUNode: This element provides references to the KU nodes with

which the TS is associated. The type of the element is string and it may

occur multiple times.

• linkedTaxonomyNode: This element provides references to the taxonomy

nodes with which the TS is associated. The type of the element is string

and it may occur multiple times.

• validationRule: The rules used to ensure the validity of a document

submitted via the specific TS. A submitted document is considered valid if

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 139 of 209

all validation rules associated with the TS succeed. The type of the

element is validationMethod and it may occur multiple times.

• authenticationRequirements: Description of the authentication procedure

necessary for the use of the service. It could be “none”, “username and

password”, etc

• preaction: Code executed during the initialization of the service. If it fails,

the service does not commence. This code fragment may be used to check

the necessary preconditions for service execution. The type of the element

is method.

• postaction: Code that is executed after the conclusion of the service. This

code fragment may be used to enable the usage of other transaction

services, dependent on the current one. The type of the element is

method.

• allowSave: If this property is set, the user of the service will be provided

with a “Save” functionality in order to be able to save a not-yet-completed

form to submit it later. The element type is boolean.

• allowEdit: If this property is set, the users of the service will be provided

with an “Edit” functionality, which will enable them to edit documents

submitted through the TS, until these documents are characterized as final

by the PA. The element type is boolean.

• allowDelete: If this property is set, the users of the service will be

provided with a “Delete” functionality, which will enable them to delete

documents submitted via the specific TS, until these documents are

characterized as “final” by the PA. The element type is boolean.

• deadline: Deadline for the submission documents for the specific service.

The element type is date.

• lifecycle: Information pertaining to the life cycle of the transaction service.

The element type is lifeCycleType.

• statistics: Definition of the statistics to be collected for the specific TS. The

element type is TSStatistics.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 140 of 209

2.8.3 Modeling of Forms

diagram

children formId name description includedTSE includedTSEGroup linkedKUNode linkedTaxonomyNode
validationRule onLeaveMethod onLoadMethod administrativeData formLayout TSEMappings KUMappings

statistics

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 141 of 209

identity

constraints

 Name Refer Selector Field(s)

key formKey .//form formId

keyref instantiatedTSEKeyRefII

ncludedTSE

instantiatedTSEKey .//form includedTSE

keyref instantiatedTSEGroupK

eyRefIIncludedTSEGrou

p

instantiatedTSEGroupKey .//form includedTSEGroup

keyref formLinkedKUNodeRef KUKey .//form linkedKUNode

keyref formLinkedTaxonomyNo

deRef

taxonomyNodeKey .//form linkedTaxonomyNo

de

keyref forminstantiatedTSEKey

RefTSEMappings

instantiatedTSEKey .//form/T

SEMappi

ngs

instantiatedTSEId

keyref formKUNodeRefKUMap

pings

KUKey .//form/K

UMappin

gs

KUId

source <xs:element name="form">

 <xs:complexType>
 <xs:sequence>
 <xs:element name="formId" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="description" type="multilingualText" maxOccurs="unbounded"/>
 <xs:element name="includedTSE" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="includedTSEGroup" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="linkedKUNode" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="linkedTaxonomyNode" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="validationRule" type="validationMethod" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="onLeaveMethod" type="method" minOccurs="0"/>
 <xs:element name="onLoadMethod" type="method" minOccurs="0"/>
 <xs:element name="administrativeData" type="administrativeInfo"/>
 <xs:element name="formLayout" type="xs:anyURI"/>
 <xs:element name="TSEMappings" type="TSEToFormElement" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="KUMappings" type="KUToHelpItem" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="statistics" type="formStatistics" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:key name="formKey">
 <xs:selector xpath=".//form"/>
 <xs:field xpath="formId"/>
 </xs:key>
 <xs:keyref name="instantiatedTSEKeyRefIIncludedTSE" refer="instantiatedTSEKey">
 <xs:selector xpath=".//form"/>
 <xs:field xpath="includedTSE"/>
 </xs:keyref>
 <xs:keyref name="instantiatedTSEGroupKeyRefIIncludedTSEGroup" refer="instantiatedTSEGroupKey">
 <xs:selector xpath=".//form"/>
 <xs:field xpath="includedTSEGroup"/>
 </xs:keyref>
 <xs:keyref name="formLinkedKUNodeRef" refer="KUKey">
 <xs:selector xpath=".//form"/>
 <xs:field xpath="linkedKUNode"/>
 </xs:keyref>
 <xs:keyref name="formLinkedTaxonomyNodeRef" refer="taxonomyNodeKey">
 <xs:selector xpath=".//form"/>
 <xs:field xpath="linkedTaxonomyNode"/>
 </xs:keyref>
 <xs:keyref name="forminstantiatedTSEKeyRefTSEMappings" refer="instantiatedTSEKey">
 <xs:selector xpath=".//form/TSEMappings"/>
 <xs:field xpath="instantiatedTSEId"/>
 </xs:keyref>
 <xs:keyref name="formKUNodeRefKUMappings" refer="KUKey">
 <xs:selector xpath=".//form/KUMappings"/>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 142 of 209

 <xs:field xpath="KUId"/>
 </xs:keyref>
</xs:element>

 This element models the form object of the SmartGov platform. Each form is a “page” of a document that

may be submitted through a transaction service.

The elements of the form entity are described in the following paragraphs.

• formId: A string-typed element containing the id of the form.

• name: The name of the form. The element type is string.

• description: The description of the form. Descriptions in multiple

languages may be accommodated. The element type is multilingualText.

• includedTSE. A form contains one such element for each TSE directly

included in it. The element type is string and it contains the id of the TSE.

• includedTSEGroup. A form contains one such element for each TSE group

included in it. The element type is string and it contains the id of the TSE

group.

• linkedKUNode: This element provides references to the KU nodes with

which the form is associated. The type of the element is string and it may

occur multiple times.

• linkedTaxonomyNode: This element provides references to the taxonomy

nodes with which the form is associated. The type of the element is string

and it may occur multiple times.

• validationRule: The rules used to ensure the validity of a the form

contents. A form is considered valid if all validation rules associated with

the form succeed. The type of the element is validationMethod and it may

occur multiple times.

• onLeave: Code that is executed when the user leaves the form. The

element type is method.

• onLoad: Code that is executed when the form is loaded. The element type

is method.

• administrativeData: Information useful for administrative purposes for the

form within the SmartGov development platform. The type of the element

is administrativeInfo.

• formLayout: A pointer to the file containing the layout for the form. The

location is specified by means of a URI, pointing to the file.

• TSEMappings: The mapping of TSEs to the visual elements of the form.

This element is populated through the procedure described in section

2.3.2.6 - “Link Establishment Between Form Layout and Form Semantics”.

The element type is TSEToFormElement and may occur multiple times,

one for each mapping.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 143 of 209

• KUMappings: The mapping of KUs to the visual elements of the form. This

element is populated through the procedure described in section 2.3.2.6 -

“Link Establishment Between Form Layout and Form Semantics”. The

element type is KUToHelpItem and may occur multiple times, one for each

mapping.

• statistics: Definition of the statistics to be collected for the specific form.

The element type is formStatistics.

2.8.4 Modelling of Generic TSEs

diagram

children genericTSEId name dataType description maxLength availableMethods validationRule defaultValue

valueList linkedKUNode linkedTaxonomyNode administrativeData

identity

constraints

 Name Refer Selector Field(s)
key genericTSEKey .//genericTSE genericTSEId

keyref genericTSELinkedKUNo

deRef

KUKey .//genericTSE linkedKUNode

keyref genericTSELinkedTaxon

omyNodeRef

taxonomyNodeKey .//genericTSE linkedTaxonomyNode

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 144 of 209

source <xs:element name="genericTSE">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="genericTSEId" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="dataType" type="TSEDataType"/>
 <xs:element name="description" type="multilingualText" maxOccurs="unbounded"/>
 <xs:element name="maxLength" type="xs:positiveInteger"/>
 <xs:element name="availableMethods" type="method" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="validationRule" type="validationMethod" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="defaultValue" type="xs:string"/>
 <xs:element name="valueList" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="linkedKUNode" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="linkedTaxonomyNode" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="workGroup" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:key name="genericTSEKey">
 <xs:selector xpath=".//genericTSE"/>
 <xs:field xpath="genericTSEId"/>
 </xs:key>
 <xs:keyref name="genericTSELinkedKUNodeRef" refer="KUKey">
 <xs:selector xpath=".//genericTSE"/>
 <xs:field xpath="linkedKUNode"/>
 </xs:keyref>
 <xs:keyref name="genericTSELinkedTaxonomyNodeRef" refer="taxonomyNodeKey">
 <xs:selector xpath=".//genericTSE"/>
 <xs:field xpath="linkedTaxonomyNode"/>
 </xs:keyref>
</xs:element>

 This element models the generic TSE object of the SmartGov platform.

The elements of the generic TSE entity are described in the following paragraphs.

• genericTSEId: A string-typed element containing the id of the generic TSE.

• name: The name of the generic TSE. The element type is string.

• dataType: The data type of the generic TSE. The type of the element is

TSEDataType.

• description: The description of the generic TSE. Descriptions in multiple

languages may be accommodated. The element type is multilingualText.

• maxLength: The maximum length of the values that this generic TSE

accepts. The type of the element is positiveInteger.

• availableMethods: Pieces of code that may apply to instances of this TSE

type. They may implement conditional checks, formatting,

transformations, value assignments etc. The type of the element is

method and may occur multiple times.

• validationRule: Conditions that must be fulfilled for the TSE value to be

considered acceptable. A generic TSE may contain any number of

validation rules (one instance of this element for each rule). The type of

the element is validationMethod.

• defaultValue: The default value for instances of this TSE. The type of the

element is string.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 145 of 209

• valueList: The possible values that may be assigned to the generic TSE.

Used only if the values are restricted to a specific set. The type of the

element is string and may occur multiple times, one for each possible

value.

• linkedKUNode: This element provides references to the KU nodes with

which the generic TSE is associated. The type of the element is string and

it may occur multiple times.

• linkedTaxonomyNode: This element provides references to the taxonomy

nodes with which the generic TSE is associated. The type of the element is

string and it may occur multiple times.

• administrativeData: Information useful for administrative purposes for the

form within the SmartGov development platform. The type of the element

is administrativeInfo.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 146 of 209

2.8.5 Modelling of Instantiated TSEs

diagram

children instantiatedTSEId instanceOf name description maxLength validationRule defaultValue valueList
linkedKUNode linkedTaxonomyNode isVisible isReadOnly isMandatory computationRule onValueChange

retrieveMethod storeMethod administrativeData instantiatedTSEStatistics

identity

constraints

 Name Refer Selector Field(s)

key instantiatedTSEKey .//instantiatedTSE instantiatedTSEId

keyref instantiatedTSEKeyRefIn

stanceOf

genericTSEKey .//instantiatedTSE instanceOf

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 147 of 209

keyref instantiatedTSELinkedK

UNodeRef

KUKey .//instantiatedTSE linkedKUNode

keyref instantiatedTSELinkedTa

xonomyNodeRef

taxonomyNode

Key

.//instantiatedTSE linkedTaxonomyNo

de
source <xs:element name="instantiatedTSE">

 <xs:complexType>
 <xs:sequence>
 <xs:element name="instantiatedTSEId" type="xs:string"/>
 <xs:element name="instanceOf" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="description" type="multilingualText" maxOccurs="unbounded"/>
 <xs:element name="maxLength" type="xs:positiveInteger"/>
 <xs:element name="validationRule" type="validationMethod" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="defaultValue" type="xs:string"/>
 <xs:element name="valueList" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="linkedKUNode" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="linkedTaxonomyNode" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="isVisible" type="xs:boolean"/>
 <xs:element name="isReadOnly" type="xs:boolean"/>
 <xs:element name="isMandatory" type="xs:boolean"/>
 <xs:element name="computationRule" type="method" minOccurs="0"/>
 <xs:element name="onValueChange" type="method" minOccurs="0"/>
 <xs:element name="retrieveMethod" type="method" minOccurs="0"/>
 <xs:element name="storeMethod" type="method" minOccurs="0"/>
 <xs:element name="administrativeData" type="administrativeInfo"/>
 <xs:element name="instantiatedTSEStatistics" type="TSEStatistics" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:key name="instantiatedTSEKey">
 <xs:selector xpath=".//instantiatedTSE"/>
 <xs:field xpath="instantiatedTSEId"/>
 </xs:key>
 <xs:keyref name="instantiatedTSEKeyRefInstanceOf" refer="genericTSEKey">
 <xs:selector xpath=".//instantiatedTSE"/>
 <xs:field xpath="instanceOf"/>
 </xs:keyref>
 <xs:keyref name="instantiatedTSELinkedKUNodeRef" refer="KUKey">
 <xs:selector xpath=".//instantiatedTSE"/>
 <xs:field xpath="linkedKUNode"/>
 </xs:keyref>
 <xs:keyref name="instantiatedTSELinkedTaxonomyNodeRef" refer="taxonomyNodeKey">
 <xs:selector xpath=".//instantiatedTSE"/>
 <xs:field xpath="linkedTaxonomyNode"/>
 </xs:keyref>
</xs:element>

 This element represents the instantiated TSE, i.e. the TSE defined within the context of a specific service.

The elements of the instantiated TSE entity are described in the following

paragraphs.

• instantiatedTSEId: A string-typed element containing the id of the

instantiated TSE.

• instanceOf: A reference to the id of the generic TSE that the instantiated

TSE is modeled after. The element type is string.

• name: The name of the instantiated TSE. The element type is string.

• description: The description of the instantiated TSE. Descriptions in

multiple languages may be accommodated. The element type is

multilingualText.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 148 of 209

• maxLength: The maximum length of the values that this instantiated TSE

accepts. The type of the element is positiveInteger. If specified, it

overrides the value inherited from the generic TSE.

• validationRule: Conditions that must be fulfilled for the TSE value to be

considered acceptable. An instantiated TSE may contain any number of

validation rules (one instance of this element for each rule), which

complement the ones inherited from the generic TSE. The type of the

element is validationMethod.

• defaultValue: The default value for this TSE. The type of the element is

string. If specified, it overrides the value inherited from the generic TSE.

• valueList: The possible values that may be assigned to this TSE. Used only

if the values are restricted to a specific set. The type of the element is

string and may occur multiple times, one for each possible value. If

specified, it overrides the value inherited from the generic TSE.

• linkedKUNode: This element provides references to the KU nodes with

which the instantiated TSE is associated. The type of the element is string

and it may occur multiple times. These references, if specified, supplement

the ones inherited from the generic TSE.

• linkedTaxonomyNode: This element provides references to the taxonomy

nodes with which the instantiated TSE is associated. The type of the

element is string and it may occur multiple times. These references, if

specified, supplement the ones inherited from the generic TSE.

• isVisible: Indicates whether the occurrences of the instantiated TSE should

be visible or not. The element type is boolean.

• isReadOnly: Indicates whether the users may change the values of

occurrences of thus instantiated TSE or not. The element type is boolean.

• isMandatory: Indicates whether the instantiated TSE is mandatory to be

completed or not. The element type is boolean.

• computationRule: Code that computes the value of the instantiated TSE,

when its value depends on the values of other TSEs. TSEs with

computation rules are considered as read-only. The type of this element is

method.

• onValueChange: Code that is executed when the value of the instantiated

TSE changes. The type of this element is method.

• retrieveMethod: Code that is executed in order to retrieve the value of the

instantiated TSE. This code fragment is executed once, when the user

enters the transaction service. The type of this element is method.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 149 of 209

• storeMethod: Code that is executed in order to store the value of the

instantiated TSE. This code fragment is executed once, when the user

submits the document modeled by the transaction service. The type of this

element is method.

• administrativeData: Information useful for administrative purposes for the

instantiatedTSE. This information is used within the SmartGov platform

development environment. The type of this element is administrativeInfo.

• instantiatedTSEStatistics. Definition of statistics that should be collected

for the specific instantiated TSE. The type of this element is TSEStatistics.

2.8.5.1 Inheritance rules for TSE instantiation

The SmartGov platform allows for the definition of two types of TSEs, namely

generic and instantiated ones. Generic TSEs allow for grouping of desired element

properties into a single entity, while instantiated TSEs are concrete occurrences of

such elements within transaction services. An instantiated TSE contains a

reference to the generic TSE it is modeled after, and this reference implies that

the instantiated TSE inherits the properties defined in the generic TSE. The

instantiated TSE, however, is by nature more specific than its generic

counterpart, so the SmartGov platform should provide the capability to redefine

or supplement various aspects of the inherited properties. To this end, the

instantiated TSE contains information slots, which may be filled with values that

either override or complement the information inherited from the homonymous

data slots of its template. The rules for determining whether the instantiated TSE

information slots override or supplement the inherited values have been listed in

the element descriptions above and are summarised in the following table:

Information slot Override or supplement

Default value Override

Validation rules Supplement

References to knowledge base Supplement

Maximum Length Override

Value List Override

References to taxonomy Supplement

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 150 of 209

2.8.6 Modelling of Generic TSE Groups

diagram

children genericTSEGroupId name description includedTSE linkedKUNode linkedTaxonomyNode validationRule

repeats administrativeData

identity

constraints

 Name Refer Selector Field(s)

key genericTSEGroupKey .//genericTSEGr

oup

genericTSEGroupId

keyref includedGenericTSEKe

yRef

genericTSEKey .//genericTSEGr

oup/includedTSE

genericTSEId

keyref repeatsGenericTSEKey

Ref

genericTSEKey .//genericTSEGr

oup/repeats

uniqueColumn

keyref genericTSEGroupLinke

dKUNodeRef

KUKey .//genericTSEGr

oup

linkedKUNode

keyref genericTSEGroupLinke

dTaxonomyNodeRef

taxonomyNodeKey .//genericTSEGr

oup

linkedTaxonomyNode

source <xs:element name="genericTSEGroup">

 <xs:complexType>
 <xs:sequence>
 <xs:element name="genericTSEGroupId" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="description" type="multilingualText" maxOccurs="unbounded"/>
 <xs:element name="includedTSE" type="containedTSE" maxOccurs="unbounded"/>
 <xs:element name="linkedKUNode" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="linkedTaxonomyNode" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="validationRule" type="validationMethod" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="repeats" type="repetitionInformation" minOccurs="0"/>
 <xs:element name="administrativeData" type="administrativeInfo"/>
 </xs:sequence>
 </xs:complexType>
 <xs:key name="genericTSEGroupKey">
 <xs:selector xpath=".//genericTSEGroup"/>
 <xs:field xpath="genericTSEGroupId"/>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 151 of 209

 </xs:key>
 <xs:keyref name="includedGenericTSEKeyRef" refer="genericTSEKey">
 <xs:selector xpath=".//genericTSEGroup/includedTSE"/>
 <xs:field xpath="genericTSEId"/>
 </xs:keyref>
 <xs:keyref name="repeatsGenericTSEKeyRef" refer="genericTSEKey">
 <xs:selector xpath=".//genericTSEGroup/repeats"/>
 <xs:field xpath="uniqueColumn"/>
 </xs:keyref>
 <xs:keyref name="genericTSEGroupLinkedKUNodeRef" refer="KUKey">
 <xs:selector xpath=".//genericTSEGroup"/>
 <xs:field xpath="linkedKUNode"/>
 </xs:keyref>
 <xs:keyref name="genericTSEGroupLinkedTaxonomyNodeRef" refer="taxonomyNodeKey">
 <xs:selector xpath=".//genericTSEGroup"/>
 <xs:field xpath="linkedTaxonomyNode"/>
 </xs:keyref>
</xs:element>

 This element represents the generic TSE Group object of the SmartGov platform.

The elements of the generic TSE group entity are described in the following

paragraphs.

• genericTSEGroupId: A string-typed element containing the id of the

generic TSE group.

• name: The name of the generic TSE group. The element type is string.

• description: The description of the generic TSE group. Descriptions in

multiple languages may be accommodated. The element type is

multilingualText.

• includedTSE: References to the generic TSEs that participate in the TSE

group. The element may occur multiple times, one for each generic TSE

that is included in the TSE group. The type of the element is

containedTSE.

• linkedKUNode: This element provides references to the KU nodes with

which the generic TSE group is associated. The type of the element is

string and it may occur multiple times.

• linkedTaxonomyNode: This element provides references to the taxonomy

nodes with which the generic TSE group is associated. The type of the

element is string and it may occur multiple times.

• validationRule: Conditions that must be fulfilled for the values of the TSEs

participating in the TSE group. A generic TSE group may contain any

number of validation rules (one instance of this element for each rule).

The type of the element is validationMethod.

• repeats: This element indicates whether a unique occurrence of the TSEs

included in the group is required or whether multiple occurrences should

be used (as the rows of a table for example). The type of the element is

repetitionInformation and should not be present, if no repetition is desired.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 152 of 209

• administrativeData: Information useful for administrative purposes for the

generic TSE group. This information is used within the SmartGov platform

development environment. The type of this element is administrativeInfo.

2.8.6.1 Repetition information for groups

In many administrative forms there is a need to provide tabular areas, in which

citizens will fill in rows of data, one row for each pertinent entity. Examples of

such tabular areas are:

1. Declaration of family members. For each family member the name, surname

and date of birth is declared. This tabular area may have the following form:

Surname Name Date of birth

1.

2.

3.

4.

 5.

2. Recapitulative Statement of intra-Community Supplies. For each buyer with

whom intra-community sales have taken place for the respective period, one

row is filled in this document, stating the country and the VAT number of the

buyer, along with the taxable amount(s) for intra-community goods supplies

and triangular intra-community supplies. (For more details see D41.) This

tabular area has the following form:

In the SmartGov platform the designer models such tabular areas by defining the

fields appearing in each row and specifying suitable repetition information, rather

than defining separate TSEs, for each cell of the tabular area. The repetition

information associated with such constructs is represented by the following items:

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 153 of 209

• minOccurrences: The minimum number of rows that may appear on the

form

• maxOccurences: The maximum number of rows that can be placed on a

form

• initialRows: the number of rows initially displayed

• uniqueColumn: one or more columns whose values must be unique within

the tabular area. If multiple columns are present, the value combination of

these columns should be unique. For instance in the recapitulative

statement of intra-community supplies form, the combination of the

country prefix and VAT number field should be unique.

• groupControls: Each such tabular area may need to have controls that

enable the user to add rows (if more than the currently displayed are

needed) or delete rows (if a large number of empty rows is considered

impractical).

• rowStep: The number of rows that will be added/deleted in such a case.

2.8.7 Modelling of Instantiated TSE Groups

diagram

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 154 of 209

children instantiatedTSEGroupId name instanceOf description linkedKUNode linkedTaxonomyNode validationRule

instantiatedTSEIds retrieveMethod storeMethod administrativeData instantiatedTSEGroupStatistics

identity

constraints

 Name Refer Selector Field(s)

key instantiatedTSEG

roupKey

 .//instantiatedTSEGroup instantiatedTSEGroupId

keyref instantiatedTSEK

eyRefId

instantiatedTSE

Key

.//instantiatedTSEGroup/

instantiatedTSEIds

instantiatedTSEId

keyref instantiatedTSEG

roupKeyRefInsta

nceOf

genericTSEGro

upKey

.//instantiatedTSEGroup instanceOf

keyref instantiatedTSEG

roupLinkedKUNo

deRef

KUKey .//instantiatedTSEGroup linkedKUNode

keyref instantiatedTSEG

roupLinkedTaxon

omyNodeRef

taxonomyNode

Key

.//instantiatedTSEGroup linkedTaxonomyNode

source <xs:element name="instantiatedTSEGroup">

 <xs:complexType>
 <xs:sequence>
 <xs:element name="instantiatedTSEGroupId" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="instanceOf" type="xs:string"/>
 <xs:element name="description" type="multilingualText" maxOccurs="unbounded"/>
 <xs:element name="linkedKUNode" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="linkedTaxonomyNode" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="validationRule" type="validationMethod" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="instantiatedTSEIds" type="xs:string" maxOccurs="unbounded"/>
 <xs:element name="retrieveMethod" type="method"/>
 <xs:element name="storeMethod" type="method"/>
 <xs:element name="administrativeData" type="administrativeInfo"/>
 <xs:element name="instantiatedTSEGroupStatistics" type="TSEGroupStatistics" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:key name="instantiatedTSEGroupKey">
 <xs:selector xpath=".//instantiatedTSEGroup"/>
 <xs:field xpath="instantiatedTSEGroupId"/>
 </xs:key>
 <xs:keyref name="instantiatedTSEKeyRefId" refer="instantiatedTSEKey">
 <xs:selector xpath=".//instantiatedTSEGroup/instantiatedTSEIds"/>
 <xs:field xpath="instantiatedTSEId"/>
 </xs:keyref>
 <xs:keyref name="instantiatedTSEGroupKeyRefInstanceOf" refer="genericTSEGroupKey">
 <xs:selector xpath=".//instantiatedTSEGroup"/>
 <xs:field xpath="instanceOf"/>
 </xs:keyref>
 <xs:keyref name="instantiatedTSEGroupLinkedKUNodeRef" refer="KUKey">
 <xs:selector xpath=".//instantiatedTSEGroup"/>
 <xs:field xpath="linkedKUNode"/>
 </xs:keyref>
 <xs:keyref name="instantiatedTSEGroupLinkedTaxonomyNodeRef" refer="taxonomyNodeKey">
 <xs:selector xpath=".//instantiatedTSEGroup"/>
 <xs:field xpath="linkedTaxonomyNode"/>
 </xs:keyref>
</xs:element>

 This element represents the instantiated TSE Group, i.e. the TSE Group defined within the context of a
specific service.

The elements of the instantiated TSE group entity are described in the following

paragraphs.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 155 of 209

• instantiatedTSEGroupId: A string-typed element containing the id of the

instantiated TSE group.

• name: The name of the instantiated TSE group. The element type is

string.

• instanceOf: A reference to the generic TSE group that the specific

instantiated TSE group is modelled after (actually, the id of the generic

TSE group). The type of this element is string.

• description: The description of the instantiated TSE group. Descriptions in

multiple languages may be accommodated. The element type is

multilingualText.

• linkedKUNode: This element provides references to the KU nodes with

which the instantiated TSE group is associated. The type of the element is

string and it may occur multiple times. These elements, if specified,

supplement the ones inherited from the generic TSE.

• linkedTaxonomyNode: This element provides references to the taxonomy

nodes with which the instantiated TSE group is associated. The type of the

element is string and it may occur multiple times. These elements, if

specified, supplement the ones inherited from the generic TSE.

• validationRule: Conditions that must be fulfilled for the values of the TSEs

participating in the TSE group. An instantiaed TSE group may contain any

number of validation rules (one instance of this element for each rule).

The type of the element is validationMethod. These elements, if specified,

supplement the ones inherited from the generic TSE.

• instantiatedTSEIds: A list of references to the instantiated TSE ids

participating in the instantiated TSE group. Upon the instantiation of a

generic TSE group (i.e. the placement on a form of the generic TSE

group), an instance is created for each of the generic TSEs referenced by

the generic TSE group, and this list is populated with the identities of the

newly created instantiated TSEs. This list is not editable by the user, i.e.

the user may not add or delete individual TSEs from this list. Individual

properties, however, of the instantiated TSEs may be set through the

pertinent instantiated TSE slots. If the instantiated TSE group is deleted,

all referenced instantiated TSEs should be removed from the SmartGov

platform. The type of this element is string and may occur multiple times.

• retrieveMethod: Code that is executed in order to retrieve the values of

the instantiated TSEs contained within the group. This code fragment is

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 156 of 209

executed once, when the user enters the transaction service. The type of

this element is method.

• storeMethod: Code that is executed in order to store the values of the

instantiated TSEs contained within the group. This code fragment is

executed once, when the user submits the document modeled by the

transaction service. The type of this element is method.

• administrativeData: Information useful for administrative purposes for the

instantiatedTSE. This information is used within the SmartGov platform

development environment. The type of this element is administrativeInfo.

• instantiatedTSEGroupStatistics. Definition of statistics that should be

collected for the specific instantiated TSE group. The type of this element

is TSEGroupStatistics.

2.8.7.1 Inheritance Rules for TSE Groups

The SmartGov platform allows for the definition of two types of TSE groups,

namely generic and instantiated ones. Generic TSE groups allow for grouping of

basic elements (TSEs) into a single entity, while instantiated TSE groups are

concrete occurrences of such element groups within transaction services. An

instantiated TSE group contains a reference to the generic TSE groups it is

modeled after, and this reference implies that the instantiated TSE group inherits

the elements and element properties defined in the generic TSE group. The

instantiated TSE group, however, is more specific than its generic counterpart, so

the SmartGov platform should provide the capability to redefine or supplement

various aspects of the inherited element properties and group properties. To this

end, the instantiated TSE group contains information slots, which may be filled

with values that either override or complement the information inherited from the

homonymous data slots of its template. The rules for determining whether the

instantiated TSE group information slots override or supplement the inherited

values have been defined in the descriptions of the pertinent slots and are

summarized in the following table:

Information slot Override or supplement

Validation rules Supplement

References to knowledge base Supplement

References to taxonomy Supplement

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 157 of 209

2.8.8 Utility types

This section documents the utility types that are used for modelling the key

SmartGov entities described in the previous sections.

2.8.8.1 Complex Type administrativeInfo

The administrativeInfo type is used to store the last modification date and the

workgroup pertaining to the containing entity. This information is used within the

SmartGov platform development environment. The XML source for this type is

illustrated in the following listing.

Source <xs:complexType name="administrativeInfo">
 <xs:sequence>
 <xs:element name="lastModificationDate" type="xs:date"/>
 <xs:element name="workgroup" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

2.8.8.2 Complex Type containedTSE

The containedTSE type is used for specifying the generic TSEs contained in a

generic TSE group and the respective default values, which may be different than

the default values specified for the generic TSEs. The XML source for this type is

illustrated in the following listing.

source <xs:complexType name="containedTSE">
 <xs:sequence>

 <xs:element name="defaultValue" type="xs:string" minOccurs="0"/>

 <xs:element name="genericTSEId" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

2.8.8.3 Complex Type formSet

The formSet type is used to store the sets of forms used for each platform a

transaction service is disseminated from within. Each form set contains an

identification of the target platform and a list of references to the forms. If a

service is disseminated through multiple platforms, a different set of forms for

each platform will be required. The XML source for this type is illustrated in the

following listing.

source <xs:complexType name="formSet">
 <xs:sequence>
 <xs:element name="formId" type="xs:string" maxOccurs="unbounded"/>
 <xs:element name="targetPlatform" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 158 of 209

2.8.8.4 Complex Type formStatistics

The formStatistics type is used for defining the statistics that should be collected

for a specific form, when the service is deployed. The statistics supported directly

by the SmartGov platform are the following:

• Number of non-empty forms (i.e. forms with at least one field filed-in)

• Number of form invocations (how many times a form was requested)

• Minimum number of non-empty fields

• Maximum number of non-empty fields

• Mean number of non-empty fields

• User time in form (the time users spent within the specific form)

In order to collect a specific statistic, the corresponding element of the XML

document should be set to true. The XML source for this type is illustrated in the

following listing.

source <xs:complexType name="formStatistics">
 <xs:sequence>
 <xs:element name="numberOfNonEmptyForms" type="xs:boolean" minOccurs="0"/>
 <xs:element name="numberOfFormInvocations" type="xs:boolean" minOccurs="0"/>
 <xs:element name="minimumNumberOfNonEmptyFields" type="xs:boolean" minOccurs="0"/>
 <xs:element name="maximumNumberOfNonEmptyFields" type="xs:boolean" minOccurs="0"/>
 <xs:element name="meanNumberOfNonEmptyFields" type="xs:boolean" minOccurs="0"/>
 <xs:element name="userTimeInForm" type="xs:boolean" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

2.8.8.5 Complex Type KUToHelpItem

The KUToHelpItem type is used in form schema and describes the mapping of

KUs to the elements of the form. Each occurrence of this element maps a KU id to

the id of a visual element of the form. The XML source for this type is illustrated

in the following listing.

source <xs:complexType name="KUToHelpItem">
 <xs:sequence>
 <xs:element name="KUId" type="xs:string"/>
 <xs:element name="helpItemName" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

2.8.8.6 Complex Type lifeCycleType

The LifeCycleType type is used for storing information pertaining to the life cycle

of the containing entity. It covers both the dynamic and the static facets of an

object’s lifecycle; the static facet models the workgroup, author, creation date,

expiration date and service expiration of the object, whereas the dynamic facet

models the current state, the last modification date and the id of the user that

modified the object. The XML source for this type is illustrated in the following

listing.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 159 of 209

source <xs:complexType name="lifeCycleType">
 <xs:sequence>

 <xs:element name="dynamic">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="state" type="xs:string"/>

 <xs:element name="performer" type="xs:string" minOccurs="0"/>

 <xs:element name="lastModificationDate" type="xs:date"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="static">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="workGroup" type="xs:string"/>

 <xs:element name="author" type="xs:string"/>

 <xs:element name="creationDate" type="xs:date"/>

 <xs:element name="expirationDate" type="xs:date" minOccurs="0"/>

 <xs:element name="serviceExpiration" type="xs:boolean" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

2.8.8.7 Complex Type method

The method type is used to model actions associated with TSEs and TSE groups.

A method has an associated description and may be defined in either of the

following two ways:

• Using SmartGovLang, a high-level description language defined within

SmartGov and useful for defining simple rules. The exact syntax of the

language will be determined within the implementation phase. This

language may easily be mapped to platform-specific languages (such as

Java, PHP, ColdFusion, Javascript). This mapping will be performed at

service instantiation phase.

• Using a programming language code (java, javascript, php, etc). These

rules may only be executed at platforms that support the specific

language; for instance, rules coded in Javascript may only be executed

within Web browsers. The code for such a method may either be typed-in

directly or by providing a reference to the file containing it.

The XML source for this type, along with the source for the types referenced by it,

is illustrated in the following listing.

source <xs:complexType name="method">

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 160 of 209

 <xs:sequence>
 <xs:element name="description" type="multilingualText"/>
 <xs:choice>
 <xs:element name="smartgovLangCheck" type="xs:string"/>
 <xs:element name="nativeLangCheck" type="nativeCodeFragment"/>
 </xs:choice>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="nativeCodeFragment">
 <xs:sequence>
 <xs:element name="langId" type="xs:string"/>
 <xs:element name="usefulFor">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="front end"/>
 <xs:enumeration value="back end"/>
 <xs:enumeration value="front end and back end"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:choice>
 <xs:element name="codeText" type="xs:string"/>
 <xs:element name="fileSpec" type="xs:anyURI"/>
 </xs:choice>
 </xs:sequence>
</xs:complexType>

2.8.8.8 Complex Type multilingualText

The multilingualText type is used to model textual information that may need to

be stored in multiple languages. Each occurrence of a multilingualText describes

some textual information in a specific language. The XML source for this type is

illustrated in the following listing.

source <xs:complexType name="multilingualText">
 <xs:sequence>
 <xs:element name="localeId" type="xs:string"/>
 <xs:element name="content" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

2.8.8.9 Complex Type repetitionInformation

The repetitionInformation is used for specifying properties for tabular areas of

administrative forms. The repetition information associated with such constructs

is represented by the following items:

• minOccurrences: The minimum number of rows that may appear on the

form

• maxOccurences: The maximum number of rows that can be placed on a

form

• initialRows: the number of rows initially displayed

• uniqueColumn: one or more columns whose values must be unique within

the tabular area. If multiple columns are present, the value combination of

these columns should be unique. For instance in the recapitulative

statement of intra-community supplies form, the combination of the

country prefix and VAT number field should be unique.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 161 of 209

• groupControls: Each such tabular area may need to have controls that

enable the user to add rows (if more than the currently displayed are

needed) or delete rows (if a large number of empty rows is considered

impractical).

• rowStep: The number of rows that will be added/deleted in such a case.

The XML source for this type is illustrated in the following listing.

source <xs:complexType name="repetitionInformation">
 <xs:sequence>
 <xs:element name="minOccurences" type="xs:positiveInteger"/>
 <xs:element name="maxOccurences" type="xs:positiveInteger"/>
 <xs:element name="initialRows" type="xs:positiveInteger"/>
 <xs:element name="uniqueColumn" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="groupControls">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="none"/>
 <xs:enumeration value="add rows"/>
 <xs:enumeration value="delete rows"/>
 <xs:enumeration value="add and delete rows"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="rowStep" type="xs:positiveInteger"/>
 </xs:sequence>
</xs:complexType>

2.8.8.10 Complex Type TSEDataType

The TSEDataType type is used for specifying types for generic TSEs. A TSE data

type may be a built-in data type or a user-defined data type. Regarding built-in

data types, integer numbers, real numbers, text, dates and currency are

supported, whereas a user-defined data type may be built on top of these data

types, by adding descriptions, restrictions and knowledge.

The XML source for this type, along with the source for the types referenced by it,

is illustrated in the following listing.

source <xs:complexType name="TSEDataType">
 <xs:sequence>
 <xs:choice>
 <xs:element name="TSEBuiltInDataType" type="builtInDataType"/>
 <xs:element name="TSEUserDefinedDataType" type="userDefinedDataType"/>
 </xs:choice>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="userDefinedDataType">
 <xs:sequence>
 <xs:element name="dataTypeId" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="baseDataType" type="TSEDataType"/>
 <xs:element name="description" type="multilingualText" maxOccurs="unbounded"/>
 <xs:element name="maxLength" type="xs:positiveInteger"/>
 <xs:element name="availableMethods" type="method" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="validationRule" type="validationMethod" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="defaultValue" type="xs:string"/>
 <xs:element name="valueList" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="linkedKUNode" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="linkedTaxonomyNode" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="lifeCycle" type="lifeCycleType"/>
 </xs:sequence>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 162 of 209

</xs:complexType>
<xs:simpleType name="builtInDataType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="integer"/>
 <xs:enumeration value="real"/>
 <xs:enumeration value="text"/>
 <xs:enumeration value="date"/>
 <xs:enumeration value="currency"/>
 </xs:restriction>
</xs:simpleType>

2.8.8.11 Complex Type TSEGroupStatistics

The type TSEGroupStatistics is used for defining the statistics to be collected for a

TSE group. For any group, statistics on the number of non-empty values may be

collected, whereas for repeating groups the following statistics may be

additionally collected:

• Minimum, maximum and avegare number of rows

• Minimum, maximum and avegare value of a column

• Number of non-empty values in a column

• Number of distinct values for a column group

• Number of distinct values for a column

The XML source for this type, along with the source for the types referenced by it,

is illustrated in the following listing.

Source <xs:complexType name="TSEGroupStatistics">
 <xs:sequence>
 <xs:element name="numberOfNonEmptyValues" type="xs:boolean" minOccurs="0"/>
 <xs:element name="repetitionStatistics" type="TSEGroupRepeatingStatistics" minOccurs="0"/>
 </xs:sequence>
</xs:complexType><xs:complexType name="TSEGroupRepeatingStatistics">
 <xs:sequence>
 <xs:element name="minimumNumberOfRows" type="xs:boolean" minOccurs="0"/>
 <xs:element name="maximumNumberOfRows" type="xs:boolean" minOccurs="0"/>
 <xs:element name="meanNumberOfRows" type="xs:boolean" minOccurs="0"/>
 <xs:element name="minimumValueOfAColumn" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="maximumValueOfAColumn" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="meanValueOfAColumn" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="numberOfNonEmptyValuesOfAColumn" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="numberOfDistinctValuesOfAColumnGroup" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="numberOfDistinctValuesOfAColumn" type="xs:string"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

2.8.8.12 Complex Type TSEStatistics

The TSEStatistics type is used for specifying statistics to be collected for a specific

TSE. The following statistics may be collected:

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 163 of 209

• Number of non-empty values

• Number of distinct values

• The sum of all values (for numeric fields only)

• The minimum value entered

• The maximum value entered

• The average of the entered values (for numeric fields only)

Finally, a histogram may be specified by designating the limits of the areas on the

X-axis. The XML source for this type is illustrated in the following listing.

source <xs:complexType name="TSEStatistics">
 <xs:sequence>
 <xs:element name="numberOfNonEmptyValues" type="xs:boolean" minOccurs="0"/>
 <xs:element name="numberOfDistinctValues" type="xs:boolean" minOccurs="0"/>
 <xs:element name="sumOfAllValues" type="xs:boolean" minOccurs="0"/>
 <xs:element name="minimumValue" type="xs:boolean" minOccurs="0"/>
 <xs:element name="maximumValue" type="xs:boolean" minOccurs="0"/>
 <xs:element name="meanValue" type="xs:boolean" minOccurs="0"/>
 <xs:element name="histogramLimits" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

2.8.8.13 Complex Type TSEToFormElement

This complex type is used in the form schema and describes the mapping of the

form elements to the corresponding TSEs. The XML source for this type is

illustrated in the following listing.

Source <xs:complexType name="TSEToFormElement">
 <xs:sequence>
 <xs:element name="instantiatedTSEId" type="xs:string"/>
 <xs:element name="formElementName" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

2.8.8.14 Complex Type TSStatistics

The TSStatistics type is used for specifying statistics to be collected for a specific

TS. The following statistics may be collected:

• Number of submissions. This may be broken down on daily, weekly,

monthly or yearly basis; the total number of submissions may be also

requested.

• Number of saved documents that were not finally submitted.

• Number of submissions with warnings. This may be broken down on daily,

weekly, monthly or yearly basis; the total number of submissions with

warnings may be also requested.

• Number of submissions rejected due to failures in validation checks. This

may be broken down on daily, weekly, monthly or yearly basis; the total

number of rejected submissions may be also requested.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 164 of 209

• Number of sessions during which previously saved documents were edited.

This may be broken down on daily, weekly, monthly or yearly basis; the

total number of editing sessions may be also requested.

• Number of deletions of previously saved documents. This may be broken

down on daily, weekly, monthly or yearly basis; the total number of

deletions may be also requested.

• The time needed to fill in and submit the forms of the TS (from the instant

that the user starts a TS to the moment of the final document

submission).

• The time within the error-correction phase, i.e. the time between the first

erroneous submission and the final correct submission.

• System time to handle a submission request.

The XML source for this type is illustrated in the following listing.

source <xs:complexType name="TSStatistics">
 <xs:sequence>
 <xs:element name="numberOfSubmissions" type="statisticsPeriod" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="numberOfSavedNonSubmittedSessions" type="xs:boolean" minOccurs="0"/>
 <xs:element name="numberOfRejectedSubmissions" type="statisticsPeriod" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="numberOfSubmissionsWithWarnings" type="statisticsPeriod" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="numberOfEdits" type="statisticsPeriod" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="numberOfDeletions" type="statisticsPeriod" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="fullSubmissionTime" type="xs:boolean" minOccurs="0"/>
 <xs:element name="errorCorrectionTime" type="xs:boolean" minOccurs="0"/>
 <xs:element name="handleSubmissionTime" type="xs:boolean" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>
<xs:simpleType name="statisticsPeriod">
 <xs:restriction base="xs:string">
 <xs:enumeration value="day"/>
 <xs:enumeration value="week"/>
 <xs:enumeration value="month"/>
 <xs:enumeration value="year"/>
 <xs:enumeration value="total"/>
 </xs:restriction>
</xs:simpleType>

2.8.8.15 Complex Type validationMethod

This complex type is used to describe the validation method, the rule used to

verify the validity of a combination of data. The code that implements the

validation check may be provided either in SmartGovLang or using some native

language and should return the boolean true for success or false for failure. If the

check is implemented in some native language, it is useful only for the platforms

that support the specific language. The specification designates the error

message that should be displayed to the user in the case the validation check

fails, whether the check should be performed only at the back-end or in the front-

end as well, and the severity of check failures. A severity level of “error” indicates

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 165 of 209

that the failing document may not be submitted, whereas a severity level of

“warning” indicates that the user should be alerted but not precluded from

submitting the document.

The XML source for this type is illustrated in the following listing.

source <xs:complexType name="validationMethod">
 <xs:sequence>
 <xs:element name="ruleId" type="xs:string"/>
 <xs:element name="code" type="method"/>
 <xs:element name="validationMessage" type="multilingualText" maxOccurs="unbounded"/>
 <xs:element name="validateAt">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="front end"/>
 <xs:enumeration value="back end"/>
 <xs:enumeration value="front end and back end"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="severity">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="warning"/>
 <xs:enumeration value="error"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="statistics" type="validationMethodStatistics" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

2.8.8.16 Complex Type validationMethodStatistics

This type is used for specifying the statistics that should be collected for a

method. The overall number of failures for the validation check and the system

time spent for the execution of the code may be collected.

The XML source for this type is illustrated in the following listing.

Source <xs:complexType name="validationMethodStatistics">
 <xs:sequence>
 <xs:element name="numberOfFailures" type="xs:boolean" minOccurs="0"/>
 <xs:element name="executionTime" type="xs:boolean" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

2.8.9 Modeling of Knowledge Units

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 166 of 209

element KU

diagram

children KUId header lifeCycle linkedKU sections linkedTaxonomyNode statistics

identity

constraints

 Name Refer Selector Field(s)

key KUKey .//KU KUId

annotation documentation Knowledge Unit

source <xs:element name="KU">

 <xs:annotation>

 <xs:documentation>Knowledge Unit</xs:documentation>
 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="KUId" type="xs:string"/>

 <xs:element name="header">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="langDescription" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="localeId" type="xs:string"/>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="abstract" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="type">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Best Practice"/>

 <xs:enumeration value="Example"/>

 <xs:enumeration value="Help"/>

 <xs:enumeration value="Just-in-time Training"/>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 167 of 209

 <xs:enumeration value="Lessons Learned"/>

 <xs:enumeration value="Storytelling"/>

 <xs:enumeration value="Troubleshooting"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="lifeCycle" type="lifeCycleType"/>

 <xs:element name="linkedKU" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="sections" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="addressedTo">

 <xs:complexType>

 <xs:sequence>

 <xs:choice>

 <xs:element name="allRoles" type="xs:boolean" default="true"/>

 <xs:element name="role" type="xs:string" maxOccurs="unbounded"/>

 </xs:choice>

 <xs:element name="comments" type="xs:string" minOccurs="0">

 <xs:annotation>

 <xs:documentation>To allow special circumstances to be documented</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="langDescription" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="localeId" type="xs:string"/>

 <xs:element name="title" type="xs:string"/>

 <xs:element name="content" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="link" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="multilingualText" maxOccurs="unbounded"/>

 <xs:element name="url" maxOccurs="unbounded">
 <xs:annotation>

 <xs:documentation>The name of the Link could be in several languages, but the url leads to one or more

links depending on whether there are available versions with the same content in one or more languages.

</xs:documentation>

 </xs:annotation>

 <xs:complexType>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 168 of 209

 <xs:sequence>

 <xs:element name="localeId" type="xs:string"/>

 <xs:element name="urlAddress" type="xs:anyURI"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="linkedTaxonomyNode" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="statistics">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="workflow">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="taskLog" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="performer" type="xs:string"/>

 <xs:element name="date" type="xs:dateTime"/>

 <xs:element name="newState" type="xs:string"/>

 <xs:element name="comments" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="metrics">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="complexity" type="levelType"/>

 <xs:element name="relevance" type="levelType"/>

 <xs:element name="richness" type="levelType"/>

 <xs:element name="grade">

 <xs:annotation>

 <xs:documentation>Type of Knowledge. Core: Basic. Advance: new and tested ideas. Innovative: new

ideas (not tested yet)</xs:documentation>

 </xs:annotation>
 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Innovative"/>

 <xs:enumeration value="Advance"/>

 <xs:enumeration value="Core"/>

 </xs:restriction>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 169 of 209

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="deliveryEnvironmentStatistics">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="lastAccess" type="xs:boolean"/>

 <xs:element name="numberOfInvocations" type="xs:boolean"/>

 <xs:element name="allowEndUserComments" type="xs:boolean"/>

 <xs:element name="allowEndUserRating" type="xs:boolean"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:key name="KUKey">

 <xs:selector xpath=".//KU"/>

 <xs:field xpath="KUId"/>

 </xs:key>

</xs:element>

 This element represents a Knowledge Unit object of the SmartGov platform.

element KU/KUId

diagram

type xs:string

source <xs:element name="KUId" type="xs:string"/>

 The id of the KU.

element KU/header

diagram

children langDescription type

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 170 of 209

source <xs:element name="header">
 <xs:complexType>

 <xs:sequence>

 <xs:element name="langDescription" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="localeId" type="xs:string"/>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="abstract" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="type">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Best Practice"/>

 <xs:enumeration value="Example"/>

 <xs:enumeration value="Help"/>

 <xs:enumeration value="Just-in-time Training"/>

 <xs:enumeration value="Lessons Learned"/>

 <xs:enumeration value="Storytelling"/>

 <xs:enumeration value="Troubleshooting"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 The header contains the name, and the type of the KU.

element KU/header/langDescription

diagram

children localeId name abstract

source <xs:element name="langDescription" maxOccurs="unbounded">
 <xs:complexType>

 <xs:sequence>

 <xs:element name="localeId" type="xs:string"/>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="abstract" type="xs:string"/>

 </xs:sequence>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 171 of 209

 </xs:complexType>

</xs:element>

 The name and abstract of the KU that specifies what the KU represents.

element KU/header/langDescription/localeId

diagram

type xs:string

source <xs:element name="localeId" type="xs:string"/>

 The id of the language the content (text) is written in

element KU/header/langDescription/name

diagram

type xs:string

source <xs:element name="name" type="xs:string"/>

 The name of the KU.

element KU/header/langDescription/abstract

diagram

type xs:string

source <xs:element name="abstract" type="xs:string"/>

 The abstract of the KU.

element KU/header/type

diagram

type restriction of xs:string

facets enumeration Best Practice

enumeration Example

enumeration Help

enumeration Just-in-time Training

enumeration Lessons Learned

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 172 of 209

enumeration Lessons Learned

enumeration Storytelling

enumeration Troubleshooting
source <xs:element name="type">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Best Practice"/>

 <xs:enumeration value="Example"/>

 <xs:enumeration value="Help"/>

 <xs:enumeration value="Just-in-time Training"/>

 <xs:enumeration value="Lessons Learned"/>

 <xs:enumeration value="Storytelling"/>

 <xs:enumeration value="Troubleshooting"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

 The Type of the KU. This type can be:

• Best practices. They are not static documents describing “how to do x”, but rather collections of guidelines,
based on ever-evolving experiences in a particular domain.

• Examples. Practical cases that shows a particular solution.

• Help. Information to explain the use of a specific element (TSs, TSEs, Forms KUs…). Those are the KUs that
are more suitable to deploy with the service.

• Just in time training. Condensed pieces of training to speed up the acquisition of new competencies or abilities

for the job.

• Lessons learned. A record of the success and failure experiences of the organization.

• Storytelling. Narratives to communicate complex ideas in simple terms.

• Troubleshooting. A record of problems and solutions for a particular context.

element KU/lifeCycle

diagram

type lifeCycleType

children dynamic static

source <xs:element name="lifeCycle" type="lifeCycleType"/>

 Contains information about the life-cycle of a SmartGov object (KU). This information could be static or dynamic:

• Static: general information about the element that it does not change frequently.

o workgroup: the Work Group under what the element has been created. It can be used to know the

security related with the element

o author: the SmartGov user that creates the element

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 173 of 209

o creationDate: date of the creation of the element.

o expirationDate: date of expiration of the element. When the element expires, it should not be shown

to the end-user, and an alarm should be sent to the administrator.

o serviceExpiration: indicates that the element (a KU) should be deleted when all its related services

expired.

• Dynamic: information about the current status of the element.
o state: if the element is involved in a life-cycle workflow (KUs and TSs), indicates the current state of

the element

o performer: if the element is involved in a life-cycle workflow (KUs and TSs), indicates the user that

has the current task. If the task has not been taken by a specific user (belongs to a role), the

performer will have null value.

o lastModificationDate: date of last modification. It will be used to control concurrence.

element KU/linkedKU

diagram

type xs:string

source <xs:element name="linkedKU" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

 The id of the KUs to which the current KU is attached.

element KU/sections

diagram

children addressedTo langDescription link

source <xs:element name="sections" maxOccurs="unbounded">
 <xs:complexType>

 <xs:sequence>

 <xs:element name="addressedTo">

 <xs:complexType>

 <xs:sequence>

 <xs:choice>

 <xs:element name="allRoles" type="xs:boolean" default="true"/>

 <xs:element name="role" type="xs:string" maxOccurs="unbounded"/>

 </xs:choice>

 <xs:element name="comments" type="xs:string" minOccurs="0">

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 174 of 209

 <xs:annotation>

 <xs:documentation>To allow special circumstances to be documented</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="langDescription" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="localeId" type="xs:string"/>

 <xs:element name="title" type="xs:string"/>

 <xs:element name="content" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="link" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="multilingualText" maxOccurs="unbounded"/>

 <xs:element name="url" maxOccurs="unbounded">

 <xs:annotation>

 <xs:documentation>The name of the Link could be in several languages, but the url leads to one or more links

depending on whether there are available versions with the same content in one or more languages.

</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="localeId" type="xs:string"/>

 <xs:element name="urlAddress" type="xs:anyURI"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 A section represents a role related information. The KU could be composed by several sections whose visibility may

depend on the user’s role.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 175 of 209

element KU/sections/addressedTo

diagram

children allRoles role comments

source <xs:element name="addressedTo">

 <xs:complexType>

 <xs:sequence>

 <xs:choice>

 <xs:element name="allRoles" type="xs:boolean" default="true"/>

 <xs:element name="role" type="xs:string" maxOccurs="unbounded"/>

 </xs:choice>

 <xs:element name="comments" type="xs:string" minOccurs="0">

 <xs:annotation>

 <xs:documentation>To allow special circumstances to be documented</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 A KU may have different visibilities depending on the roles of the users that have access to the KU. For instance, It may
exist one section with allRoles visibility (all users can access), and more sections with specific information that just one

or several SmartGov roles will be able to retrieve.

element KU/sections/addressedTo/allRoles

diagram

type xs:Boolean

source <xs:element name="allRoles" type="xs:boolean" default="true"/>

 If it is true, means that all users are able to retrieve the information of the section.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 176 of 209

element KU/sections/addressedTo/role

diagram

type Xs:string

source <xs:element name="role" type="xs:string" maxOccurs="unbounded"/>

 A list of SmartGov roles that will be able to retrieve the information of the section.

element KU/sections/addressedTo/comments

diagram

type xs:string

annotation documentation To allow special circumstances to be documented

source <xs:element name="comments" type="xs:string" minOccurs="0">
 <xs:annotation>

 <xs:documentation>To allow special circumstances to be documented</xs:documentation>

 </xs:annotation>

</xs:element>

 Allow special circumstances related with the visibility of the section to be documented.

element KU/sections/langDescription

diagram

children localeId title content

source <xs:element name="langDescription" maxOccurs="unbounded">
 <xs:complexType>

 <xs:sequence>

 <xs:element name="localeId" type="xs:string"/>

 <xs:element name="title" type="xs:string"/>

 <xs:element name="content" type="xs:string"/>

 </xs:sequence>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 177 of 209

 </xs:complexType>

</xs:element>

 Title and textual content of the section.

element KU/sections/langDescription/localeId

diagram

type xs:string

source <xs:element name="localeId" type="xs:string"/>

 The id of the language the content (text) is written in

element KU/sections/langDescription/title

diagram

type xs:string

source <xs:element name="title" type="xs:string"/>

 Title of the section. Just for easy identification reasons.

element KU/sections/langDescription/content

diagram

type xs:string

source <xs:element name="content" type="xs:string"/>

 Textual content of the section.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 178 of 209

element KU/sections/link

diagram

children name url

source <xs:element name="link" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="multilingualText" maxOccurs="unbounded"/>

 <xs:element name="url" maxOccurs="unbounded">

 <xs:annotation>

 <xs:documentation>The name of the Link could be in several languages, but the url leads to one or more links

depending on whether there are available versions with the same content in one or more languages.

</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="localeId" type="xs:string"/>

 <xs:element name="urlAddress" type="xs:anyURI"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 Links or attachments related with the KU.

element KU/sections/link/name

diagram

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 179 of 209

type multilingualText

children localeId content

source <xs:element name="name" type="multilingualText" maxOccurs="unbounded"/>

 Name of the link to be shown to the user. It should be shown in the language of the user or in a default language.

element KU/sections/link/url

diagram

children localeId urlAddress

annotation documentation The name of the Link could be in several languages, but the url leads to one or more links depending

on whether there are available versions with the same content in one or more languages.
source <xs:element name="url" maxOccurs="unbounded">

 <xs:annotation>

 <xs:documentation>The name of the Link could be in several languages, but the url leads to one or more links

depending on whether there are available versions with the same content in one or more languages.

</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="localeId" type="xs:string"/>

 <xs:element name="urlAddress" type="xs:anyURI"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 The page or file linked may be in more than one available languages (different URLs).

element KU/sections/link/url/localeId

diagram

type xs:string

source <xs:element name="localeId" type="xs:string"/>

 The id of the language the content (text) is written in

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 180 of 209

element KU/sections/link/url/urlAddress

diagram

type xs:anyURI

source <xs:element name="urlAddress" type="xs:anyURI"/>

 The URL address where the attachment is located. It should be available from the SmartGov or Delivery environments,

depending on the location of the KU.

element KU/linkedTaxonomyNode

diagram

type xs:string

source <xs:element name="linkedTaxonomyNode" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

 The id of the taxonomyNode to which the KU is attached.

element KU/statistics

diagram

children workflow metrics deliveryEnvironmentStatistics

source <xs:element name="statistics">
 <xs:complexType>

 <xs:sequence>

 <xs:element name="workflow">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="taskLog" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="performer" type="xs:string"/>

 <xs:element name="date" type="xs:dateTime"/>

 <xs:element name="newState" type="xs:string"/>

 <xs:element name="comments" type="xs:string" minOccurs="0"/>

 </xs:sequence>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 181 of 209

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="metrics">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="complexity" type="levelType"/>

 <xs:element name="relevance" type="levelType"/>

 <xs:element name="richness" type="levelType"/>

 <xs:element name="grade">

 <xs:annotation>

 <xs:documentation>Type of Knowledge. Core: Basic. Advance: new and tested ideas. Innovative: new ideas

(not tested yet)</xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Innovative"/>

 <xs:enumeration value="Advance"/>

 <xs:enumeration value="Core"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="deliveryEnvironmentStatistics">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="lastAccess" type="xs:boolean"/>

 <xs:element name="numberOfInvocations" type="xs:boolean"/>

 <xs:element name="allowEndUserComments" type="xs:boolean"/>

 <xs:element name="allowEndUserRating" type="xs:boolean"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 The statistics defined for the KU. There are two kind of KU Statistics:

• SmartGov Design Environment Statistics:

o Workflow: statistics related with the KU life-cycle

o Metrics: information to be filled in by knowledge administrators

• Delivery Environment Statistics:

o Definition of the KU statistics to be collected in the Delivery Environment (end-user statistics).

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 182 of 209

element KU/statistics/workflow

diagram

children taskLog

source <xs:element name="workflow">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="taskLog" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="performer" type="xs:string"/>

 <xs:element name="date" type="xs:dateTime"/>

 <xs:element name="newState" type="xs:string"/>

 <xs:element name="comments" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 Statistics related with the KU life-cycle in the SmartGov Design Environment.

element KU/statistics/workflow/taskLog

diagram

children performer date newState comments

source <xs:element name="taskLog" maxOccurs="unbounded">
 <xs:complexType>

 <xs:sequence>

 <xs:element name="performer" type="xs:string"/>

 <xs:element name="date" type="xs:dateTime"/>

 <xs:element name="newState" type="xs:string"/>

 <xs:element name="comments" type="xs:string" minOccurs="0"/>

 </xs:sequence>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 183 of 209

 </xs:complexType>

</xs:element>

 Log information to be filled in automatically after every step or task in the KU life-cycle

element KU/statistics/workflow/taskLog/performer

diagram

type xs:string

source <xs:element name="performer" type="xs:string"/>

 Life-cycle log information: User that performs the task.

element KU/statistics/workflow/taskLog/date

diagram

type xs:dateTime

source <xs:element name="date" type="xs:dateTime"/>

 Life-cycle log information: time when the task was done.

element KU/statistics/workflow/taskLog/newState

diagram

type xs:string

source <xs:element name="newState" type="xs:string"/>

 Life-cycle log information: new state of the KU after the completition of the task.

element KU/statistics/workflow/taskLog/comments

diagram

type xs:string

source <xs:element name="comments" type="xs:string" minOccurs="0"/>

 Life-cycle log information: user comments captured during the task.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 184 of 209

element KU/statistics/metrics

diagram

children complexity relevance richness grade

source <xs:element name="metrics">
 <xs:complexType>

 <xs:sequence>

 <xs:element name="complexity" type="levelType"/>

 <xs:element name="relevance" type="levelType"/>

 <xs:element name="richness" type="levelType"/>

 <xs:element name="grade">

 <xs:annotation>

 <xs:documentation>Type of Knowledge. Core: Basic. Advance: new and tested ideas. Innovative: new ideas (not

tested yet)</xs:documentation>

 </xs:annotation>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Innovative"/>

 <xs:enumeration value="Advance"/>

 <xs:enumeration value="Core"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 Knowledge administrator statistics. The administrator should fill in or review these concepts after reviewing the statistics.

element KU/statistics/metrics/complexity

diagram

type levelType

facets enumeration Low

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 185 of 209

enumeration Medium

enumeration High
source <xs:element name="complexity" type="levelType"/>

 Knowledge administrator statistics. The complexity of the KU. The administrator should fill in or review these concepts
after reviewing the statistics.

element KU/statistics/metrics/relevance

diagram

type levelType

facets enumeration Low

enumeration Medium

enumeration High
source <xs:element name="relevance" type="levelType"/>

 Knowledge administrator statistics. The relevance of the KU. The administrator should fill in or review these concepts

after reviewing the statistics.

element KU/statistics/metrics/richness

diagram

type levelType

facets enumeration Low

enumeration Medium

enumeration High
source <xs:element name="richness" type="levelType"/>

 Knowledge administrator statistics. The richness of the KU. The administrator should fill in or review these concepts after

reviewing the statistics.

element KU/statistics/metrics/grade

diagram

type restriction of xs:string

facets enumeration Innovative

enumeration Advance

enumeration Core

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 186 of 209

enumeration Core
annotation documentation Type of Knowledge. Core: Basic. Advance: new and tested ideas. Innovative: new ideas (not tested

yet)
source <xs:element name="grade">

 <xs:annotation>

 <xs:documentation>Type of Knowledge. Core: Basic. Advance: new and tested ideas. Innovative: new ideas (not

tested yet)</xs:documentation>

 </xs:annotation>
 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Innovative"/>

 <xs:enumeration value="Advance"/>

 <xs:enumeration value="Core"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

 Knowledge administrator statistics. The grade or type of knowledge of the KU. The administrator should fill in or review
these concepts after reviewing the statistics.

element KU/statistics/deliveryEnvironmentStatistics

diagram

children lastAccess numberOfInvocations allowEndUserComments allowEndUserRating

source <xs:element name="deliveryEnvironmentStatistics">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="lastAccess" type="xs:boolean"/>

 <xs:element name="numberOfInvocations" type="xs:boolean"/>

 <xs:element name="allowEndUserComments" type="xs:boolean"/>

 <xs:element name="allowEndUserRating" type="xs:boolean"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 The Delivery Environment statistics to be defined for the KU.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 187 of 209

element KU/statistics/deliveryEnvironmentStatistics/lastAccess

diagram

type xs:boolean

source <xs:element name="lastAccess" type="xs:boolean"/>

 Date of last access to the KU.

element KU/statistics/deliveryEnvironmentStatistics/numberOfInvocations

diagram

type xs:boolean

source <xs:element name="numberOfInvocations" type="xs:boolean"/>

 Number of invocations of the KU.

element KU/statistics/deliveryEnvironmentStatistics/allowEndUserComments

diagram

type xs:boolean

source <xs:element name="allowEndUserComments" type="xs:boolean"/>

 Allow the possibility of collect end-user comments.

element KU/statistics/deliveryEnvironmentStatistics/allowEndUserRating

diagram

type xs:boolean

source <xs:element name="allowEndUserRating" type="xs:boolean"/>

 Allow the possibility of collect end-user opinion about the KU, according to a specific rating (for instance, 1 to 5).

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 188 of 209

simpleType levelType

type restriction of xs:string

used by elements KU/statistics/metrics/complexity KU/statistics/metrics/relevance KU/statistics/metrics/richness

facets enumeration Low

enumeration Medium

enumeration High
source <xs:simpleType name="levelType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Low"/>

 <xs:enumeration value="Medium"/>

 <xs:enumeration value="High"/>

 </xs:restriction>

</xs:simpleType>

 Level Type related with some of the KU statistics.

2.8.10 Modeling of Taxonomy
element taxonomy

diagram

children taxonomyId langDescription firstLevelTaxonomyNode

annotation documentation Define the SmartGov taxonomy structure

source <xs:element name="taxonomy">
 <xs:annotation>

 <xs:documentation>Define the SmartGov taxonomy structure</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="taxonomyId" type="xs:string"/>

 <xs:element name="langDescription" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="localeId" type="xs:string"/>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 189 of 209

 <xs:element name="name" type="xs:string"/>

 <xs:element name="abstract" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="firstLevelTaxonomyNode" type="xs:string" minOccurs="0" maxOccurs="unbounded">

 <xs:annotation>

 <xs:documentation>List of firts level taxonomy nodes Id (the taxonomyNodeId should correspond with an existing

taxonomy Node) </xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 A taxonomy in SmartGov represents a categorization of the reality, a particular form of
classifying SmartGov objects (KUs, TSs, TSEs, TSE Groups and Forms).
In the SmartGov environment is a collection of taxonomy nodes in a tree-like form.

element taxonomy/taxonomyId

diagram

type xs:string

source <xs:element name="taxonomyId" type="xs:string"/>

 The Id of the Taxonomy element.

element taxonomy/langDescription

diagram

children localeId name abstract

source <xs:element name="langDescription" maxOccurs="unbounded">
 <xs:complexType>

 <xs:sequence>

 <xs:element name="localeId" type="xs:string"/>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="abstract" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 190 of 209

</xs:element>

 The name and abstract of the taxonomy that specifies what the taxonomy represents.

element taxonomy/langDescription/localeId

diagram

type xs:string

source <xs:element name="localeId" type="xs:string"/>

 The id of the language the content (text) is written in.

element taxonomy/langDescription/name

diagram

type xs:string

source <xs:element name="name" type="xs:string"/>

 The name of the Taxonomy.

element taxonomy/langDescription/abstract

diagram

type xs:string

source <xs:element name="abstract" type="xs:string" minOccurs="0"/>

 The abstract of the Taxonomy.

element taxonomy/firstLevelTaxonomyNode

diagram

type xs:string

annotation documentation List of first level taxonomy nodes Id (the taxonomyNodeId should correspond with an existing

taxonomy Node)

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 191 of 209

source <xs:element name="firstLevelTaxonomyNode" type="xs:string" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>

 <xs:documentation>List of firts level taxonomy nodes Id (the taxonomyNodeId should correspond with an existing

taxonomy Node) </xs:documentation>

 </xs:annotation>

</xs:element>

 List of first level taxonomy nodes Id. The taxonomyNodeId should correspond with an existing taxonomy Node in
taxonomyNodes.xsd XML files. The taxonomy will store just the first level of nodes.

2.8.11 Modeling of Taxonomy node
element taxonomyNode

diagram

children taxonomyNodeId langDescription linkedTaxonomyNode

identity

constraints

 Name Refer Selector Field(s)

key taxonomyNodeKey .//taxonomyNode taxonomyNodeId

annotation documentation Define each taxonomy node or subnode. It can be used in different taxonomies.

source <xs:element name="taxonomyNode">
 <xs:annotation>

 <xs:documentation>Define each taxonomy node or subnode. It can be used in different

taxonomies.</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="taxonomyNodeId" type="xs:string"/>

 <xs:element name="langDescription" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="localeId" type="xs:string"/>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="abstract" type="xs:string" minOccurs="0"/>

 <xs:element name="synonym" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="linkedTaxonomyNode" type="xs:string" minOccurs="0" maxOccurs="unbounded">

 <xs:annotation>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 192 of 209

 <xs:documentation>The same as the KU case</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:key name="taxonomyNodeKey">

 <xs:selector xpath=".//taxonomyNode"/>

 <xs:field xpath="taxonomyNodeId"/>

 </xs:key>

</xs:element>

 Define each taxonomy node or sub-node and its dependencies. It can be used in different taxonomies.

element taxonomyNode/taxonomyNodeId

diagram

type xs:string

source <xs:element name="taxonomyNodeId" type="xs:string"/>

 The id of the Taxonomy Node element.

element taxonomyNode/langDescription

diagram

children localeId name abstract synonym

source <xs:element name="langDescription" maxOccurs="unbounded">
 <xs:complexType>

 <xs:sequence>

 <xs:element name="localeId" type="xs:string"/>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="abstract" type="xs:string" minOccurs="0"/>

 <xs:element name="synonym" type="xs:string" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 The name, abstract, and synonym of the taxonomy node, that specifies what the taxonomy node represents.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 193 of 209

element taxonomyNode/langDescription/localeId

diagram

type xs:string

source <xs:element name="localeId" type="xs:string"/>

 The id of the language the content (text) is written in.

element taxonomyNode/langDescription/name

diagram

type xs:string

source <xs:element name="name" type="xs:string"/>

 The name of the Taxonomy Node.

element taxonomyNode/langDescription/abstract

diagram

type xs:string

source <xs:element name="abstract" type="xs:string" minOccurs="0"/>

 The abstract of the Taxonomy Node.

element taxonomyNode/langDescription/synonym

diagram

type xs:string

source <xs:element name="synonym" type="xs:string" minOccurs="0"/>

 A synonym of the Taxonomy Node.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 194 of 209

element taxonomyNode/linkedTaxonomyNode

diagram

type xs:string

annotation documentation The same as the KU case

source <xs:element name="linkedTaxonomyNode" type="xs:string" minOccurs="0" maxOccurs="unbounded">
 <xs:annotation>

 <xs:documentation>The same as the KU case</xs:documentation>

 </xs:annotation>

</xs:element>

 The list of Taxonomy Nodes Ids that are child nodes of the current element.

2.8.12 Modeling of Workflow
element process

diagram

children processId states actions roles transitions

identity

constraints

 Name Refer Selector Field(s)

key stateKey ./states/state .

key actionKey ./actions/action .

key roleKey ./roles/role/roleId .

keyref initialStateKeyRef stateKey ./transitions/transition/

initialState

.

keyref finalStateKeyRef stateKey ./transitions/transition/

finalState

.

keyref actionKeyRef actionKey ./transitions/transition/

action

.

keyref roleKeyRef roleKey ./transitions/transition/

role

.

unique transitionUnique ./transitions/transition initialState

action

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 195 of 209

annotation documentation Define a process, its states, and transictions.

source <xs:element name="process">
 <xs:annotation>

 <xs:documentation>Define a process, its states, and transictions.</xs:documentation>

 </xs:annotation>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="processId" type="xs:string"/>

 <xs:element name="states">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="state" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="actions">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="action" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="roles">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="roleScope">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="roleScopeId" type="xs:string"/>

 <xs:element name="roleScopeDescription" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="role" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>
 <xs:element name="roleId" type="xs:string"/>

 <xs:element name="roleDescription" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="transitions">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="transition" maxOccurs="unbounded">

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 196 of 209

 <xs:complexType>

 <xs:sequence>

 <xs:element name="initialState" type="xs:string"/>

 <xs:element name="finalState" type="xs:string"/>

 <xs:element name="action" type="xs:string"/>

 <xs:element name="role" type="xs:string" maxOccurs="unbounded">

 <xs:annotation>

 <xs:documentation>A unique restriction has been added at transition level to assure that the roles that are

able to perform an action cannot be repeated.</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:unique name="nonRepeatingRoles">

 <xs:selector xpath="./role"/>

 <xs:field xpath="."/>

 </xs:unique>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:key name="stateKey">

 <xs:selector xpath="./states/state"/>

 <xs:field xpath="."/>

 </xs:key>

 <xs:key name="actionKey">

 <xs:selector xpath="./actions/action"/>

 <xs:field xpath="."/>

 </xs:key>

 <xs:key name="roleKey">

 <xs:selector xpath="./roles/role/roleId"/>

 <xs:field xpath="."/>

 </xs:key>

 <xs:keyref name="initialStateKeyRef" refer="stateKey">

 <xs:selector xpath="./transitions/transition/initialState"/>

 <xs:field xpath="."/>

 </xs:keyref>

 <xs:keyref name="finalStateKeyRef" refer="stateKey">

 <xs:selector xpath="./transitions/transition/finalState"/>

 <xs:field xpath="."/>

 </xs:keyref>
 <xs:keyref name="actionKeyRef" refer="actionKey">

 <xs:selector xpath="./transitions/transition/action"/>

 <xs:field xpath="."/>

 </xs:keyref>

 <xs:keyref name="roleKeyRef" refer="roleKey">

 <xs:selector xpath="./transitions/transition/role"/>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 197 of 209

 <xs:field xpath="."/>

 </xs:keyref>

 <xs:unique name="transitionUnique">

 <xs:selector xpath="./transitions/transition"/>

 <xs:field xpath="initialState"/>

 <xs:field xpath="action"/>

 </xs:unique>

</xs:element>

 This element represents a process in the SmartGov platform. This type of XML document is used to describe KU and TS

life-cycles, and any additional process that arises during development.

Several key and keyref constraints have been defined. These constraints are used to keep consistence between states,
performers, and actions definitions, and the defined transitions, which involve these three types of elements. With these

constraints, non existing states, performers or actions, and duplicated are avoided.

There is also a unique constraint, to avoid transitions duplicated with the same initialState and action, because from one
state an action always leads to the same final state, regardless of the performer.

element process/processId

diagram

type xs:string

source <xs:element name="processId" type="xs:string"/>

 The id of the process

element process/states

diagram

children state

source <xs:element name="states">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="state" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 This element groups all the different states that the process can be in.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 198 of 209

element process/states/state

diagram

type xs:string

source <xs:element name="state" type="xs:string" maxOccurs="unbounded"/>

 This element represents one of the different states that the process can be in during its life.

element process/actions

diagram

children action

source <xs:element name="actions">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="action" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 This element groups all the actions that can be performed during the process. Actions will be available depending on the
current state.

element process/actions/action

diagram

type xs:string

source <xs:element name="action" type="xs:string" maxOccurs="unbounded"/>

 One of the actions that can be performed during the process life.

element process/roles

diagram

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 199 of 209

children roleScope role

source <xs:element name="roles">
 <xs:complexType>

 <xs:sequence>

 <xs:element name="roleScope">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="roleScopeId" type="xs:string"/>

 <xs:element name="roleScopeDescription" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="role" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="roleId" type="xs:string"/>

 <xs:element name="roleDescription" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 This element groups all the information regarding the roles involved in the process.

First of all, it specifies the ‘scope’ of the defined roles. This scope is used in the roles system to
group the roles relating to the same field, the same sphere: all the roles defined for a service, for
a process… For example, in the roles system will exist the ‘SmartGov’ scope, with the Manager,
Expert, IT Staff and End User roles.
After the scope, a list of the participating roles is defined.

element process/roles/roleScope

diagram

children roleScopeId roleScopeDescription

source <xs:element name="roleScope">
 <xs:complexType>

 <xs:sequence>

 <xs:element name="roleScopeId" type="xs:string"/>

 <xs:element name="roleScopeDescription" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 200 of 209

 As described in the previous paragraph, this element describes the field where the defined roles make sense.

element process/roles/roleScope/roleScopeId

diagram

type xs:string

source <xs:element name="roleScopeId" type="xs:string"/>

 The id of the Role Scope.

element process/roles/roleScope/roleScopeDescription

diagram

type xs:string

source <xs:element name="roleScopeDescription" type="xs:string"/>

 A description of the role scope, probably describing where these roles are applicable.

element process/roles/role

diagram

children roleId roleDescription

source <xs:element name="role" maxOccurs="unbounded">
 <xs:complexType>

 <xs:sequence>

 <xs:element name="roleId" type="xs:string"/>

 <xs:element name="roleDescription" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 One of the different roles participating in the process.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 201 of 209

element process/roles/role/roleId

diagram

type xs:string

source <xs:element name="roleId" type="xs:string"/>

 The id of the role.

element process/roles/role/roleDescription

diagram

type xs:string

source <xs:element name="roleDescription" type="xs:string"/>

 The description of the role.

element process/transitions

diagram

children transition

source <xs:element name="transitions">
 <xs:complexType>

 <xs:sequence>

 <xs:element name="transition" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="initialState" type="xs:string"/>

 <xs:element name="finalState" type="xs:string"/>

 <xs:element name="action" type="xs:string"/>

 <xs:element name="role" type="xs:string" maxOccurs="unbounded">

 <xs:annotation>

 <xs:documentation>A unique restriction has been added at transition level to assure that the roles that are

able to perform an action cannot be repeated.</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 202 of 209

 <xs:unique name="nonRepeatingRoles">

 <xs:selector xpath="./role"/>

 <xs:field xpath="."/>

 </xs:unique>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 This element groups all the transitions allowed in the process.
The transitions define the logic of the process, because they establish the state’s changes that can be made, and who is

able to make these changes.

A constraint not allowing duplicated transitions with the same initial state and action is defined in the root element
(process).

element process/transitions/transition

diagram

children initialState finalState action role

identity

constraints

 Name Refer Selector Field(s)

unique nonRepeatingRoles ./role .

source <xs:element name="transition" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>
 <xs:element name="initialState" type="xs:string"/>

 <xs:element name="finalState" type="xs:string"/>

 <xs:element name="action" type="xs:string"/>

 <xs:element name="role" type="xs:string" maxOccurs="unbounded">

 <xs:annotation>

 <xs:documentation>A unique restriction has been added at transition level to assure that the roles that are able to

perform an action cannot be repeated.</xs:documentation>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:unique name="nonRepeatingRoles">

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 203 of 209

 <xs:selector xpath="./role"/>

 <xs:field xpath="."/>

 </xs:unique>

</xs:element>

 One of the different transitions that are defined in the process. The initial state, the final state
and the action that fires the state’s change is defined here, and also the roles that can perform
this action.
A constraint is defined to avoid that duplicated roles in the roles list.

element process/transitions/transition/initialState

diagram

type xs:string

source <xs:element name="initialState" type="xs:string"/>

 This element establishes the required current status so that the transition is applicable.
This status has to be one of the defined earlier in the file, in the states element.

element process/transitions/transition/finalState

diagram

type xs:string

source <xs:element name="finalState" type="xs:string"/>

 If the transition is fired (the action is performed) this is the resulting status, the status to which
the process changes.
This status has to be one of the defined earlier in the file, in the states element.

element process/transitions/transition/action

diagram

type xs:string

source <xs:element name="action" type="xs:string"/>

 This element establishes the firing action that provokes the state change, from initial to final state.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 204 of 209

element process/transitions/transition/role

diagram

type xs:string

annotation documentation A unique restriction has been added at transition level to assure that the roles that are able to

perform an action cannot be repeated.
source <xs:element name="role" type="xs:string" maxOccurs="unbounded">

 <xs:annotation>

 <xs:documentation>A unique restriction has been added at transition level to assure that the roles that are able to

perform an action cannot be repeated.</xs:documentation>

 </xs:annotation>

</xs:element>

 This element specifies the role or roles that are allowed to perform the action and, so, fire the
transition.
As it was said before, a constraint is defined to avoid duplicated roles.

2.8.13 RDBMS Data Model

2.8.13.1 Users, Roles, and Work Groups

All data related with users, roles and work groups will be stored in a relational

database. In Figure 62, we have to distinguish two structures:

§ Roles and Groups system: It stores all the information related with the

roles and groups existing in the SmartGov System, and the linking with the

users. This system must be present in all SmartGov service design

environments, and may be used in some delivery environments too. This

system is composed by all the tables except Users and OuterUsers.

§ Smartgov Users system: A very simple system to store all the required data

of the users (OuterUsers table). This system will be used during Smartgov

Platform development, to avoid integrating the platform with a more complex

user system (for instance LDAP).

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 205 of 209

The bridge between these independent system is the table Users. In this table the

link between a SmartGov user and the corresponding user in the outer system is

established.

All the users imported from certain outer user system will be grouped in the same

group, defined in the table Groups. This group will be related with a

OuterUserSystem class, that will make possible the connection with the outer

system. Thus, the whole model of roles and groups can be linked with different

user’s system just developing a simple interface. Even, the system may work with

more than one outer user system, each one with its OuterUserSystem class, and

each one with its own group.

To distinguish the groups related to user system from the work groups used in

the front-end application, the field type in the table Groups will be used. Just two

group types has been defined, but in the future more different types may be

required, so the system is prepared for adding them:

• WorkGroup type: Groups users that are going to develop a new service.

• Grouping type: Groups all users from a OuterUserSystem included in the

systems. In the SmartGov design environment users come from a defined

SmartGov Users table. For instance in the future a different user’s source

could be a LDAP system. All those users coming from the same source will

be under the same Grouping type.

Other issue that requires a deeper explanation is the scope for the roles

(RoleScopes). This scope is used to group roles in the database system. There are

three different kind of scopes defined:

• Scope for the SmartGov roles (SmartGov scope), used to control access to

the SmartGov design environment (Domain Experts, IT Staff…). Each

SmartGov user pertaining to a group of Grouping type, will have one (and

just one) SmartGov role.

• Scope for e-services (scope defined by the user): roles to be used in a

service execution when needed (names of the roles specific for each

service). Every user belonging to a group of Grouping type, may have 0 to

n service roles.

• Scope for Work Groups (TS or KU scope): Those are the roles in the

processes related with TS or KU life-cycle (Reviewer, Approver…). Every

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 206 of 209

user pertaining to a group of WorkGroup type may have 0 to n TS or KU

life-cycle roles.

Figure 62 – SmartGov Roles, Groups and Users database schema.

2.8.13.2 Service Design Environment Statistics

In the design environment some statistics related with knowledge will be

collected. Theses statistics will allow the managers to update and improve the

knowledge pieces in the system, according to users comments, customs…

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 207 of 209

To store all these statistics will be used a system different from the delivery

environment one. Instead of defined specific statistics to be collected for each

object, some general statistics, common for all the elements of the same type,

will be defined, and the system will store this data in a database.

Instead of using a specific schema for the defined statistics, a open schema has

been defined. This way, new statistics types can be defined without modifying the

system. New object types to define statistics over them can be added to the

system (ObjectTypes Table), and also new types of statistics to be collected

(Statistics Types Table). Therefore, these two tables will keep the static definition

of the statistics, while the Statistics table will keep the dynamic information, that

is, the collected data.

To store the data in a format suitable for each type, different columns are

defined, for textual, numeric of percentage content, and in the statistics type

definition will be defined which columns are applicable in every case.

Figure 63 – Service design environment statistics database schema.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 208 of 209

3 Conclusions

This deliverable presented the results of the first iteration of the analysis and

design phase. As a result the low level specifications of the SmartGov platform

were produced, elaborated and presented here. The design of the platform

followed a component-based approach, which culminated in a number of self-

contained components thus ensuring a clear separation of concerns and

reusability. The interfaces between these components have been clearly set and

described here.

This deliverable marks the point in the development phase where the final

implementation path has been set, all roles and tasks are assigned and every

implementation doubt is cleared. However the next iteration of the platform’s

development phase might affect the design and analysis presented here, but not

to a significant degree.

IST PROJECT 2001-35399 SMARTGOV 3 December 2002

 SMARTGOV Consortium Page 209 of 209

4 References

[Pressman2000] Roger S. Pressman, “Software Engineering”, McGraw Hill,
2000.

[Quatrani2000] Terry Quatrani, “Visual Modeling with Rational Rose 2000
and UML”, Addison-Wesley, 2000.

[EC2000] European Commission, ‘Public Sector Information: A Key
Resource for Europe’, Green paper on Public Sector
Information in the Information Society,
ftp.echo.lu/pub/info2000/publicsector/gppublicen.doc

[eEurope2000] eEurope, 2000. Common list of basic public services,
http://europa.eu.int/information_society/eeurope/action_pla
n/pdf/basicpublicservices.pdf

[Bolton2001] Fintan Bolton “Pure CORBA”, SAMS Publications, 2001,
ISBN: 0672318121

[Sun2000] Sun Microsystems, “ONC+ Developer's Guide”, available at
http://docs.sun.com/db?q=RPC&p=/doc/805-7224

[Scarborough1999] Scarborough H. “Knowledge Management: A Literature
Review”, Institute of Personnel and Development. 1999

[Siebel2001] Thomas M. Siebel, “Taking Care of eBusiness”, Doubleday
Publications, 2001, ISBN: 0385502273

[Stacey1996] Ralph D. Stacey, “Complexity and Creativity in
Organizations”, Berrett-Koehler, 1996, ISBN: 1583763007

[Senge1999] Peter M. Senge et al., “The Dance of Change: The
Challenges to Sustaining Momentum in Learning
Organizations”, Doubleday Publications, 1999, ISBN:
0385493223

[Weick2000] Karl E. Weick, “Making sense of the organization”, Blackwell
Publishers, 2000, ISBN: 0631223193

[Bowman2002] Brent Bowman, “Building knowledge management systems”
July 2, 2002

[Davenport1977] Thomas H. Davenport, Laurence Prusak and Lawrence
Prusak, “Working Knowledge: How Organizations Manage
What They Know”, Harvard Business School Press, 1997,
ISBN: 0875846556

[Struts] The Jakarta project, The Struts Framework, available at
http://jakarta.apache.org/struts/index.html

[Ant] Apache foundation, The Apache Ant Project, available at
http://ant.apache.org/

[Xalan] The Apache XML Project, Xalan, available at
http://xml.apache.org/xalan-j/

[JavaCC] WebGain Company, JavaCC, available at
http://www.Webgain.COM/Products/Java_CC

[Castor] The Exolab Group, The Castor Project, available at
http://castor.exolab.org/index.html

[RUP] The Rational Unified Process, IBM Software Group, available
at http://www.rational.com/products/rup/index.jsp

[XML] World Wide Web Consortium, The XML Specification,
available at http://www.w3.org/xml

[J2EE] SUN Microsystems, The J2EE platform, available at
http://java.sun.com

ftp://ftp.echo.lu/pub/info2000/publicsector/gppublicen.doc
http://europa.eu.int/information_society/eeurope/action_pla
http://docs.sun.com/db?q=RPC&p=/doc/805-7224
http://jakarta.apache.org/struts/index.html
http://ant.apache.org/
http://xml.apache.org/xalan-j/
http://www.Webgain.COM/Products/Java_CC
http://castor.exolab.org/index.html
http://www.rational.com/products/rup/index.jsp
http://www.w3.org/xml
http://java.sun.com

