
1

IST PROJECT 2001-35399

A Governmental Knowledge-based Platform for Public Sector

Online Services

Project Number: IST-2001-35399
Project Title: A Governmental Knowledge-based Platform for Public

Sector Online Services
Deliverable Type: Public

Deliverable Number: D62
Contractual Date of
Delivery:

31-5-2003

Actual Date of Delivery: 31-7-2003
Title of Deliverable: Implementation of SmartGov Services and Applications
WP contributing to the
Deliverable:

WP6

Nature of the Deliverable: Report
Editor(s): Stelios Gorilas
Author(s): Stelios Gorilas, Pablo Fernadez Pardo, Tomas Pariente

Lobo, Costas Vassilakis, Akrivi Katifori, Anna Charissi,
George Lepouras, Nick Adams, John Fraser, Ann
Makynthos, Vassilis Stoumpos

Abstract: This deliverable constitutes the implementation report of WP6. It presents the
implementation details of the following components: Integrator, SmartGovLang
Translator, SmartGov Agent and SmartGov Information Interchange Gateway.

Project funded by the European Community under the “Information Society

Technologies” Programme (1998-2002)

 Copyright by the SmartGov Consortium.

The SmartGov Consortium consists of:

Partner’s Name Acronym Role Country

University of Athens UoA Project Coordinator Greece

T-Systems Nova TNB Partner Germany

Indra Sistemas S.A. Indra Partner Spain

Archetypon S.A. ARC Partner Greece

Napier University NU Partner UK

General Secretariat for Information Systems GSIS Partner Greece

City of Edinburgh Council CEC Partner UK

2

3

 Table of Contents

Executive Summary..8
1 Introduction..9
2 Platform Overview ...10
3 The Integrator Component..12

3.1 Introduction ...12
3.2 The STRUTS Framework ..12

3.2.1 CONTROLER COMPONENTS ...12
3.2.2 MODEL COMPONENTS...15
3.2.3 VIEW COMPONENTS ...16
3.2.4 STRUTS class and sequence diagram..16

3.3 STRUTS in the context of the Integrator ..17
3.4 Integrator Input ...19

3.4.1 Building modules..19
3.4.2 Taxonomies...20
3.4.3 Service elements..21
3.4.4 Functionality..28
3.4.5 Establishing links between the form visual elements and SmartGov

semantic elements...29
3.5 Integrator Processing layers...30

3.5.1 Model ...31
3.5.2 Processor ..31
3.5.3 Builder..32

3.6 Integrator Implementation...32
3.6.1 Packages...32
3.6.2 Class diagrams ..34
3.6.3 Sequence diagrams ..38

3.7 Integrator Main Sub-components/Tasks...39
3.7.1 Help JSP ...39
3.7.2 Integrator Ant Task ..40
3.7.3 Data Storage ...40
3.7.4 Statistics Storage ...41
3.7.5 Design Time Service Model ..43

4 The SmartGovLang Language..46
4.1 Specification of the SmartGovLang language ..47

4

4.1.1 Specification of full rules ...47
4.1.2 Specification of compact rules..50

4.2 Translation of the SmartGovLang language ..53
4.2.1 Storage of the SmartGovLang language ..56
4.2.2 API for the SmartGovLang language translator...............................62

5 SmartGov Agent – Information Interchange Gateway...................................64
5.1 Implementation of the SmartGov Agent – Information Interchange Gateway

 66
6 Conclusions ..70
7 References ...71
Appendix A – SmartGovLang grammar ...72
Appendix B - List of functions available in SmartGovLang....................................74
Appendix C – Integrator JavaDocs..76
Appendix D - SmartGovLang Translator JavaDocs .. 108
Appendix E - Agents JavaDocs ... 113

5

Table of Figures

Figure 1 Overview of the SmartGov platform ...10
Figure 2 Struts, an MVC Web Application Framework ..12
Figure 3 STRUTS class diagram..16
Figure 4 STRUTS sequence diagram ...17
Figure 5 SmartGov service description layers...20
Figure 6 Taxonomies and Service elements ...21
Figure 7 Example of a set of service description files...28
Figure 8 - Link establishment between visual and semantic entities30
Figure 9 Integrator Layers...31
Figure 10 Integrator packages and interdependencies...33
Figure 11 Process launching sequence diagram..38
Figure 12 TS element processing sequence diagram ...39
Figure 13 – Sample interface for defining full rules ...50
Figure 14 – Sample interface for defining compact rules......................................52
Figure 15 - Translating a SmartGov rule to Java and Javascript............................56
Figure 16 The SmartGovLang translator interface...63
Figure 17 – DTD for SmartGov Agent to Information Interchange Gateway Messages

..65
Figure 18 – DTD for Information Interchange Gateway to SmartGov Agent Messages

..65
Figure 19 - Class Diagram for SmartGov Agent ..66
Figure 20 - Class diagram for the IIGServer ..67
Figure 21 - Class diagram for the SSLIIGServer ...68
Figure 22 - Class diagram for logging facilities ...69

6

List of Acronyms

Acronym Explanation

APAQ Adelante (Outgoing) Pending Actions Queue

API Application Programming Interface

EPAQ Entra (Incoming) Pending Actions Queue

IIG Information Interchange Gateway

IIG-MYP Information Interchange Gateway – Minimal Yoking Processor

IIG-NI Information Interchange Gateway Notification Initiator

IIG-SEP Information Interchange Gateway – Separate External Process

IT Information Technology

JSP Java Server Page

KU Knowledge unit

MVC Model-View-Controller

PAQ Pending actions queue (in the context of the SmartGov Agent

and the Information Interchange Gateway)

PAQUED Pending Actions Queue Dispatcher (in the context of the

SmartGov Agent and the Information Interchange Gateway)

SGA SmartGov agent

SGA-NI SmartGov Agent Notification Interceptor

SGovApp SmartGov application

TS Transaction service

TSE Transaction service element

XML Extensible Markup Language

JSP Java Server Page

XHTML eXtensible Hypertext Markup Language

RUP Rational Unified Process

UML Unified Modeling Language

WAP Wireless Application Protocol

XSLT Extensible Style sheet Language Template

WML Wireless Markup Language

JDBC Java Database Connectivity

API Application Programming Interface

RDBMS Relational Database Management System

LDAP Lightweight Directory Access Protocol

7

DSN Data source name

SOAP Simple Object Access Protocol

DDL Data Definition Language

8

Executive Summary
The SmartGov project, fully entitled as “A Governmental Knowledge-based Platform

for Public Sector Online Services”, commenced on the 1st of February 2002. The aim

of the SmartGov platform is to introduce a holistic approach for the use of electronic

forms within the public sector. This approach is focused on two main axes:

q Integrating emerging standards with state-of-the-art technology and with

advances in areas such as knowledge management, Web technologies,

interoperability and accessibility.

q Introducing this technology in a systematic manner by adopting new process

models and process re-engineering and process improving methods.

In order to support these axes, a complete knowledge-based development

environment will be provided to the public authorities, supporting all phases of

electronic, form-based services development, deployment and maintenance. This

environment will be complemented with a generic framework, including process

models, reference models and social acceptance models for the introduction of

electronic services.

In the workpackages that have been completed insofar, the state of the art has been

reviewed (WP3 [D31]), the current status of the participating public authorities has

been captured (WP3), the user requirements have been analysed (WP4 [D41]) and

the high-level specifications of the system have been derived (WP4). After that the

software architecture document of the platform was produced, which reported on

work carried out in WP5 and WP6 and provided detailed system specifications for the

architectural modules identified in WP4 as parts of the SmartGov platform. The

present document is an elaboration of the low level design that was delivered within

the aforementioned joined deliverable (D51-D61 [D51-61]) and constitutes the

outcome of a number of iterations that were performed during the development

phase; as such it contains more implementation details than the previous

deliverable. It corresponds to the implementation work carried out within

workpackage 6 and does not include components that were developed outside of this

workpackage. This is due to the reviewer’s suggestion to keep separate the two

implementation deliverables (D52 and D62). Hence the implementation work

reported here presents the implementation details of the following components:

Integrator, SmartGovLang Translator, SmartGov Agent and SmartGov Interchange

Gateway.

9

1 Introduction

The SmartGov platform software was specified, designed and developed by following

the Rational Unified Process [RUP]. As this process suggests, the specifications,

design and development do not happen strictly sequential but in an iterative manner.

The present deliverable constitutes an implementation report that presents the

outcome of the last iteration of the development phase. Hence it contains more

implementation details than D51-61 [D51-61] and also slight changes in the design

and implementation.

The document firstly provides a brief description of the overall SmartGov platform

architecture, in order to familiarise the reader with the modules of the platform, their

functionality and their interactions. The next section presents the Integrator

component, which is the “heart” of the SmartGov platform. It is responsible for

accessing the XML repository (presented in D51-61) and extracting the documents

containing the service definitions. These are stored there by the Front-end tool

(presented in D51-61 and D52). It then processes these descriptions and generates

the run-time e-forms application, which is a STRUTS [STRUTS] application and

deploys it in the specified web container/server, with the use of the ANT [ANT]

utility. Since STRUTS plays a crucial role in the integrator design, it is shortly

presented and analysed. Subsequently, the required input of the integrator is

described and its core design and processing layers are given. Finally the main

subcomponents tasks that the integrator includes are shortly described.

After the Integrator section, the SmartGovLang Language is described.

SmartGovLang is a simple, yet powerful language, designed to enable domain

experts with minimal computer skills to write validation checks. This language is

processed and translated at generation time by the SmartGovLang Translator, which

is invoked by the integrator, and the appropriate JavaScript and Java code snippets

are created and planted in the generated service.

Finally the SmartGov agents are presented, which are responsible for the

communication with third party systems and storage of the submitted instance data.

10

2 Platform Overview

In the following paragraphs, the high-level architecture of the SmartGov platform is

summarised. This section aims to provide the reader with a global view of the

SmartGov platform and outline the modules involved in the development and

delivery of transaction services. These modules are detailed in the main part of this

deliverable.

Installed IT
Systems

Other SmartGov
Systems

Service users

Knowledge &
Transaction

services
repositories

SmartGov System

Managers

External IT
Systems

IT staff

Domain
Experts

SmartGov
front-end Integrator

Dissemination
server

Communication services
(SmartGov Agent - Information

Interchange Gateway)

Figure 1 Overview of the SmartGov platform

Figure 1 illustrates the SmartGov platform architecture, in which the following

modules may be identified:

• The SmartGov knowledge and transaction services repositories. These are

general depots for storing organisational knowledge and information

pertaining to the transaction services that are developed using the SmartGov

platform. In order to provide a semantically rich environment and facilitate

extensibility and interoperability, all data is stored in XML format.

• The SmartGov front-end, which constitutes of personalised application

development environments which are available to the actors involved in the

lifecycle of electronic transaction services, namely domain experts, IT staff

and managers. The actors employ the SmartGov front end to populate, query

and modify the knowledge and transaction services repositories.

11

• The integrator, a software module that reads the contents of the knowledge

and transaction services repositories, and automatically generates all

necessary elements (files, objects, components etc) for a fully operational

transactional service. These elements are then deployed on a dissemination

server, initiating service delivery to the users.

• The communication services, comprising of two units, namely the SmartGov

agent and the information interchange gateway. This module provides generic

communication mechanisms with installed IT systems for the purposes of

data exchange, hiding idiosyncrasies and peculiarities of information system

platforms and facilitating resilience against temporary failures.

12

3 The Integrator Component

3.1 Introduction

The integrator component is responsible for generating, compiling and deploying the

e-forms service that will be used by the final users i.e. the citizens. The generated

service is installed at the dissemination server, which is a web container, in our case

the Apache Tomcat. The generated service is a STRUTS application (i.e. it is built

according to the STRUTS framework) and thus requires the installation of STRUTS on

top of Tomcat. Due to its crucial role in the implementation, STRUTS is explained in

the first section of this chapter.

3.2 The STRUTS Framework

Figure 2 depicts the architecture of STRUTS.

Figure 2 Struts, an MVC Web Application Framework

3.2.1 CONTROLER COMPONENTS

Struts Controller Servlet

13

ActionServlet is the command part of the MVC implementation and is the core of the

Framework. It is a central servlet that mediates application flow. It is a command

design pattern implemented as a servlet and is provided by the Struts framework.

• Parses the Struts configuration file

• Checks for defined ActionMappings

• Delegates requests to the appropriate application actions, through Action

mappings

• Checks session for instance of bean of appropriate class

• If no session bean exists, creates one automatically

• Automatically populates an ActionForm bean with request parameters

• Determines which Action or JSP to dispatch to

Struts Configuration file (struts-config.xml).

This file contains all the configuration setting and is a vital part of a Struts
application. It defines the action mappings for the application and allows for
performing certain changes without recompilation of code.

The configuration file contains:

§ Action Mappings: These are mappings between user actions and business

methods by delegating user requests to the later and then decide which

JSP should be rendered next.

Action Mappings

- define mappings between a logical Action name and the physical Action

class

- specifiy an associated ActionForm name

- declare the input page to return to when errors occur

- define local forwards (forward tag)

§ Declarations

Tell the Controller where to physically locate the referenced ActionForm

§ Global forwards

Links to other pages that are referenced in other jsps or Actions.

14

<struts-config>
 <!-- Data Sources -->
 <data-sources>
 </data-sources>

 <!-- Form Beans -->
 <form-beans>

<form-bean type="struts.SubmitForm" name="SubmitForm"
 className="org.apache.struts.action.ActionFormBean">

 </form-bean>
 </form-beans>

 <!-- Global Exceptions -->
 <global-exceptions>
 </global-exceptions>

 <!-- Global Forwards -->
 <global-forwards>
 </global-forwards>

 <!-- Action Mappings -->
 <action-mappings>

<action name="SubmitForm" path="/submit" scope="session"

Provide a level of indirection, so that a path change only has to updated in

one place.

Example: <forward name="next" path="/forwardedPage.jsp" />

A typical Struts- config example follows:

Actions class

The goal of the Action class is to process the request and then return an

ActionForward object identifying the view JSP to forward to. The Action class is a

wrapper around the business logic. Its purpose is to translate the HttpServletRequest

to the business logic.

• The Action controls the flow and not the logic of the application.

• Place business logic in a separate package or EJB, to allow flexibility and

reuse.

• The purpose of the Action is to ‘transform’ the interface of a class into another

interface the clients expect.

15

• Actions act as the adapter between the web/HTTP layer and the business logic

layer The Action class follows the Adapter design pattern and lets classes

work together that couldn’t otherwise because of incompatibility interface

• For the Action class to be used, it needs to be subclassed and its process()

method overwriten.

3.2.2 MODEL COMPONENTS

Model components are user defined. These can be any Java beans. They must have a

public empty constructor as well as getters and setters for all the data elements.

ActionForm Bean (or Helper Bean)

• Extends the ActionForm class

• Create one for each input form in the application

• For every request parameter whose name corresponds to the name of a

property in the bean, the corresponding setter method will be called

• The updated ActionForm bean will be passed to the Action Class perform()

method when it is called, making these values immediately available

• Multiple requests can be mapped UserActionForm.

• ActionForms can contain validation code.

• The struts-config.xml file controls which HTML form request maps to which

ActionForm.

• It is used by the JSP to collect data from the user and populate the form

fields.

 Framework includes custom tags that facilitate populating form fields from a

form bean.

• They are used by the Action object to validate the form input.

 public ActionErrors validate(ActionMapping mapping, HttpServletRequest

request)

A form does not necessarily map to a single JSP. You should note that an "input

form", in the sense discussed here, does not necessarily correspond to a single JSP

page in the user interface. A form may be a series of page and Struts encourages the

developer to define a single ActionForm bean that contains properties for all of the

fields, no matter which page the field is actually displayed on. Likewise, the various

pages of the same form should all be submitted to the same Action Class.

16

3.2.3 VIEW COMPONENTS

View components are mainly Java Server Pages, accompanied by HTML, JavaScript,

Style sheets, Struts Tags and Custom Tags, Resource Bundles, etc.

3.2.4 STRUTS class and sequence diagram

To complete this short description of STRUTS, in the following figures the class and

sequence diagrams of STRUTS are given.

Figure 3 STRUTS class diagram

17

Figure 4 STRUTS sequence diagram

3.3 STRUTS in the context of the Integrator

The aforementioned short analysis of the STRUTS framework shows the components

needed for STRUTS to operate. This in the context of the integrator implies that a

number of files have to be generated, compiled and finally deployed. These activities

are performed automatically by the integrator after processing of the XML[XML] files

that contain all the relevant service descriptions (TSEs, TSEGroups, Forms etc.).

More analytically but still in a high level view the following tasks are required by the

integrator.

TASK #0: GENERATE XML Doc Beans

Use Castor [castor] to parse the XML schemas collection that describe the SmartGov

e-forms application to generate a collection a java class (XML Doc Beans)

TASK #1: GENERATE CONTROLER COMPONENTS

18

Action Class

The Action class is created and used by ActionServlet. It is a wrapper around

Business logic to use Action, subclass and overwrite the perform() method.

• Method perform processes the HTTP request, and creates the corresponding

HTTP response. Returns an ActionForward instance describing where and how

control should be forwarded.

• Method saveErrors saves the specified error messages keys into the

appropriate request

[generate validation script blocks and attached them to the Action class]

Struts Configuration file

• Collect all required information to generate the configuration file

• Generate configuration file according to application requirements (form beans,

action mappings blocks)

[Validate configuration file]

TASK #2: GENERATE MODEL COMPONENTS

Action Form Class

• retrieve main form description XML

• parse XML file and identify TSEs

• retrieve XML documents of included TSEs

• generate a single java class that extends ActionForm

• populate the class with all the required getters and setters

TASK #3: GENERATE VIEW COMPONENTS

JSPs

• retrieve main form description XML and referenced TSE XML files

• construct a single XML form

• retrieve XHTML form description

• introspect XHTML, XML form descriptions to locate associated TSEs (XML Doc

Beans)

19

• perform transformations on XHTML elements into Struts JSP tags (Xalan,

XSLT)[Xalan]

Resource files

• introspect XML form descriptions to locate resource related data (XML Doc

Beans)

• costruct resource files

TASK #4: GENERATE VIEW COMPONENTS

• generate the application deployment descriptor web.xml

• create an Ant script that puts all the files together and creates the application

WAR file.

3.4 Integrator Input

This section describes the input that the Integrator requires in order to generate a

service. Some of the parts included in this section also exist within the previous

deliverable D51-D61, but are also included here for completeness purposes.

3.4.1 Building modules

The description of a SmartGov service can be logically divided in different layers of

abstraction. These are depicted in the following diagram along with the name of the

corresponding element (these layers are described in more detail in the

followingsections).

20

Figure 5 SmartGov service description layers

There is one descriptor per service at the top level. A SmartGov service is composed

of a set of forms, one following the other as they are presented to the end-user.

Each form can contain both stand-alone controls as well as controls logically grouped

together. At the lowest level, a Transaction Service Element (TSE) is the most basic

module of a service. A TSE may correspond to a real data field in a table or may be a

temporary, calculated register.

All elements of the service can have any number of associated Knowledge Units

(KUs). These elements are intended to play the role of structured, online help, during

the service’s usage.

3.4.2 Taxonomies

The SmartGov platform also defines an additional level of abstraction, over the ones

described in the previous section. These are called service taxonomies and are

depicted in the following figure.1

1 The concepts described in this section are transparent to the Integrator’s implementation, as agreed with
project partners. They are only here for completeness.

21

Figure 6 Taxonomies and Service elements

SmartGov defines hierarchies of taxonomy nodes to which service elements are

attached. These taxonomies are used to logically group service concepts and

elements. This is useful as it gives a better overview of a particular element’s (e.g.

TSE) functionality and semantics. These relations are intended for design-time and

do not affect the Integrator.

3.4.3 Service elements

The following sections contain a more detailed description of the actual service

description elements, as are defined in the various schemas. Boxes with solid

borders denote mandatory elements, while dotted borders denote optional elements.

Elements with a small cross icon next to them denote composite elements,

containing more children, hidden for simplicity. Each section describes only those

fields of importance to the Integrator.

3.4.3.1 TS

TS is the top-level element in the service description hierarchy. There is only one TS

defined per SmartGov service. It defines a service as a set of forms,

viewed/executed by the user in sequence. The execution sequence may not

necessarily be sequential and may depend on certain values (not) being submitted.

22

TS element

TSid: a unique id for this service

serviceName: a short locale-sensitive text, suitable for a title or a similar caption

description: locale-sensitive text, providing a more extensive description of the
service. This may be included in the initial page of the service

includedFormSets: SmartGov services can be behave differently depending on
the end-user’s platform of communication (e.g. Web, WAP). Each set contains a
number of forms and the name of the associated platform. The “connection” with
the Form elements is done by using their unique ids (see below).

linkedKUNode: the unique ids of KUs associated with the service, in general.
These can include detailed descriptions of the service, tutorials, etc.

serviceValidationRule: logic rules applied to the service as a whole. A validation
rule contains a piece of code, either native or pseudo-code (SmartGov
expressions) that must hold true, before the service can be considered
successfully completed. If a rule fails, it defines locale-sensitive error messages.

deadline: a final date, after which the service will not be available to end-users

23

serviceStatistics: a set of metrics that need to be monitored by the service
implementation. These are defined as boolean fields.

3.4.3.2 Form

A Form element is the logical representation of an actual web form. A SmartGov

form is composed of individual TSEs and TSEGroups, containing more TSEs. The

Form may also have associated KUs and validation rules applicable to one or more of

its internal controls. The actual implementation is located in a separate xHTML file.

Form element

formId: unique id of this form, in the context of this service

formName: a locale-sensitive name that may be used as a title

description: a small, locale-sensitive paragraph with some infor on the contents
of the form

includedTSE: ids of TSE elements located on the form, not part of any TSEGroup

24

includedTseGroup: ids of TSEGroup elements, located on this form

linkedKUNode: unique ids of KUs related with this form

formValidationRule: one or more rules applied during data validation

formLayout: URI (relative or absolute) to the external xHTML file containing the
implementation of the form

formRelatedStatistics: a set of Boolean indicating which metrics the service
should maintain for this form

3.4.3.3 TSEGroup

A TSEGroup is a logical group of controls and does not necessarily correspond to a

visual control (e.g. panel). Apart from the simple case of grouping a set of static

controls, a TSEGroup can be used to group together repeatable controls. One such

example, is rows in a data grid. In this case, a group represents a row in the grid.

25

tseGroupId: unique id in the context of the service

groupName: locale-sensitive name that may be used a caption for the whole
group of controls

description: locale-sensitive

includedTse: unique ids of individual TSEs contained in the group

linkedKUNode: ids of KUs associated with this group

tseGroupValidationRule: validation rule applicable to all or part of the controls in
the group

retrieveMethod: a piece of code used to initialize values in controls of the group

storeMethod: code for storage of control values after validation has been
performed

26

repeats: information on how, if necessary, this group of controls should be
repeated

tseGroupStatistics: metrics to monitor for controls in the group

3.4.3.4 TSE

TSE element represents an individual control in a form or a group. The controls data

type can be one of the pre-defined in the SmartGov schemas or it can be a custom,

user-defined data type. The actual control corresponding to a TSE may require

manual user input or it may be rendered as a pick-list of pre-defined values. Data

entered are subject to validation.

27

TSE element

tseId: unique id in the context of this service

tseName: locale-sensitive name, to be used as the control’s caption

dataType: may be custom or one of the pre-defined ones

description: locale-sensitive, usually not displayed

maxLength: maximum length in characters, if a textual field

tseValidationRule: one or more rules applied during the validation of the data

defaultValue: initial value of the field

valueList: if this field is existent, the control is rendered as a pick-list. Each entry
is composed of has a locale-sensitive label and the actual value.

singleSelect: whether the select list will be rendered as a combo-box or a multi-
select list; ignored if valueList is not present

linkedKuNode: one or more KUs associated with this control

isVisible: boolean

isReadOnly: boolean

isMandatory: boolean

computationRule: if the value of the field is dynamically computed, this field
gives the rule to follow

onValueChange: code to execute upon value change

tseStatistics: statistics to monitor for this control

3.4.3.5 KU

A KU is a help item associated with a service element (TS, Form, TSE, TSEGroup).

The actual content may vary from a few lines to whole paragraphs and sections.

KUid: unique id in the context of the service

header: locale-sensitive title of this article

sections: denote paragraphs of locale-sensitive content

28

3.4.4 Functionality

A SmartGov service is described in a set of XML files conforming to pre-defined

schemas. There is one such schema for each one of the aforementioned elements.

This means that for each “instance” of a particular element there is one different file

produced by the designer front-end.

These XML files are interdependent and form a logical hierarchy. One such

hypothetical hierarchy is depicted in the following figure.

Figure 7 Example of a set of service description files

The relations between the different files resemble foreign key relations in a relational

schema. The id field of each element plays the role of the foreign key in these

connections. This is the reason why all ids within a service have to be unique. The

relations are not “hard”, i.e. imposed and checked by the XML Schema specification

or some other mechanism but, instead, they are assumed to be valid. It is up to the

Integrator to read the id reference, resolve it and locate the appropriate file.

The XML files will be stored in an XML-aware persistent storage mechanism the XML

repository which is described in deliverable D51-D61. This mechanism will accept

XPath expressions and return XML documents and will ease the task of resolving

element ids into actual XML documents

29

3.4.5 Establishing links between the form visual elements and
SmartGov semantic elements

A form participating in a SmartGov service essentially combines two facets:

1. the visual part, comprising of XHTML elements

2. the semantic part, consisting of links to SmartGov objects, such as KUs, TSEs,

TSE groups etc.

These two facets must be integrated in a way that is (a) easy and intuitive for the

domain experts to use, with basic only technical skills and (b) is possible to be

sequentially processed in order to produce the final service forms, together with the

accompanying code. Moreover, it is highly desirable to produce high-quality forms, in

order to make the service attractive to the users if its target group.

Taking these facts into account, the SmartGov project has specified a procedure for

extending one of the most popular HTML editors, namely DreamWeaver MX, to allow

for the integration step to be performed easily by domain experts that only have

basic skills in HTML page editing. According to this procedure, domain experts use

DreamWeaver MX to specify the associations between visual elements of the XHTML

forms and SmartGov platform items. Domain experts select through a click-and-drag

procedure the visual elements and then select the associated SmartGov item through

intuitive dialog boxes. When these selections have been made, DreamWeaver MX

formulates a proper custom tag that uniquely identifies the SmartGov platform item,

and embeds this tag into the XHTML code. Upon service generation the integrator

module recognises these custom tags and arranges for retrieving the information

pertaining to the relevant SmartGov platform items from the SKDB and appropriately

enhancing form functionality. The procedure, which will be documented in detail in

the user manual, comprises of the following steps:

1. the IT staff exports SmartGov items (KUs, TSEs, TSE groups etc) from the

SKDB into appropriately formatted XML files

2. The files generated in step 1 are installed in predefined locations, in order to

be accessible by the DreamWeaver MX environment. This step is also performed by

the IT staff.

3. the domain experts establish the links between the visual XHTML entities and

the semantic items of the SmartGov platform by highlighting first the desired XHTML

entities and then selecting the SmartGov item that the highlighted elements should

be linked to. XHTML entity highlighting is performed through the standard “click-and-

drag” methodology of window-based environments, whereas the selection of the

30

SmartGov platform items is performed via a tree-structured index that may

correspond to the organisational taxonomy that has been entered in the SmartGov

platform or, alternatively, to the Service/form set/form hierarchy which is used by

the SmartGov development environment. It is also possible that both selection paths

may co-exist, and the users can make use of the one more suited to their

preferences.

A sample screenshot of the procedure for link establishment is illustrated in Figure 8.

Full documentation for this procedure will be provided in the User’s Manual.

Figure 8 - Link establishment between visual and semantic entities

3.5 Integrator Processing layers

As the creation of the actual service from the descriptors is a complex task, it

seemed logical to decouple as much as possible the different logical steps of the

service building process. These steps were identified to be the following2:

2 Other tasks as compiling code files, copying and deploying to a production server
are well covered by Ant, they are not considered here.

31

Descriptor parsing & In-memory representation

Service element processing logic

Production of necessary files
The following paragraphs cover the different logical components of the Integrator, as

they respectively cater for the previous steps. The procedure is also depicted in

Figure 9.

Figure 9 Integrator Layers

3.5.1 Model

As mentioned previously, the service itself is described by a set of XML files that

conform to some pre-defined schemas. The existence of these schemas allows the

usage of Castor to automatically generate de-serialization classes that will take care

of transforming service elements into objects.

However, as the service is not described in one XML file but rather in several “softly”

linked files the Integrator component is required to support these “foreign key”

relations. For this reason, the model layer, apart from Castor-generated objects, is

also required to provide some additional classes that will help complete the object

graph that will correspond to the service element graph.

These latter classes are wrappers around Castor-objects. The only additional fields

introduced are there to implement object composition relations.

3.5.2 Processor

The intermediate layer between the service model and the actual creation of the

necessary service files is conventionally called Processor.

32

This layer contains the logic that determines which parts of the service object model,

created in the previous layer, are processed and by which objects. Classes contained

in this component are the place to add/modify logic concerning exactly which service

elements are supported and what kind of files are produced.

By convention, this component is also the controller of the serialization process,

propagating the request to contained processors and file builders (see next section).

3.5.3 Builder

The final layer in the processing sequence is the file-building layer. Classes of this

logical component deal with the creation of the final electronic service files. For this

reason, there are classes dealing with the creation of JSP pages, HTML files, Java

code files, resource bundles etc. The correlation between model elements and file

builder objects is performed at the Processor level.

3.6 Integrator Implementation

3.6.1 Packages

The following diagram shows the different packages of the Integrator component and

the interdependencies among them.

33

Figure 10 Integrator packages and interdependencies

Below is a short description of each package. For brevity, only the last part of the

package name is visible, as indicated in the diagram.

model: along with packages schemas and schemas.types corresponds to the
Model logical component, discussed in the previous section.

processor: classes in this package form the Processor component

builder: corresponds to the Model component

util: contains utility classes, e.g. to abstract file I/O actions

ant: contains Ant task classes that can be used as entry-points in the Integrator
process

schemas.struts: along with schemas.struts.types this package is automatically
generated by Castor to aid in the creation of the Struts configuration file.

34

3.6.2 Class diagrams

There has been an effort to follow a consistent design pattern during the

implementation of the Integrator. From the previous paragraphs, it becomes obvious

that the unique service element identifier is a basic concept in the definition of a

service. So, it seems natural to re-use this concept in the object model. For this

reason, it was decided to adopt the factory pattern with singleton objects, based on

the elements’ unique ids. For this reason, almost all Integrator classes are created by

a factory method that takes at least one parameter: the unique element id this

object corresponds to. Factory objects maintain internal object maps, based on the

provided ids. If a requested id already has an object assigned to it, this object is

returned.

The following diagrams show the classes contained in each of the previously

described packages, as well as the interdependencies among them.

35

Package com.archetypon.smartgov.model

36

Package com.archetypon.smartgov.processor

37

Package com.archetypon.smartgov.builder

38

Package com.archetypon.smartgov.util

3.6.3 Sequence diagrams

The following sequence diagrams are here as an example of the internal functionality

of the system.

Figure 11 Process launching sequence diagram

The IntegratorTask loads externally provided properties and creates all the necessary

factory objects. It invokes the process() method of the ServiceProcessor object for

the appropriate service name and, finally, calls serialize() which makes all created

file builders to dump their contents.

39

Figure 12 TS element processing sequence diagram

The ServiceProcessor object processes all contained XML elements of the TS element

and creates the necessary Processor and FileBuilder objects, invoking their process()

method.

3.7 Integrator Main Sub-components/Tasks

3.7.1 Help JSP

To provide support for the KUs at runtime, all KUs are transformed into HTML files

with a minimal formatting. These files are to be displayed, via inclusion, by a single

JSP page. The files are saved with names KUID_language.html. KUID corresponds to

the id of the KU file while language to the languages that this KU exists.

This JSP will take the id of the KU as a request parameter (e.g. http://…?kuid=…)

and displays the proper HTML file, according to the user’s preferred language. This is

done by examining the accepted languages header of the request and trying to

match it with a file. If the file is not existent, the language en is used as a fallback

value.

40

3.7.2 Integrator Ant Task

The functionality of the Integrator component is wrapped inside an Ant task. The

task will be provided with the required properties that will be passed to the

Integrator’s classes.

3.7.2.1 Compilation Task

All Java source files produced by the Integrator are compiled. This process is

performed by the corresponding Ant task.

The task will use the output directories of the Integrator task.

3.7.2.2 Deployment Task

This is the final task (or set of tasks) invoked in the launching Ant script. Their “duty”

is to deploy all files produced by the Integrator and the compilation task to the

appropriate application server directory

3.7.3 Data Storage

After all forms have been submitted and the data successfully validated, the
values need to be stored in some way, for future reference.

It was initially foreseen that value storage will be performed in a DB server.
However, since

the created service will communicate with the back-end agent sending XML
documents of the values

the service needs to be as light-weight and decoupled as possible

it has been decided to adopt an XML-based persistence approach. Storage in a
DBMS is still possible through the SmartGov agent, which may be used to
forward an XML document to the Information Interchange Gateway, where it will
be analysed and stored in a DBMS by a pluggable module, specifically written for
this task.

The XML storage file follows a simple schema, which is depicted in the following
figure

Castor generates a set of classes, able to operate against XML files conforming to
this schema. A small Ant script (data_storage.xml) is created in the /scripts

41

directory, performing exactly this operation. All generated Castor classes shall be
under package com.archetypon.smartgov.service.data.

Abstract class GenericActionForm extends ActionForm with one abstract method
public Enumeration getAllTses() that returns an enumeration of the classes
private members

ActionFormBean extends from abstract GenericActionForm and implements
getAllTses

Action casts ActionForm parameter with genericActionForm and calls getAllTses to
get the tseElements in an instance of ServiceResults(castor generated class).
Then it populates userName and timestamp and serializes the file.

By convention, the created XML file is stored in folder
<tomcat>/webapps/<service name>/data and is named <timestamp>.xml,
where timestamp is the long integer representation of the current java.util.Date.

The first Action invoked in the series of forms, calls method
ServiceHandler.create to create a new object if not present.

The last Action invoked in the sequence of forms, calls method
ServiceHandler.storeData to save the information.

At run-time the user of the service will be able to retrieve his submitted data and
edit them. For this purpose a call is made to the SmartGov agent, which returns
the appropriate XML document that was used for storing the data of the specific
user. Then this document is processed and its values are inserted within the
ActionForm bean of the service. Thus the user is presented with all the form
controls filled with the values that he previously submitted and he is able to edit
them.

3.7.4 Statistics Storage

According to the SmartGov specification, the dynamically created service must be
able to monitor some quantitative measures about the service’s usage. These
statistics are defined in almost all service element types.

Statistics are persistently stored inside an XML file that complies to the following
schema

42

Castor is used to generate classes that can handle XML files conformant to this
schema. An Ant script is created to perform this task (statistics.xml). Generated
classes are added to package com.archetypon.smartgov.service.statistics.

The relevant logic of the dynamically created business object
(TsBusinessObject) exposes the following public static methods

43

formSubmitted(String sessionId) Called every time an Action’s perform is
called; increases the corresponding counter in the table by one

formRejected(String sessionId) Called in the validate method of the
ActionForm class; increases the corresponding counter by one

submissionStarted(String sessionId) Called in the perform method of the
first form of the service, before any other code. If there is none, creates an entry
in a Map object using the session as key and the timestamp as value.

submissionEnded(String sessionId) Called in the perform method of the last
form, after all validation code. If there is an entry in the Map, it subtracts the two
values and calculates the difference, storing it in the Map. If there is no entry, it
ignores the call.

correctionStarted(String sessionId) Called whenever a validation method of
an Action or a Business object has located an error. If there is no entry in the
Map, one is created with a boolean flag set to true and a timestamp. If there
already an entry with the flag set to true, it is ignored. If the flag is false, the flag
is set to true and the timestamp is updated

correctionEnded(String sessionId) Called in every perform method. If there
is no such entry, it is ignored. If there is an entry with the flag set to false, it is
ignored. If there is an entry with the flag set to true, the two timestamps are
subtracted, the flag is set to false and the result is added to the previous total
correction time.

saveStatistics(String sessionId) Called in the perform method of the last
form in the sequence, after all other validation code. If there is a relevant entry it
is serialized to the file, otherwise it is ignored.

Calls to the previous methods are present in all relevant objects. Depending on
which service definition fields are set to true, the corresponding methods of the
service business object are “filled” with code or are left empty.

The file that statistics are serialized is named serviceStatistics.xml and is
serialized in folder <Tomcat>/webapps/<service name>/data (in relative terms,
in folder data, under the current working directory). Serialization (the call to
saveStatistics) happens in the last Action that is invoked in the series of
forms.

At run-time the statistics of a service will be available to managers by the
respective functionality of the Front-end tool. To achieve that the XML file
presented here will be transformed by an XSLT file into HTML and presented to
the users.

3.7.5 Design Time Service Model

The Translator component needs a way to query the structure of the service
during service integration (not run-time). This can be useful, for example, to
check if a given element id specified in a rule is valid or to get the data-type of a
particular TSE. For this reason, a lightweight representation model of the service
is required, providing the ability to query its structure.

To minimize new components and re-use as much as possible, it seems logical to
adapt the already-created model. To be able to conform to the new requirements

44

some changes to the original model will have to be done. These are shown in the
following diagram.

Method public Object getChild(String id) is recursive. If the id is not found in
childMap, then all elements in the Map are queried until the id is found and the
object returned. If the object is not found, it returns null. There should be explicit
test cases with non-existent structure queries (i.e. non-existent ids).

Methods public void setDisabled(boolean disabled) of Group are propagating3: if
the Group has entries in the childMap their respective methods are called with
the same argument. The value field of class Tse is of type java.lang.Object. It is
up to the calling class to determine how to cast the returned object, based on the
datatype field.

3 Providing information on whether a field is disabled as well as providing
propagating methods is beyond the requirements discussed with UoA. However, this
functionality is already present and only minor adaptations are required.

45

Class TSE also requires an int datatype and a boolean multipleValues field in its
constructor. The first field is one of the values defined in Castor-generated class
com.archetypon.smartgov.schemas.types.BuiltInDataType (e.g. TEXT_TYPE). The
second one is true if the TSE element has multiple values. The first parameter is
used to determine the datatype of the TSE element and populate the datatype
and widgetType fields with instances of the corresponding classes. The only
exception is if the second parameter is true: in that case, the widget type
becomes SGWidgetType.Select().

The SGType and SGWidgetType classes provide static factory methods that
return singleton instances to be used in comparisons.

The class structure above is generic. The instantiated model needs to reflect
exactly the fields and state of the service that is being created. This means that
during the service parsing and processing phase, this structure will have to be
created and be available during processing.

A new class is created, named ServiceModelBuilder. It takes a
com.archetypon.smartgov.model.TsElement as an argument in its process()
method and instantiates the above model appropriately. The class also has a
getter method named public Service getServiceModel(), returning the inner
variable named private Service serviceModel. Its serialize() method is overridden
and does nothing.

The BuilderFactory is modified. A new field named private ServiceModelBuilder
serviceModelBuilder is added. Also, a new factory method public
ServiceModelBuilder getServiceModelBuilder(<no args>) is added. This method
returns a singleton object, i.e. it first checks if serviceModelBuilder exists and if
necessary creates it before returning it.
The logic of ServiceProcessor is modified. It creates a child builder of type
ServiceModelBuilder and passes it an object of type
com.archetypon.smartgov.model.TsElement in its process() method. Care should
be given to create and invoke this builder before any other processor or builder is
called, so as the model is created and available when it is required.

46

4 The SmartGovLang Language

The SmartGovLang language is a compact, yet powerful language, specially designed

to allow domain experts to express validation checks and active behaviour in the

context of electronic services. The design goals for the SmartGovLang language

include the following:

1. the SmartGovLang language should be simple enough to be usable by domain

experts, who do not necessarily have programming skills

2. the SmartGovLang language should cover various aspects of active behaviour

needed in the context of electronic services, including:

a. modelling of validation checks which should hold for the data elements

entered by the user, with appropriate issuing of error messages when

validation checks fail.

b. ability to emit alert messages to the user when certain conditions hold;

these situation do not correspond to errors that will preclude the user to

submit the data, but rather typical omissions or misinterpretations that are

detected.

c. provisions for displaying informational messages that guide the user in the

process of filling in and submitting the electronic document.

d. capability to enable/disable certain form fields, depending on the values

entered in other fields (e.g. when “marital status” is set to “Single”, fields

related to spouse’s data should not accept input).

3. The SmartGovLang language should be able to model validation checks and

active behaviour in various scopes, such as single transaction service element,

transaction service element group, form and transaction service.

4. the SmartGovLang language should be easily mapped to an intuitive user

interface, facilitating the work of domain experts.

5. the SmartGovLang should not necessarily be able to express all possible

validation checks and interactions. This should lead to a complete, general-

purpose programming language which would only be usable by programmers.

Rather, it should be able to easily express the most common validation checks

and allow for usage of “native” executable code when the required checks or

behaviour cannot be modelled.

6. the SmartGovLang language should be translatable to languages that can be

executed in the environments of service clients (typically web browsers) and in

47

the environment of service providers (typically web servers). Especially for the

case of service clients, it is desirable that the generated code remains small and

compact to minimise download time.

7. it is desirable that the SmartGovLang language is extensible. Extensions at this

level cannot be performed by domain experts, and the involvement of IT staff will

be required.

In the following paragraphs, the SmartGovLang language is specified and the

mechanisms for translating SmartGovLang expressions to executable languages are

described.

4.1 Specification of the SmartGovLang language

The SmartGovLang language provides two broad categories of syntactic constructs,

namely full rules and compact rules. A full rule comprises of two parts, the condition

and the action, where:

• condition is a logical expression evaluating to true or false; the condition may

reference one or more form elements (i.e. pieces of data that may be

entered by the user) as well as global context information (e.g. the login

name of the user, the current state of the document etc). It is also possible

for the conditions of the SmartGovLang language to use a number of built-in

functions.

• action consists of one or more tasks that should be carried out when the

condition evaluates to true.

The two parts of a SmartGovLang rule are separated by the => character sequence

(“equal” sign, directly followed by the “greater than” sign).

Compact rules provide shorthands for full rule, aiming to facilitate the work of

domain experts, who will be thus able to express validation checks intuitively and

efficiently. Compact rules cover the most commonly used validation checks, allowing

for emission of error and warning messages. Compact rules do not cover active

behaviour, which requires the usage of full rules. Full rules and compact rules are

described in detail in the following paragraphs, whereas a BNF notation for the

SmartGov rule grammar is provided in Appendix A.

4.1.1 Specification of full rules

In the following paragraphs the specification of the SmartGovLang full rules is

described.

48

4.1.1.1 The condition part

The condition part of a SmartGovLang rule states the prerequisites for the

corresponding action part to be executed. The condition part is a logical (boolean)

expression, which must evaluate to true or false. Logical expressions may be:

1. simple, consisting of a single term only, or

2. complex, comprising of multiple simple expressions combined using the AND and

OR logical operators. A simple expression may also be negated using the NOT

logical operator, and parentheses may be used to specify arbitrary groupings of

expression combinations.

A simple expression is effectively a comparison between two quantities using one of

the relational operators =, <> (not equal), <, <=, > and >=. Each of the compared

quantities may be

1. a constant (numeric –e.g. 10, -2.4- or an alphanumeric literal enclosed in quotes
–e.g. “MARRIED”, “GREECE”).

2. a form element within the current scope (e.g. within the current TSE group or the

current form).

3. a global context value, e.g. the state of the current document (submitted,
pending, finalised etc). A list of context values will be provided.

4. a function accepting one or more parameters, with one of them typically being a

form element or a global context value. For a list of available functions see

appendix B.

5. a combination of the above, through arithmetic operators (+, -, *, /, %) and

function composition (i.e. a parameter to some function is the result of another

function).

A special case of a simple expression is the literal true (not enclosed in quotes),

which may be used for unconditional execution of the corresponding action part of

the rule.

4.1.1.2 The action part

The action part of a SmartGovLang full rule is a sequence of one or more actions that

will be performed when the respective condition evaluates to true. The specification

of each action is terminated using the semicolon character (;) and the allowable

specifications are as follows:

1. errorMessage(message). Marks an error and arranges for the presentation of a

suitable error message to the user, which is provided as the parameter within the

parentheses. In the presence of marked errors the user may not be able to

49

proceed to the next stage of the transaction service, until the errors are

corrected.

2. warningMessage(message). Arranges for the presentation of a message to the

user, which is provided as the parameter within the parentheses. The purpose of

the message is to draw the user’s attention to a specific issue and does not

preclude the user to proceed to the next stage of the transaction service.

3. informationMessage(message). Arranges for the presentation of an informational

message to the user, which is provided as the parameter within the parentheses.

The purpose of the message is to inform the user of the current transaction

service state and/or to guide the user along the various stages of the transaction

service.

4. disableField(fieldId). Disallows the user to enter values to the designated form

field, typically because of values entered in some other form field. For instance, if

the user enters “Single” in the marital status field, the field labelled as “Spouse

name” should not accept input.

5. enableField(fieldId). Allows the user to enter values to the designated field.

6. setField(fieldId, value). Sets the designated field to the specified value.

7. setFocus(fieldId). Moves the input focus to the designated field. This action has

no effect when the validation check is executed at the back-end, since no notion

of focus is applicable in this context.

Since the SmartGov platform targets multilingual environments, it is

necessary to provide the ability to specify messages (error, warning and

informational) in multiple languages. A number of options are available for

supporting this feature:

1. provide an appropriate interface through which the rules will be entered; the

interface will then prompt for each message in all supported languages.

2. require that a message identifier, rather than the message itself, will be entered

in actions related to messages. In a separate procedure the correspondence

between the message identifier and the messages in the different languages will

be specified.

3. impose an internal structure to the message, allowing it to host specification of

the message in all languages. In such an approach, the message specification

would actually be list of pairs (languageId, messageText), properly separated,

and the translating module will arrange for mapping this representation to

appropriate code structures. In such a case the error message for Wrong data in

50

English, Greek and Spanish could be entered as “EN::Wrong data|EL::Λάθος

δεδομένα|ES::Datos incorrectos”, with the vertical bars separating

representations in different languages and the double colons separating the

language designation from the actual error message within a single pair.

Since the specification of full rules is performed entirely in textual manner (and

mainly by IT staff), the first approach is considered inappropriate, since it would

replace straightforward text input with a multi-stage point-and-click procedure. The

second approach also requires two distinct stages with no direct link between them,

thus it is considered counter-intuitive and error prone (some message identifiers

could be left undefined, or some updates could be missed). Thus, the third

alternative is opted for, which allows for pure textual input and keeps all definitions

gathered in a single place. A full rule may be entered as two text portions,

accounting for the condition part and the action part, as illustrated in the following

figure:

Figure 13 – Sample interface for defining full rules

4.1.2 Specification of compact rules

Compact rules are effectively shorthands that may be used instead of full rules,

allowing domain experts to express common validation checks in an efficient

manner. Moreover, compact rules have been designed to facilitate their entry

through intuitive, form-based user interfaces, removing the need for knowledge of

any syntactic constructs. A compact rule of the SmartGovLang language consists of

three parts:

51

1. the severity designation, classifying the validation check as information, warning

or error. Warnings only emit alert messages to the service user, while errors may

prevent the user from moving on to further stages within the transaction service.

2. the message which will be displayed to the service user in the case that the

validation check fails.

3. the actual validation check, which may take one of the following forms:

a. between(fieldId, lowerLimit, upperLimit). The value of the designated

field is required to be between the lower limit and the upper limit (both

limits are inclusive). This form is equivalent to the full rule

COND: (fieldId >= lowerLimit) and (fieldId <= upperLimit)
ACT: notification_message(validationMessage)4

b. requires(fieldId1, fieldId2). If a value is entered in the field fieldId1

then a value should be also entered in the field fieldId2 (i.e. it should

not be left blank). This form is equivalent to the full rule

COND: (length(fieldId) > 0) and (length(fieldId) > 0)

ACT: notification_message(validationMessage)
c. precludes(fieldId1,fieldId2). If a value is entered in the field fieldId1

then no value should be provided for field fieldId2 (i.e. it should be left

blank). This form is equivalent to the full rule

COND: (length(fieldId) > 0) and (length(fieldId) = 0)

ACT: notification_message(validationMessage)
d. requiresMulti(fieldId1, fieldIdList2). If a value is entered in the field

fieldId1 then at least one of the fields referenced in fieldIdList2 should

be filled in. This form is equivalent to the full rule

COND: (length(fieldId) > 0) and ((length(fieldIdList[1]) > 0) or
(length(fieldIdList[2]) > 0) or ...)

ACT: notification_message(validationMessage)
e. checkRow(fieldIdList). This check fails if a value has been entered for

some of the fields referenced in the field list while some other fields

remain blank. In other words, it is required that either all fields have a

value or none of them has. This validation check is useful for checking

the completeness of table rows. This form is equivalent to the full rule

4 notification_message will map to either error_message or warning_message,
depending on whether the severity of the check is set to error or warning.
validation_message is an appropriately bundled version of the rule message (item
2).

52

COND: (length(concatenate(fieldIdList[1], fieldIdList[2], …) = 0)
or (length(fieldIdList[1] > 0) and (length(fieldIdList[2] > 0) and
…)

ACT: notification_message(validationMessage)
f. checkRelation(fieldId1, operator, fieldId2, c), where operator is one of

the relational operators (=, ≠, >, ≥, <, ≤) and c is a constant value.

This rule checks whether the condition fieldId1 operator fieldId2 * c

holds; if not the associated message is displayed as a warning or error

message. This form is equivalent to the full rule

COND: (fieldId1 operator fieldId2 * c)

ACT: notification_message(validationMessage)
The compact rules may easily be entered and edited through an intuitive user

interface through which the domain experts will only specify the check type and pick

the fields that participate in the validation check. A screenshot of such an interface is

presented in the following figure.

Figure 14 – Sample interface for defining compact rules

53

4.2 Translation of the SmartGovLang language

The SmartGovLang language should be translated, during service instantiation, to

the languages that will implement the back-end functionality (i.e. the functionality at

the organisational system offering the electronic service) and, where appropriate, the

front-end functionality (i.e. the functionality at the devices employed by the users to

access the electronic services). According to the SmartGov platform specifications,

the back-end functionality will be implemented using the Java language whereas the

most prominent dissemination channel will be the Web, therefore translation to the

Javascript language, implemented in most web browsers, will be supported. The code

generator architecture will remain open to accommodate translations to other

languages (e.g. PHP, ColdFusion etc).

The translation of SmartGovLang rules to the target language will be handled by a

distinct software module, the SmartGovLang translator. The SmartGovLang

translator will constitute of an abstract class, which will have one concrete interface

for each of the languages that translation is required for. The software module that

needs to generate concrete code will request the creation of an appropriate object

from a factory, specifying the language to which translation is required. The factory

will then return an object, whose methods will be invoked to implement the

translation.

In the context of each such invocation the following information must be provided:

1. an object describing the SmartGovLang rule that needs to be translated.
2. an object describing the form fields that are valid in the context of the validation

checks. This object should implement the following functionality (class and

method names are indicative only in this stage):

Ø Field getField(String FieldId) throws SGNonExistentField;

This method reports whether the designated field identifier is valid in the

context of the rule. If the field identifier is valid, an object of type Field

describing the field properties is returned; if the field is not valid, the

SGnonExistentField exception is thrown.

Ø Enumeration getFields()

This method returns an enumeration (list) of the fields accessible through the

scope; if no fields are accessible, then the return enumeration is empty.

The Field type object that is returned by the previous method should provide

interfaces that will allow it to be queried, at least for

54

(a) the name via which the generated code may reference the element (for

example the field fld100 may be referenced as textbox2 in the HTML

context and as userInput.getObject(“fld100”) in the context of the

server-side Java code)

(b) its expected data type (numeric, alphanumeric, date etc) and

(c) the client-side widget that is used for allowing the user to edit its value

(e.g. text box, check-box, radio button). This is required for generating

code to be used at the client side, since different widgets at the client

side require different handling to obtain or set their values.

According to the above, the interfaces that need to be supported by the Field

object are:

Ø String getName(String langId);

Ø SGType getType(String langId);

Ø SGWidgetType getWidget(String languageId);

3. an object describing the global context variables that may be referenced within

the expression. This object should be able to report whether an identifier belongs

to the current context value through a method

Ø SGContextVariable getContextVariable(String ctx) throws SGinvalidContext;

(its functionality is similar to the functionality of the getField method described in

(2) above, while the SGContextVariable object should support the following two

methods:

Ø String getName(String langId);

Ø SGType getType(String langId);

reporting the name via which the generated code may reference the global

context element and its expected type, respectively.

An alternative to passing these parameters upon invocation is the provision of a

suitable class with static methods, which will implement the same functionality.

As a result of such an invocation, the translator object will return the concrete code

in the requested language or throw a suitable exception in the event of an error (e.g.

malformed syntax or usage of an unknown identifier).

In more detail, the process of translating the validation checks is as follows:

1. The integrator reads from the XML repository the XML representations of the

validation checks5 and constructs appropriate Java objects. These objects are

5 The XML schema for the validation checks is described in section 4.2.1

55

instances of either the SGFullRule or the SGCompactRule class, which are both

extend the SGRule abstract class.

2. The integrator uses the SGLangTranslatorFactory class to create one or more

instances of the SGLangTranslator class. The SGLangTranslatorFactory class

provides two static methods, namely createClientTranslator and

CreateServerTranslator for generating code running on the client side and the

server side, respectively. Both methods accept a String-typed parameter

indicating the target language and return an object of type SGLangTranslator.

3. For each validation rule either in compact or full format, the integrator invokes

the translate instance method of the SGLangTranslator class, using the

SGLangTranslator objects returned in step (2). In other words the

SGLangTranslator class implements the following two methods:

SGTranslatedCode translate(SGFullRule fr);
SGTranslatedCode translate(SGCompactRule cr);

4. Upon successful completion, the translate methods return an

SGTranslatedCode object, which contains the following elements (with the

appropriate get methods, documented in section 4.2.2):

i. a string-typed element named concreteCode which is the result of the

translation to the target language.

ii. an element of type SGMultilingualMessages named messages, which

contains the messages associated with the validation rule. For compact rules,

these messages are directly extracted from the related SGCompactRule

object; for full rules, these are derived from the parameters to the

errorMessage, warningMessage and informationMessage action elements.

The SGMultilingualMessages interface implements the following methods,

facilitating access to the actual messages:

Enumeration getMessageIds(void);6
Enumeration getLangIds(void);
String getMessage(String messageId, String langId);
The integrator may invoke the getMessages and getLangIds methods of the

SGMultilingualMessages interface to retrieve the message identifiers and

the language identifiers used within a validation check. Then, for each

combination of a message identifier and language identifier, the getMessage

6 The Enumeration-typed results of these methods may be treated as strings.

56

method may be invoked to retrieve the relevant message in the specific

language.

Figure 15 illustrates an example of SmartGovLang rules translation into Java code,

for server side processing and Javascript code, for client-side execution. Translation

results from multiple rules are simply executed sequentially.

SmartGovLang rule:

 COND: (isMarriedFld = 0) and (wifeSurnameFld <> ‘’)
 ACTION: errorMessage(‘EN::In order to complete the wife’s name,

the “Married” indication must be checked’);
 setfocus(isMarriedFld);
Java Translation

if ((this.isMarriedFld == 0) && (!(this.wifeSurnameFld.equals(‘’))) {
 // errorMessages is a global context variable holding all validation
 // error messages for a single submission. “m1254” is the id if
 // the validation message, which is assigned at service generation
 // time. The message in the appropriate locale will be extracted
 // from the service resources and presented to the user.
 this.errorMessages.add(“m1254”);
 // setfocus is not meaningful in the back-end
}
Javascript Translation

if ((form1.isMarriedFld.value == 0) && (!(form1.wifeSurnameFld != ‘’)) {
 // the appropriate message for the user locale has been selected
 // and been planted into the code by the dissemination server
 alert(“In order to complete the wife’s name, the ‘Married’ indication
must be checked”);
 form1.isMarriedFld.focus();
// terminate checks execution, inhibit further actions (link traversal
// or form submission)
 return false;
}

Figure 15 - Translating a SmartGov rule to Java and Javascript

4.2.1 Storage of the SmartGovLang language

In the following paragraphs the XML schema for storing validation checks within the

SmartGov repository is documented. The XML schema includes provisions for storing

validation checks expressed in SmartGovLang (both in compact and full form), but

additionally checks in some native language. The conventions followed in the XML

schema is as follows:

57

1. A validation check defines (a) a designation whether the check should be

performed at the back-end only or both at the front-end and at the back-end and

(b) the actual validation rule.

2. the validation rule may be expressed:

a. as a compact SmartGovLang rule, in one of the forms listed in 4.1.2.

In this case the rule will be complemented by (i) a severity designation

indicating whether the validation rule should be followed mandatorily (error

level severity) or provisionally (warning level severity) and (ii) the message

that should be emitted if the validation check fails. The error message is a

multilingual resource.

b. as a full SmartGovLang rule. In this case, in particular, the error

messages and the severity are disregarded, since this information is

contained within the rule.

c. as a piece of native code (e.g. java, JavaScript, etc). If the rule should

only be checked at the back-end, the implementers need to provide a Java

implementation; if the rule should be checked both at the front-end and

back-end, a JavaScript implementation should be provided as well. The XML

schema includes provisions for accommodating checks in other languages as

well, to support system extensibility. Rules expressed in this form should

adhere to the guidelines provided for using native languages within the

SmartGov platform.

The XML schema for storing SmartGovLang rules follows.

58

 <xs:complexType name="nativeCodeFragment">
 <xs:sequence>
 <xs:element name="langId" type="xs:string"/>
 <xs:element name="usefulFor">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="front end"/>
 <xs:enumeration value="back end"/>
 <xs:enumeration value="front end and back end"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:choice>
 <xs:element name="codeText" type="xs:string"/>
 <xs:element name="fileSpec" type="xs:anyURI"/>
 </xs:choice>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="SGbetweenCheck">
 <xs:sequence>
 <xs:element name="fieldId" type="xs:string"/>
 <xs:element name="lowerBound" type="xs:string" minOccurs="0"/>
 <xs:element name="upperBound" type="xs:string" minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="SGrequiresCheck">
 <xs:sequence>
 <xs:element name="fieldId" type="xs:string"/>
 <xs:element name="requiredFieldId" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

59

<xs:complexType name="SGprecludesCheck">
 <xs:sequence>
 <xs:element name="fieldId" type="xs:string"/>
 <xs:element name="precludedFieldId" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="SGrequiresMultiCheck">
 <xs:sequence>
 <xs:element name="fieldId" type="xs:string"/>
 <xs:element name="requiredFieldId" type="xs:string"
 minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="SGrowCheck">
 <xs:sequence>
 <xs:element name="fieldId" type="xs:string"
 maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>

60

<xs:complexType name="SGrelationCheck">
 <xs:sequence>
 <xs:element name="fieldId1" type="xs:string"/>
 <xs:element name="relationalOperator">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="="/>
 <xs:enumeration value="<"/>
 <xs:enumeration value="<="/>
 <xs:enumeration value=">"/>
 <xs:enumeration value=">="/>
 <xs:enumeration value="<>"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="fieldId2" type="xs:string"/>
 <xs:element name="constant" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

61

<xs:complexType name="compactSmartGovLang">
 <xs:sequence>
 <xs:choice>
 <xs:element name="betweenCheck" type="SGbetweenCheck"/>
 <xs:element name="requiresCheck" type="SGrequiresCheck"/>
 <xs:element name="precludesCheck" type="SGprecludesCheck"/>
 <xs:element name="requiresMultiCheck"
 type="SGrequiresMultiCheck"/>
 <xs:element name="rowCheck" type="SGrowCheck"/>
 <xs:element name="relationCheck" type="SGrelationCheck"/>
 </xs:choice>
 <xs:element name="validationMessage" type="multilingualText"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="severity">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="warning"/>
 <xs:enumeration value="error"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="fullSmartGovLang">
 <xs:sequence>
 <xs:element name="condition" type="xs:string"/>
 <xs:element name="action" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="smartGovLangCode">
 <xs:choice>
 <xs:element name="compactRule" type="compactSmartGovLang"/>
 <xs:element name="fullRule" type="fullSmartGovLang"/>
 </xs:choice>
</xs:complexType>

62

<xs:complexType name="validationMethod">
 <xs:sequence>
 <xs:element name="ruleId" type="xs:string"/>
 <xs:element name="code" type="method"/>
 <xs:element name="validateAt">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="back end"/>
 <xs:enumeration value="front end and back end"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="statistics" type="validationMethodStatistics"
 minOccurs="0"/>
 </xs:sequence>
</xs:complexType>

<xs:complexType name="method">
 <xs:sequence>
 <xs:element name="description" type="multilingualText"/>
 <xs:choice>
 <xs:element name="smartgovLangCheck" type="smartGovLangCode"/>
 <xs:element name="nativeLangCheck" type="nativeCodeFragment"
 maxOccurs="unbounded"/>
 </xs:choice>
 </xs:sequence>
</xs:complexType>

4.2.2 API for the SmartGovLang language translator

Translating SmartGovLang rules into solid code requires a SGLangTranslator object,

that is different depending on the target environment. Creating the appropriate

object is done by means of the SGLangTranslatorFactory class, which provides static

“factory” methods. In Figure 16, the class diagram that describes the translator

interface is presented. Two different creation methods are provided: one for client-

side translators and one for server-side translators. The only languages that will be

supported under the scope of the project are “Java-Struts” for the server side and

“Javascript-Struts” for the client.

63

SGMultilingualMessages

Enumeration getMessageIds();
Enumeration getLangIds(void);
String getMessage(

String messageId, String langId);

SGLangTranslatorFactory

SGLangTranslator createClientTranslator(String LangId)
SGLangTranslator createServerTranslator(String LangId)

SGLangTranslator SGTranslatedCode

String ConcreteCode

creates

creates

messages

JavascriptClientTranslator

…

JavaServerTranslator

…

SGLanguageNotSupported throws

SGLanguageSyntaxError

throws
SGTranslatedCode translate(

Method rule, Service fields, String elementId);

Figure 16 The SmartGovLang translator interface.

A translator translates a rule, represented by a Castor object7. The rule is executed

in the general context described by service and is a part of the element with the

specified id. All translators use the SGLangTranslator interface, which provides a

translate method for the translation. Upon translation error, an

SGLanguageSyntaxError exception is thrown, with a descriptive message; otherwise, a

SGTranslated object is created with the translated code and an object providing an

enumeration over all internationalized messages if any.

7 http://www.castor.org

http://www.castor.org

64

5 SmartGov Agent – Information Interchange

Gateway

The SmartGov Agent and the Information Interchange Gateway are the SmartGov

platform components that provide facilities for communication between the service

delivery environment and the organisational information system (or other, third-

party systems). More specifically, the SmartGov Agent arranges for collecting

requests from the services running within the Service Delivery Environment. For

each such request the SmartGov Agent examines its configuration files to determine

which are the methods that may be employed to satisfy the request. The directly

supported methods are:

1. forward the request to the Information Interchange Gateway. Transferring

may be performed via standard TCP/IP or via Secure Socket Layer.

2. storage of the request to a database.

3. storage of the request to an OS file.

The SmartGov Agent provides resilience against transient failures, such as temporary

lack of communication with the Information Interchange Gateway, inability to

communicate with the database (e.g. because the database server is rebooting) etc.

This is implemented by storing such requests in the Pending Actions Queue, and by

retrying the relevant methods after a certain time period.

When the Information Interchange Gateway receives a request (case 1 above), it

inspects its configuration files that describe how the specific request should be

served. The options available for serving a request are:

1. execution of a Java method.

2. execution of an OS-level program.

3. storage of the request to a database

4. storage of the request to an OS file.

The two first methods may return results to the Information Interchange Gateway

through the return value (Java methods) or through the standard output (OS-level

programs). These results are appropriately forwarded to the calling service. In the

latter two cases, only a success indication is returned to the calling service. In order

to implement this communication scheme, the SGA and the IIG exchange XML

messages that comply to the XML DTDS illustrated in Figure 17 and Figure 18:

65

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT XMLPacket (serviceName, XMLMessage, realTime, credentials)>
<!ELEMENT serviceName (#PCDATA)>
<!ELEMENT XMLMessage (#PCDATA)>
<!ELEMENT realTime (#PCDATA)>
<!ELEMENT credentials (#PCDATA)>

Figure 17 – DTD for SmartGov Agent to Information Interchange Gateway

Messages

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT XMLPacket (replyType, replyBody)>
<!ELEMENT replyType (#PCDATA)>
<!ELEMENT replyBody (#PCDATA)>

Figure 18 – DTD for Information Interchange Gateway to SmartGov Agent

Messages

The platform is complemented by facilities for posting notifications from the

organisational information system to the service delivery environment. To this end,

the Information Interchange Gateway Notification Initiator (IIG-NI) library is

provided that may be included by application programs. Notifications posted from the

organisational information system are received by the SmartGov Agent Notification

Interceptor (SGA-NI) process running in the context of the service delivery

environment. Upon reception of a notification, the SGA-NI schedules the execution of

a task, which will constitute the service delivery environment’s reaction to the

notification. The message sent by the IIG-NI to the SGA-NI contains only the

notification name, without any transformations or envelopes.

Responsible for the execution of scheduled tasks and retrying of the transiently failed

requests is undertaken by two separate processes, namely the SmartGov Agent

Pending Actions Queue Daemon (SGA-PAQUED) and the Information Interchange

Gateway Pending Actions Queue Daemon (IIG-PAQUED), running in the context of

the service delivery environment and the organisational information system,

respectively.

Finally, the SmartGov platform provides a separate library, SGLogging, allowing the

applications to log messages to persistent storage. Messages posted using the

facilities of this library are retrieved and stored into persistent storage by a separate

process, the SGLogListener.

66

5.1 Implementation of the SmartGov Agent –

Information Interchange Gateway

The SmartGov Agent is implemented as a Java software library that is directly

callable from within electronic services. Applications willing to post requests employ

the SGAppToSGAgentRequest method of the SGAgent, which then –depending on

the configuration– passes the responsibility for serving the request to one of the

following classes: SGAClient, SSLSGAClient, DatabaseStore, while local file

stores are handled within the SGAgent class. This modular architecture caters for

extensibility, when new handling procedures should be added. The class diagram for

the pertinent classes is illustrated in Figure 19.

SGAgentFactory

SGAgent newSGAgent(String propFile)

SGAgent

creates

SSLSGAClient

…

SGAClient

…

SGAgentException throws

throws

String SGAppToSGAgentRequest(long requestId, String serviceName,
String XMLMessage, boolean realTime, boolean persistent)

DatabaseStore

…

uses uses uses

Figure 19 - Class Diagram for SmartGov Agent

Within the context of the organisational information system, when the Information

Interchange Gateway receives a request, it spawns a new execution thread to handle

it, facilitating thus parallel processing of requests. The contents of each request are

first verified for syntactical correctness and completeness and then, depending on

the configuration, are forwarded for actual execution to the appropriate code

fragment. Concrete separation of code fragments handling each execution procedure

facilitates extensibility, since only the additional code should be provided. The class

diagram for the Information Interchange Gateway is depicted in Figure 20.

67

IIGServer

public static void main(String[] args)

IIGServerThread

creates

IIGMyP

…

IOException throws

…

uses

IIGServerException throws

Figure 20 - Class diagram for the IIGServer

The IIGServer only handles “normal” TCP/IP communication i.e. unencrypted and

unauthenticated. When security policy dictates the use of more secure mechanisms,

the SSLIIGServer can be used instead, which includes support for secure

communications, over the SSL communication library. The SSLIIGServer can use any

of the encryption/authentication algorithms supported by the SSL library (e.g. RC4,

3DES etc), provided that the appropriate keys for the algorithms have been

generated and installed in the appropriate keystore; alternatively a certification

authority may be used to verify the keys. The class diagram for the SSLIIGServer is

illustrated in Figure 21.

68

SSLIIGServer

public static void main(String[] args)

SSLIIGServerThread

creates

IIGMyP

…

IOException throws

…

uses

IIGServerException throws

Figure 21 - Class diagram for the SSLIIGServer

Both the SmartGov Agent and the Information Interchange Gateway use the facilities

of an XML parser to (a) analyse their configuration files and (b) validate and process

the requests and results.

The logging facilities are provided as a Java software library that is directly callable

from within electronic services or any other program running within the context of

the service delivery environment or the context of the organisational information

system. A service or application willing to make use of the logging facilities may

either use the SGLogging package or use the higher-level constructs provided in the

SGUtil class. More specifically, the SGUtil class implements the logMessage

method, which creates a new SGLogger or retrieves the existing one, and uses it to

log the given message. The class diagram for the logging facilities is depicted in

Figure 22.

69

SGLoggerFactory

SGLogger newSGLogger(String propertyFile)

SGLogger

creates

SGUtil

void logMessage(int criticality, String message)

SGLoggerException throws

void logMessage(int severity, String message)

uses

SGUtilException throws

throws

Figure 22 - Class diagram for logging facilities

The SGA-PAQUED and IIG-PAQUED are implemented as separate programs, which

may be executed directly from the operating system via the Java runtime

environment.

The SGLogListener facility is implemented as separate program, directly

executable from the operating system via the Java runtime environment.

The SGA-NI facility is implemented as separate program, directly executable from

the operating system via the Java runtime environment.

70

6 Conclusions

This deliverable presented the result of the final iteration of the development phase

of the SmartGov platform and focused on the components developed within

workpackage 6 i.e. the integrator, the SmartGovLang Translator and the SmartGov

agents. As it was anticipated, the main design principles and functionality features as

drawn in D51-61 are followed; however small amendments have been made as a

result of the iterations performed within the development phase.

71

7 References

[RUP] The Rational Unified Process, IBM Software Group, available at

http://www.rational.com/products/rup/index.jsp
[D31] State-of-the-Art and Current Situation at Public Authorities,

SmartGov Project Deliverable 31, Stelios Gorilas, George
Boukis, Giorgos Lepouras, Kostas Vassilakis, Akrivi Katifori,
John Fraser, Heredia Larios Segundo, Rafael Canadas Martinez,
Gerald Weiss, Kirstin Karasz, Spyros Argyropoulos and Hilary
Coyne (May 31, 2002) available at
http://www.smartgov-project.org/index.php?category=results&langid=eng

[D41] User Requirements, Services and Platform Specifications,
SmartGov Project Deliverable 41, Akrivi Katifori, Anna Charissi,
George Lepouras, Stathis Rouvas, Costas Vassilakis, Nick
Adams, John Fraser, Segundo Heredia Larios, George Boukis,
Stelios Gorilas, Rafael Canadas Martinez and George Laskaridis,
available (July 31, 2002) at
http://www.smartgov-project.org/index.php?category=results&langid=eng

[D51-61] Low-level Specifications of SmartGov Services and Applications
and the Knowledge-Based Core Platform, SmartGov Project
Deliverable 51-61, Stelios Gorilas, Pablo Fernadez Pardo, Tomas
Pariente Lobo, Costas Vassilakis, Akrivi Katifori, Anna Charissi,
George Lepouras, Stathis Rouvas, Nick Adams, John Fraser, Ann
Makynthos (February 28, 2003) available at
http://www.smartgov-project.org/index.php?category=results&langid=eng

[Struts] The Jakarta project, The Struts Framework, available at
http://jakarta.apache.org/struts/index.html

[Ant] Apache foundation, The Apache Ant Project, available at
http://ant.apache.org/

[XML] World Wide Web Consortium, The XML Specification, available
at http://www.w3.org/xml

[Castor] The Exolab Group, The Castor Project, available at
http://castor.exolab.org/index.html

[Xalan] The Apache XML Project, Xalan, available at
http://xml.apache.org/xalan-j/

http://www.rational.com/products/rup/index.jsp
http://www.smartgov-project.org/index.php?category=results&langid=eng
http://www.smartgov-project.org/index.php?category=results&langid=eng
http://www.smartgov-project.org/index.php?category=results&langid=eng
http://jakarta.apache.org/struts/index.html
http://ant.apache.org/
http://www.w3.org/xml
http://castor.exolab.org/index.html
http://xml.apache.org/xalan-j/

72

Appendix A – SmartGovLang grammar

SmartGovLangRule ::= fullRule
 | compactRule
 ;
compactRule ::= ‘(‘ severityDesignation ‘,’ message ‘,’ validation ‘)’
 ;
sevirityDesignation ::= ‘information’
 | ‘warning’
 | ‘error’
 ;
message ::= multiLingualText;
multilingualText ::= ‘(‘ multilingualTextElements ‘)’ ;
multilingualTextElements ::=
 | multilingualTextElement multilingualTextElements
 ;
multilingualTextElement ::= ‘(‘ localeSpecifier ‘,’ anyText ‘)’;
validation ::= ‘between’ ‘(‘ fieldId ‘,’ lowerLimit ‘,’ upperLimit ‘)’
 | ‘requires’ ‘(‘fieldId ‘,’ fieldId ‘)’
 | ‘precludes’ ‘(‘fieldId ‘,’ fieldId ‘)’
 | ‘requiresMulti’ ‘(‘fieldId ‘,’ fieldIdList ‘)’
 | checkRow(fieldIdList)
 | ‘checkRelation’ ‘(‘ fieldId ‘,’ operator ‘,’ fieldId, ‘,’
 numberConstant ‘)’
 ;
fieldIdList ::= fieldId
 | fieldId ‘::’ fieldIdList
 ;
operator ::= ‘=’ | ‘!=’ | ‘>’ | ‘>=’ | ‘<’ | ‘<=’ ;
fullRule ::= condition ‘=>’ action ;
condition ::= simpleCondition
 | ‘(‘ condition ‘)’
 | not ‘(‘ condition ‘)’
 | condition ‘AND’ condition
 | condition ‘OR’ condition
 ;
simpleCondition ::= quantity operator quantity
 | booleanFunction
 ;
quantity ::= stringConstant
 | numberConstant
 | fieldId
 | globalContextReference
 | nonBooleanFunction
 | arithmeticExpression
 ;
arithmeticExpression ::= quantity arithOp quantity ;

73

arithOp ::= ‘+’ | ‘-‘ | ‘*’ | ‘/’ | ‘%’ ;
booleanFunction ::= ‘hasAlphabet’ ‘(‘ quantity ‘,’ quantity ‘)’
 | ‘matches’ ‘(‘ quantity ‘,’ quantity ‘)’
 | ‘startsWith’ ‘(‘quantity ‘,’ quantity ‘)’
 | ‘endsWith’ ‘(‘ quantity ‘,’ quantity ‘)’
 | ‘isValidDate’ ‘(‘ quantity ‘)’
 isValidDate’ ‘(‘ ‘s=’ quantity ‘)’
 | ‘isValidTime’ ‘(‘ quantity ‘)’
 ;
nonBooleanFunction ::= ‘int’ ‘(‘ quantity ‘)’
 | ‘fractional’ ‘(‘ quantity ‘)’
 | ‘length’ ‘(‘ quantity ‘)’
 | ‘index’ ‘(‘ quantity ‘,’ quantity ‘)’
 | ‘substr’ ‘(‘ quantity ‘,’ quantity
 ‘,’ quantity‘)’
 | ‘concatenate’ ‘(‘ quantity ‘,’ quantity ‘)’
 | ‘date’ ‘(‘ ‘)’
 | ‘year’ ‘(‘ ‘)’
 | ‘month’ ‘(‘ ‘)’
 | ‘day’ ‘(‘ ‘)’
 | ‘weekDay’ ‘(‘ ‘)’
 | ‘time’ ‘(‘ ‘)’
 | ‘minute’ ‘(‘ ‘)’
 | ‘second’ ‘(‘ ‘)’
 | ‘count’ ‘(‘ groupId ‘)’
 | ‘sum’ ‘(‘ columnId ‘)’
 | ‘max’ ‘(‘ columnId ‘)’
 | ‘min’ ‘(‘ columnId ‘)’
 ;
action ::= singleAction ‘;’
 | singleAction action
 ;
singleAction ::= errorMessage ‘(‘ multilingualText ‘)’
 | warningMessage ‘(‘multilingualText ‘)’
 | informationMessage ‘(‘multilingualText ‘)’
 | disableField ‘(‘ fieldId ‘)’
 | enableField ‘(‘ fieldId ‘)’
 | setField ‘(‘ fieldId ‘,’ quantity ‘)’
 | setFocus ‘(‘ fieldId ‘)’
 ;

74

Appendix B - List of functions available in

SmartGovLang

Function Comments

int(x)
The integral part of value x, which must be

arithmetic.

fractional(x) The fractional part of value x, which must be

arithmetic.

length(s) The number of characters in string s

index(s, t) Returns the position, in characters,

numbering from 1, in string s where string t

first occurs, or zero if it does not occur at all.

substr(s,m, n) Returns the at most n-character substring of s

that begins at position m, numbering from 1.

concatenate(s1, s2) Returns a string whose value is string s1,

followed by s2.

hasAlphabet(s, a) Returns true if the string s contains only

characters listed in string a, or false,

otherwise

matches(s, e) Returns true if the string s matches the

pattern specified in e or false otherwise. This

function may not be supported in all front-

ends.

startsWith(s, prefix) Equivalent to the following expression

matches(substr(s,1,length(prefix)),prefix)

endsWith(s, postfix) Equivalent to the following expression:

matches(substr(s,length(s)-

length(prefix),length(prefix)),prefix)

date() Returns the current system date

isValidDate(yyyy, mm, dd)

isValidDate(s=“yyyy/mm/dd”)

Returns true if the given date is valid,

otherwise false.

isValidTime(hh, mm, ss)

isValidTime(s=“hh:mm:ss”)

Returns true if the given time is valid,

otherwise false.

year() Returns the current system year

75

Function Comments

month() Returns the current system month

day() Returns the current system day

weekDay() Returns the current system week day

(sun,mon,tue,…)

time() Returns the current system time

minute() Returns the current system minute

second() Returns the current system second

count(repeatingGroup) Returns the number of rows in a repeating

group (table) html table? Server side

checking?

sum(columnReference) Returns the sum of the values in the

designated column.

max(columnReference) Returns the maximum of the values in the

designated column.

min(columnReference) Returns the minimum of the values in the

designated column

76

Appendix C – Integrator JavaDocs

Package com.archetypon.smartgov.builder

public class com.archetypon.smartgov.builder.StrutsConfigBuilder extends

com.archetypon.smartgov.builder.FileBuilder

Builds the struts-config.xml file of the service web application. It is a wrapper around the

Castor-generated objects that correspond to the struts-config schema.

Methods public void process(Object modelObject)

Creates the Struts configuration file from the given service definition object.

Parameters

 modelObject - an object of type @see

com.archetypon.smartgov.model.TsElement

See Also

 com.archetypon.smartgov.builder.FileBuilder#process(Object)

public void serialize()

Marshals the contents of the contained Castor object to a temp String and stores

the file.

public class com.archetypon.smartgov.builder.PropertyBuilder extends

com.archetypon.smartgov.builder.FileBuilder

Creates the application's language resources. These FileBuilders are created one per model

element and contain the text of all internal fields of type multilingualText. Each individual

PropertyBuilder object corresponds to the multilingual content of a particular field (e.g.

Form.description). For this reason, they are created using a URI following this pattern: _ (e.g.

Form1_description). Each multilingual entry is stored in an internal Map using its locale as

name. At the end, during serialization, each entry is appended to the corresponding properties

file, named _locale.

Methods public void serialize()

77

Appends properties to the respective message bundles. For each entry in the

value Map, a file name is created called _locale. For each one, the @see

com.archetypon.smartgov.util.StorageWrapper#storePropertiesDocument(Reader

, String, boolean) method is called, and entry like the following is appended, =

value.

See Also

 com.archetypon.smartgov.builder.FileBuilder#createFiles()

public void process(Object modelObject)

Processes a multilingual entry. The content's value is placed in the Map using the

locale as key.

Parameters

 modelObject - of type @see

com.archetypon.smartgov.schemas.MultilingualText

See Also

 com.archetypon.smartgov.builder.FileBuilder#process(Object)

public class com.archetypon.smartgov.builder.JspBuilder extends

com.archetypon.smartgov.builder.FileBuilder

This class is in charge of post-processing and serializing the JSPs of the service. It expects an

object of type java.lang.StringBuffer in its process method. This buffer is used as the core for

the generated JSP page, prepended with tag library definitions and directives. The generated

JSP is saved inside the global destination path (basePath), under folder identified by global

variable jsp.path .

Methods public void serialize()

Stores the contents of the internal buffer as a JSP file. The path to store JSP

pages, located in property "jsp.path" is prepended to the base URI used to invoke

this Processor.

public void process(Object externalBuffer)

Processes the given JSP page core. The provided object is expected to be of type

java.lang.StringBuffer . It appends the tag libary declaration as defined in the

iteration document

Parameters

78

 externalBuffer - of type StringBuffer

See Also

 Iteration Plan #1c, Task 12, <i>Usage of common ActionForm in

JSPs</i>

 Iteration Plan #1c, Task 05, <i>Creation of a common ActionForm

class</i>

public class com.archetypon.smartgov.builder.HelpBuilder extends

com.archetypon.smartgov.builder.FileBuilder

Creates one or more help files that usually corresponds to a KU object. The produced files are

named uri _ contentLocale .txt and have some basic HTML formatting. The files are meant to

be displayed by help.jsp .

Methods public void process(Object modelObject)

Processes a KuElement. For each of its elements, appends the appropriate

information in the corresponding StringBuffer object as fo0rmatted HTML.

Parameters

 modelOPbject - of type @see com.archetypon.smartgov.model.KuElement

See Also

 com.archetypon.smartgov.builder.FileBuilder#process(Object)

public void serialize()

For each locale, creates the necessary file. The naming scheme that is followed is

basePath/ uri _ contentLocale . The files are stored as HTML documents by the

used @see com.archetypon.smartgov.util.StorageWrapper

See Also

 com.archetypon.smartgov.builder.FileBuilder#createFile()

public class com.archetypon.smartgov.builder.FormBeanBuilder extends

com.archetypon.smartgov.builder.FileBuilder

Creates a Java class to keep a form's values. The generated class has the following

79

characteristics: - is named formId Form - belongs to the package "form.apackage", defined by

@see BuilderFactory#properties - has getters and setters for all TSEs defined in the

corresponding form

Methods public void process(Object modelObject)

Processes the given Form element as well as it's linked TSEGroups. For each

included TSE it creates a variable and a pair of getter and setter methods.

Parameters

 modelObject - of type @see

com.archetypon.smartgov.model.FormElement

See Also

 com.archetypon.smartgov.builder.FileBuilder#process(Object)

public void serialize()

Stores the class file in the basePath. It transforms the package name into the

appropriate path suffixed to the basePath.

See Also

 com.archetypon.smartgov.builder.FileBuilder#createFiles()

public abstract class com.archetypon.smartgov.builder.FileBuilder

Base class for all SmartGov dynamic file building objects.

Methods protected abstract void process(Object modelObject)

Actual model object processing. This method must be overriden by descendant

classes.

Parameters

 modelObject - can be an object that is automatically generated by Castor

(package com.archetypon.smartgov.schemas) or it may be a model wrapper

object (package com.archetypon.smartgov.model). The descendant class should

clarify this in this method's documentation.

public abstract void serialize()

File creation method. Must be overriden by descendant classes.

Fields protected factory

80

parent factory object

protected uri

URI of the resource this builder is attached to

protected basePath

path where produced files should be sent to

public class com.archetypon.smartgov.builder.BusinessObjectBuilder extends

com.archetypon.smartgov.builder.FileBuilder

Methods public void serialize()

See Also

 com.archetypon.smartgov.builder.FileBuilder#createFiles()

protected void process(Object modelObject)

See Also

 com.archetypon.smartgov.builder.FileBuilder#process(Object)

public class com.archetypon.smartgov.builder.BuilderFactory

Provides factory methods that return all the required file-building classes. All objects created

with this class are singleton, i.e. the class maintains an internal registry of created objects.

This means that no two objects of the same type can correspond to the same URI.

Constructors public BuilderFactory(Properties properties, StorageWrapper wrapper)

Methods public com.archetypon.smartgov.builder.BusinessObjectBuilder

getBusinessObjectBuilder(String uri)

public com.archetypon.smartgov.builder.FormBeanBuilder

81

getFormBeanBuilder(String uri)

public com.archetypon.smartgov.builder.JspBuilder getJspBuilder(String

uri)

public com.archetypon.smartgov.builder.PropertyBuilder

getPropertyBuilder(String uri)

public com.archetypon.smartgov.builder.StrutsConfigBuilder

getStrutsConfigBuilder(String uri)

public com.archetypon.smartgov.builder.HelpBuilder

getHelpBuilder(String uri)

public java.lang.String getPath(String key)

Retrieves the path from the given property.

Parameters

 key - to retrieve the value of

Returns

 the value of the key, suffixed with a "/". If the property is not existent, or

the proeprties object is null, the current directory path (./) is returned.

public java.lang.String getProperty(String key)

Retrieves the given property.

Parameters

 key - to retrieve the value of

Returns

 the value of the property, or null if it is not existent

public com.archetypon.smartgov.util.StorageWrapper

getStorageWrapper()

Returns the storageWrapper.

Returns

 StorageWrapper

public class com.archetypon.smartgov.builder.BuilderException extends

82

com.archetypon.smartgov.schemas.struts.Exception

Constructors public BuilderException()

83

Package com.archetypon.smartgov.process

public class com.archetypon.smartgov.process.XhtmlProcessor extends

com.archetypon.smartgov.process.Processor

Takes care of pre-processing xHTML files associated with service forms. The class is

responsible of processing the xHTML file and replacing HTML form control placeholders with

Struts control tags. The placeholders are in the form of xHTML comments and contain exactly

the id of the corresponding element or a known text. The correspondence between

placeholders and Struts tags is the following: FORM_BEGIN -- : action="..." method="POST"

>FORM_END -- : TSE_ID -- : or ELEMENT_ID _HELP -- : onclick="..."/ holding all KU items

that are linked with the given ELEMENT_ID ELEMENT_ID _CAPTION -- : var="..."/ stating the

name of the control The changes are applied to the original file, which is read and processed

in-memory. The result is this processing is provided to an instance of @link

com.archetypon.smartgov.builder.JspBuilder that is created and invoked as a child builder.

and written back as a JSP file, with the same base URI.

Methods public void process()

Loads and processes the xHTML file. First it replaces the form tags and then all

the rest (TSE, KU). It then creates an instance of @link JspBuilder and "feeds" it

with the results of the pre-processing.

See Also

 com.archetypon.smartgov.process.Processor#process()

public class com.archetypon.smartgov.process.XhtmlProcessor.Placeholder

Utility class. Represents an identifier (TSE or KU) located inside the file. The identifier's name

is accompanied by the beginning and ending index of the whole placeholder (ID -- >)

Constructors public XhtmlProcessor.Placeholder(String id, int beginIndex, int

endIndex)

Methods public int getBeginIndex()

public int getEndIndex()

84

public java.lang.String getId()

public boolean isHelp()

public boolean isCaption()

public class com.archetypon.smartgov.process.TseProcessor extends

com.archetypon.smartgov.process.Processor

Contains the logic applied during TSE element processing. The class currently supports the

following fields: - tseName - description - valueList - linkedKUNode. The class creates the

following child Processors: - @see com.archetypon.smartgov.process.KuProcessor The

following builders are created as children: - @see

com.archetypon.smartgov.builder.PropertyBuilder

Methods public void process()

Main processing method.

See Also

 com.archetypon.smartgov.process.Processor#process()

public class com.archetypon.smartgov.process.ServiceProcessor extends

com.archetypon.smartgov.process.Processor

Contains the high-level logic applied during TS element processing. The class, currently,

processes the following TS child fields: - name - description - includedFormSets -

linkedKUNode . It creates the following types of Processors: - @see

com.archetypon.smartgov.process.FormProcessor - @see

com.archetypon.smartgov.process.KuProcessor It creates the following types of FileBuilders: -

@see com.archetypon.smartgov.builder.PropertyBuilder - @see

com.archetypon.smartgov.builder.StrutsConfigBuilder

85

Methods public void process()

Launching method. Takes care of parsing the service and launching the builders.

public class com.archetypon.smartgov.process.ProcessorFactory

Factory class for model @see Processors. The class offers singleton access to Processor

objects via factory methods. The uniqueness of objects is guarranteed by a set of Maps where

they are stored based on their URIs. Factory methods require the uri of the

LinkedModelElement that the Processor will correspond to and the enclosing @see

com.archetypon.smartgov.model.LinkedModelElement, if any.

Constructors public ProcessorFactory(BuilderFactory builderFactory, ElementFactory

elementFactory)

Default constructor.

Parameters

 builderFactory - will be passed to the constructors of all created

Processors

 elementFactory - will be used to retrieve the model elements

corresponding to the given URIs

Methods public com.archetypon.smartgov.process.ServiceProcessor

getServiceProcessor(String uri, LinkedModelElement parent)

public com.archetypon.smartgov.process.FormProcessor

getFormProcessor(String uri, LinkedModelElement parent)

public com.archetypon.smartgov.process.KuProcessor

getKuProcessor(String uri, LinkedModelElement parent)

public com.archetypon.smartgov.process.XhtmlProcessor

getXhtmlProcessor(String uri, LinkedModelElement parent)

public com.archetypon.smartgov.process.GroupProcessor

getTseGroupProcessor(String uri, LinkedModelElement parent)

public com.archetypon.smartgov.process.TseProcessor

86

getTseProcessor(String uri, LinkedModelElement parent)

public com.archetypon.smartgov.builder.BuilderFactory

getBuilderFactory()

Returns the builderFactory.

Returns

 BuilderFactory

public abstract class com.archetypon.smartgov.process.Processor

Base class for all model processors. Descendants of this class form the glue between the

service model as defined by classes in package com.archetypon.smartgov.model and the

actual file builders as defined in package com.archetypon.smartgov.builder . In other words,

Processor descendants decide which model (sub)elements will be processed, but not what will

happen with them. This is the "duty" of the corresponding FileBuilder descendants that are

invoked.

Methods public abstract void process()

Contains the logic of the object. Descendants need to override this method and

perform whatever processing is necessary. The main idea, however, should be

that this method only decides which builders are created/invoked. Some

Processors may need to use field @see Processor#wasProcessed to prevent

erratic behaviour due to multiple calls to this method.

public void serialize()

Forces content serialization. The default implementation causes all child

FileBuilders to create the necessary files. It also "propagates" the request to all

child Processors. This method is using field @see Processor#wasWritten to

prevent multiple calls to this object's method. If descendant classes need a

different behaviour, they should override this method.

protected final void addChildBuilder(FileBuilder builder)

Utility method. Adds a child builder to the local store.

protected final void removeChildBuilder(FileBuilder builder)

Utility method. Removes a child builder from the local store.

87

protected final void addChildProcessor(Processor processor)

Utility method. Adds a child processor to the local store.

protected final void removeChildProcessor(Processor processor)

Utility method. Removes a child processor from the local store.

Fields protected factory

factory that cretes other processors

protected builderFactory

factory that creates file builders

protected object

model object this processor corresponds to

protected uri

URI of the linked model element; utility field for quick access

protected parent

logically enclosing model element; may be left null. Usefull if the processor needs

to "backtrack" to the upper level

protected wasProcessed

indicates if the processor has laready been called

protected wasWritten

indicates if the processor has forced the enclosed builder to flush the file

protected childBuilders

local storage of all created FileBuilders; to be used when a serialization command

has been received

protected childProcessors

local storage of all created Processors; to be used when a serialization command

should be propagated

88

public class com.archetypon.smartgov.process.KuProcessor extends

com.archetypon.smartgov.process.Processor

Contains the processing logic for the KU element. Creates the following child FileBuilders: -

@see com.archetypon.smartgov.builder.HelpBuilder

Methods public void process()

See Also

 com.archetypon.smartgov.process.Processor#process()

public class com.archetypon.smartgov.process.GroupProcessor extends

com.archetypon.smartgov.process.Processor

Contains logic for processing of TSE groups. The class currently supports the following fields of

the element: - groupName - description - includedTSE - linkedKUNode The class creates the

following child Processors: - @see com.archetypon.smartgov.process.KuProcessor - @see

com.archetypon.smartgov.process.TseProcessor It also creates the following child builders: -

@see com.archetypon.smartgov.builder.PropertyBuilder

Methods public void process()

See Also

 com.archetypon.smartgov.process.Processor#process()

public class com.archetypon.smartgov.process.FormProcessor extends

com.archetypon.smartgov.process.Processor

High-level logic applied during Form element processing. The class supports the following

Form child fields: - name - description - includedTSE - includedTSEGroup - linkedKUNode -

formLayout The class creates the following Processors as children: - @see

com.archetypon.smartgov.process.KuProcessor - @see

com.archetypon.smartgov.process.TseProcessor The following FileBuilders are created as

89

children: - @see com.archetypon.smartgov.builder.FormBeanBuilder - @see

com.archetypon.smartgov.builder.ActionClassBuilder

Methods public void process()

See Also

 com.archetypon.smartgov.process.Processor#process()

90

Package com.archetypon.smartgov.util

public interface com.archetypon.smartgov.util.StorageWrapper

Provides an abstraction layer over the underlying storage mechanism of XML and other

documents.

Methods public java.io.Reader getXmlDocument(String uri)

Returns a Reader object from the given XML element URI.

Parameters

 uri - It is up to the implementation to interpret this parameter. It may be

treated as a URL, a file path etc.

Returns

 Reader object corresponding to this URI. If more than one were found, it

is up to to the underlying implementation to decide which one to return.

Throws

 DocumentNotFoundException - if there is no file corresponding to this URI

or if an error occured.

public java.io.Reader getHtmlDocument(String uri)

Returns a Reader object from the given HTML file URI.

Parameters

 uri - It is up to the implementation to interpret this parameter. It may be

treated as a URL, a file path etc.

Returns

 Reader object corresponding to this URI. If more than one were found, it

is up to to the underlying implementation to decide which one to return.

Throws

 DocumentNotFoundException - if there is no file corresponding to this URI

or if an error occured.

public void storePropertiesDocument(Reader reader, String uri, boolean

append)

public void storeJavaDocument(Reader reader, String uri)

public void storeXmlDocument(Reader reader, String uri)

91

public void storeJspDocument(Reader reader, String uri)

public void storeHtmlDocument(Reader reader, String uri)

public void storeSqlDocument(Reader reader, String uri)

public class com.archetypon.smartgov.util.FileStorageWrapper implements

com.archetypon.smartgov.util.StorageWrapper

Provides an abstraction over a file system.

Constructors public FileStorageWrapper()

Default constructor. All consequent searches saves will expect an absolute path.

public FileStorageWrapper(String baseLoadDirectory, String

baseSaveDirectory)

Specifies base directories. All consequent searches saves will be treated as

relevant to these, if not null.

Methods public java.io.Reader getXmlDocument(String uri)

Returns a Reader object from the given file URI. The file is always assumed to be

in UTF-8 encoding.

Parameters

 uri - It is interpreted as a file name. If the suffix is not .xml, it is assumed

so. If the @see FileStorageWrapper#baseDirectory field is not null,then the uri is

considered as a relative path; otherwise it is considered an absolute one.

Throws

 DocumentNotFoundException - if there is no file corresponding to this URI

See Also

 com.archetypon.smartgov.util.StorageWrapper#getXmlDocument(String)

public java.io.Reader getHtmlDocument(String uri)

Returns a Reader object from the given file URI.

Parameters

 uri - It is interpreted as a file name. If the suffix is not .xhtml, it is

assumed so. If the @see FileStorageWrapper#baseDirectory field is not null,then

92

the uri is considered as a relative path; otherwise it is considered an absolute

one.

Throws

 DocumentNotFoundException - if there is no file corresponding to this URI

See Also

 com.archetypon.smartgov.util.StorageWrapper#getXmlDocument(String)

public void storeJavaDocument(Reader reader, String uri)

Stores Java documents in the file system.

public void storeJspDocument(Reader reader, String uri)

Stores JSP pages in the file system.

public void storePropertiesDocument(Reader reader, String uri, boolean

append)

Stores property files in the file system.

Parameters

 reader - to get data from

 uri - to use as the file's name, appending .properties suffix

 append - flag to indicate if content is to be appended at the end of an

existing file

public void storeHtmlDocument(Reader reader, String uri)

Stores HTML documents in the file system. The file suffix is xhtml.

public void storeXmlDocument(Reader reader, String uri)

Stores XML documents in the file system.

public void storeSqlDocument(Reader reader, String uri)

Stores SQL documents in the file system

93

Package com.archetypon.smartgov.model

public class com.archetypon.smartgov.model.TsElement extends

com.archetypon.smartgov.model.LinkedModelElement

Performs initialization of a TS element and all associated Form elements. While parsing the

object's fields, the following linked elements are processed: - FormElements - KuElements. All

of the linked forms are loaded into the internal formStore field and are organized per formSet .

The internal store's key is the targetPlatform field of each individual formSet . The value

corresponding to this key is a Vector of @see FormElements, in the order they were

encountered in the service definition file. All of the linked KUs are loaded into the internal

kuStore field, with their id as key. The wrapped object is of type @see

com.archetypon.smartgov.schemas.TS.2

Methods public void load()

Handles deserialization of the TS element. After the Castor object has been

successfully created, all of its linked elements are in turn parsed. Events are

generated for the follwoing linked fields: - includedFormSets.formId -

linkedKUNode

See Also

 com.archetypon.smartgov.loader.GenericLoader#load()

public java.util.Vector getFormSet(String platform)

Returns the set of FormElements associated for the particular platform.

Parameters

 platform - name of the platform as defined in the relevant formSet

element of the service definition file

Returns

 Vector of forms or null if nothing found

public java.util.Set getAllPlatforms()

Returns all platforms this service supports.

Returns

 Set of String elements (platform names)

public java.util.Set getAllKuIds()

Returns all included KU ids.

Returns

94

 Set of Strings

public com.archetypon.smartgov.model.KuElement getKuElement(String

uri)

Returns a particular @see KuElement for a given id.

Parameters

 uri - of the KuElement

Returns

 KuElement or null if not found

public class com.archetypon.smartgov.model.TseGroupElement extends

com.archetypon.smartgov.model.LinkedModelElement

Handles loading of InstantiatedTSEGroup elements. During parsing, the following linked

elements are also loaded: - KuElement - TseElement The wrapped object is of type @see

com.archetypon.smartgov.schemas.InstantiatedTSEGroup

Methods public void load()

Core processing method. After initializing the wrapped Castor object, it also scans

the following fields for linked objects: - linkedKUNode - includedTses

See Also

 com.archetypon.smartgov.loader.GenericLoader#load()

public java.util.Set getAllKuIds()

Returns all included KU ids.

Returns

 Set of Strings

public com.archetypon.smartgov.model.KuElement getKuElement(String

uri)

Returns a particular @see KuElement for a given id.

Parameters

 uri - of the KuElement

Returns

 KuElement or null if not found

95

public java.util.Set getAllTseIds()

Returns all included TSE ids.

Returns

 Set of Strings

public com.archetypon.smartgov.model.TseElement

getTseElement(String uri)

Returns a particular @see TseElement for a given id.

Parameters

 uri - of the TseElement

Returns

 TseElement or null if not found

public java.util.Set getAllTseGroupIds()

Returns all included TSE ids.

Returns

 Set of Strings

public class com.archetypon.smartgov.model.TseElement extends

com.archetypon.smartgov.model.LinkedModelElement

Handles initialization of InstantiatedTSE elements. During parsing the following linked

elements are also parsed: - KuElement The wrapped object is of type @see

com.archetypon.smartgov.schemas.InstantiatedTSE

Methods public void load()

Core processing method.

See Also

 com.archetypon.smartgov.loader.GenericLoader#load()

public java.util.Set getAllKuIds()

Returns all included KU ids.

Returns

 Set of Strings

public com.archetypon.smartgov.model.KuElement getKuElement(String

96

uri)

Returns a particular @see KuElement for a given id.

Parameters

 uri - of the KuElement

Returns

 KuElement or null if not found

public class com.archetypon.smartgov.model.ModelException extends

java.lang.Exception

Indicates an error during the loading process.

Constructors public ModelException()

public ModelException(String uri)

Constructor used when a URI was not found.

Parameters

 uri - of the element that was not found

public ModelException(String uri, Throwable exception)

Constructor used when an error occured.

Parameters

 uri - of the element that was not found

 exception - that was thrown

public ModelException(String uri, ModelException exception)

Constructor used when another ModelException occured.

Parameters

 uri - of the element that was not found

 exception - that was thrown

Methods public java.lang.String getUri()

Returns the uri.

Returns

 String

97

public java.lang.String getMessage()

Returns the message.

Returns

 String

Fields protected uri

protected exception

protected message

public abstract class com.archetypon.smartgov.model.LinkedModelElement

Base class for all inter-linked elements.

Methods public abstract void load()

Core processing method. Uses the uri field to locate the appropriate XML resource

and create the corresponding Castor object, which will be returned. Each

desccendant is responsible for introspecting the created Castor object(s), creating

the appropriate linked objects and populating the internal storage. In addition,

descendant classes should aslo set the wrtappedObject field.

Throws

 ElementInitializationException - when the initialization process fails for

some reason

public java.lang.Object getWrappedObject()

Returns the wrapped, Castor-generated object.

Returns

 Object see the documentation od descendant classes for the exact type of

this

public com.archetypon.smartgov.model.ElementFactory getFactory()

Fields protected uri

URI of the element to be loaded. This can be an XPath expression or a file URL.

This is solely dependent on the implementation of the underlying @see

98

StorageWrapper

protected factory

abstraction of the underlying storage layer. It provides services to the various

loaders.

protected wrappedObject

wrapped Castor-generated object

public class com.archetypon.smartgov.model.KuElement extends

com.archetypon.smartgov.model.LinkedModelElement

Handles loading of KUNodes. The wrapped object is of type @see

com.archetypon.smartgov.schemas.KUNode

Constructors public KuElement(String uri, ElementFactory factory)

Methods public void load()

Main processing method.

See Also

 com.archetypon.smartgov.loader.GenericLoader#load()

public class com.archetypon.smartgov.model.FormElement extends

com.archetypon.smartgov.model.LinkedModelElement

Handles initialization of objects related to Form element. The following linked elements are

parsed and processed: - TseElement - TseGroupElement - KuElement. All of the linked objects

are stored using their ids as as keys. The wrappedObject is of type @see

com.archetypon.smartgov.schemas.Form.

Methods public void load()

Parses the Form element along with all linked objects. Parsing events are

99

generated for the following linked fields: - includedTSE - includedTSEGroup -

linkedKUNode

See Also

 com.archetypon.smartgov.loader.GenericLoader#load()

public java.util.Set getAllKuIds()

Returns all included KU ids.

Returns

 Set of Strings

public com.archetypon.smartgov.model.KuElement getKuElement(String

uri)

Returns a particular @see KuElement for a given id.

Parameters

 uri - of the KuElement

Returns

 KuElement or null if not found

public java.util.Set getAllTseIds()

Returns all included TSE ids.

Returns

 Set of Strings

public com.archetypon.smartgov.model.TseElement

getTseElement(String uri)

Returns a particular @see TseElement for a given id.

Parameters

 uri - of the TseElement

Returns

 TseElement or null if not found

public java.util.Set getAllTseGroupIds()

Returns all included TSEGroup ids.

Returns

 Set of Strings

public com.archetypon.smartgov.model.TseGroupElement

getTseGroupElement(String uri)

Returns a particular @see KuElement for a given id.

100

Parameters

 uri - of the KuElement

Returns

 KuElement or null if not found

public class com.archetypon.smartgov.model.ElementNotFoundException

extends com.archetypon.smartgov.model.ModelException

Indicates that an element was not found in the element repository. Although these errors are

covered by @see com.archetypon.smartgov.model.ElementInitializationException, this class is

necessary in cases where the previous exception does not make sense to be thrown. One such

example, is the case of @see com.archetypon.smartgov.process.Processors when all model

elements are supposed to be loaded and present.

Constructors public ElementNotFoundException(String uri)

public ElementNotFoundException(String uri, Throwable exception)

public ElementNotFoundException(String uri, ModelException exception)

Methods public java.lang.String getMessage()

public class com.archetypon.smartgov.model.ElementInitializationException

extends com.archetypon.smartgov.model.ModelException

Indicates that the initialization process of a particular element has failed.

Constructors public ElementInitializationException(String uri)

public ElementInitializationException(String uri, Throwable t)

Methods public java.lang.String getMessage()

101

public class com.archetypon.smartgov.model.ElementFactory

Provides factory methods for the creation of various linked elements. The class ensures that

only a single instance of each element exists. For this purpose it defines a set of internal Maps

that store elements based on their URI. If an element URI is requested and this element

already exists, it is returned. Elements are "populated" upon creation, by calling @see

com.archetypon.smartgov.model.LinkedModelElement#load() All element getters throw an

@see com.archetypon.smartgov.loader.ElementInitializationException, as defined in @see

com.archetypon.smartgov.model.LinkedModelElement#load()

Constructors public ElementFactory(StorageWrapper wrapper)

Methods public com.archetypon.smartgov.model.TsElement getTsElement(String

uri)

public com.archetypon.smartgov.model.FormElement

getFormElement(String uri)

public com.archetypon.smartgov.model.KuElement getKuElement(String

uri)

public com.archetypon.smartgov.model.TseElement

getTseElement(String uri)

public com.archetypon.smartgov.model.TseGroupElement

getTseGroupElement(String uri)

public com.archetypon.smartgov.util.StorageWrapper getWrapper()

Returns the wrapper.

Returns

 StorageWrapper

102

public class com.archetypon.smartgov.model.DuplicateDefinitionException

extends com.archetypon.smartgov.model.ModelException

Indicates that an element is included more than one times. It is usually thrown when the same

element is linked to twice.

Constructors public DuplicateDefinitionException(String uri)

public DuplicateDefinitionException(String uri, ModelException

exception)

public DuplicateDefinitionException(String uri, Throwable exception)

Methods public java.lang.String getMessage()

public class com.archetypon.smartgov.model.DocumentNotFoundException

extends com.archetypon.smartgov.model.ModelException

Indicates that a requested XML document was not found or an error occured.

Constructors public DocumentNotFoundException(String uri)

public DocumentNotFoundException(String uri, ModelException

exception)

public DocumentNotFoundException(String uri, Throwable t)

Methods public java.lang.String getMessage()

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 103 of 133

Package com.archetypon.smartgov.service.model

public class com.archetypon.smartgov.service.model.Tse extends

com.archetypon.smartgov.service.model.ModelElement

Performs initialization of a Tse. Used as an abstraction of a Tse so that the validation code

can operate with it without problems.

Constructors public Tse(String id, int dataType, boolean multipleValues)

Constructor for Tse. Checks the dataType parameter and determines the type and

widgetType fields.

Methods public boolean isDisabled()

Returns true if Tse is disabled and false if not.

public void setDisabled(boolean disabled)

Makes Tse visible or not visible.

public java.lang.Object getValue()

Returns the value of the Tse.

public void setValue(Object value)

Sets the value of the Tse

public com.archetypon.smartgov.service.model.SGType getType()

Returns the SGType of the tse

public com.archetypon.smartgov.service.model.SGWidgetType

getWidgetType()

Returns the SGWidgetType of the tse

public class com.archetypon.smartgov.service.model.TestModel

Constructors public TestModel()

Methods public static void main(String[] args)

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 104 of 133

public class com.archetypon.smartgov.service.model.SGWidgetType

Provides static factory methods that return singleton instances to be used in comparisons.

Constructors public SGWidgetType()

Methods public static com.archetypon.smartgov.service.model.SGWidgetType

TextArea()

public static com.archetypon.smartgov.service.model.SGWidgetType

CheckBox()

public static com.archetypon.smartgov.service.model.SGWidgetType

RadioButton()

public static com.archetypon.smartgov.service.model.SGWidgetType

TextField()

public static com.archetypon.smartgov.service.model.SGWidgetType

Select()

public class com.archetypon.smartgov.service.model.SGType

Provides static factory methods that return singleton instances to be used in comparisons.

Constructors public SGType()

Methods public static com.archetypon.smartgov.service.model.SGType Boolean()

public static com.archetypon.smartgov.service.model.SGType Integer()

public static com.archetypon.smartgov.service.model.SGType Real()

public static com.archetypon.smartgov.service.model.SGType Text()

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 105 of 133

public static com.archetypon.smartgov.service.model.SGType Date()

public static com.archetypon.smartgov.service.model.SGType Currency()

public class com.archetypon.smartgov.service.model.Service extends

com.archetypon.smartgov.service.model.ModelElement

Performs initialization of a service object. Used as an abstraction of the service so that the

validation code can operate with it without problems.

Constructors public Service(String id)

Constructor for Service

public abstract class

com.archetypon.smartgov.service.model.ModelElement

Base class to be used as a superclass for Service, Form, Group and Tse subclasses. These

subclasses are used as an abstraction layer so that the validation code can operate without

problems with the rest of the application.

Constructors public ModelElement(String id)

Constructor for ModelElement

Methods public java.util.Iterator getImmediateChildIds()

Returns an Iterator of all id's found in the internal map. These are the immediate

children of the element as the method is not recursive.

public com.archetypon.smartgov.service.model.ModelElement

getChild(String id)

Returns the modelElement specified with the id. This method is recursive, that is

if the id is not found, all childs in the map are queried until the id is found and the

object returned.

public int getChildCount()

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 106 of 133

Returns the number of the elements in the map.

public void addChild(String id, ModelElement child)

Adds a modelElement in the childMap

public com.archetypon.smartgov.service.model.ModelElement

removeChild(String id)

Removes a modelElement from the childMap. Returns the modelElement

previously associated with specified id, or null if there was no mapping for key. (A

null return can also indicate that the map previously associated null with the

specified key.)

Fields protected childMap

public class com.archetypon.smartgov.service.model.Group extends

com.archetypon.smartgov.service.model.ModelElement

Performs initialization of a group of Tses. Used as an abstraction of the group so that the

validation code can operate with it without problems.

Constructors public Group(String id)

Constructor for Group

Methods public boolean isDisabled()

Returns true if group is visible and false if not.

public void setDisabled(boolean disabled)

Makes group visible or not visible by updating visibility in all childs.

public class com.archetypon.smartgov.service.model.Form extends

com.archetypon.smartgov.service.model.ModelElement

Performs initialization of a Form object.Used as an abstraction of the form so that the

validation code can operate with it without problems.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 107 of 133

Constructors public Form(String id)

Constructor for Form

Methods public boolean isDisabled()

Returns true if form is visible or false if not.

public void setDisabled(boolean disabled)

Makes form visible or not visible.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 108 of 133

Appendix D - SmartGovLang Translator JavaDocs

Package gr.uoa.di.smartgovlang

public class gr.uoa.di.smartgovlang.SGTranslatedCode

The object that contains the output of a successfull translation: the translated code and

the messages bundle.

Constructors public SGTranslatedCode(

 String solidCode,

 SGMultilingualMessages messages)

Create the object that carries the results of a successful translation.

Parameters

 solidCode - The generated code string.

 messages - The messages bundle.

Methods public java.lang.String getSolidCode()

Return the translated code.

Returns

 The translated code.

public gr.uoa.di.smartgovlang.SGMultilingualMessages getMessages()

Returns the messages bundle.

Returns

 The messages bundle, which can be empty, but cannot be

<code>null</code>.

public class gr.uoa.di.smartgovlang.SGMultilingualMessages

In the case where internationalized messages are specified as part of the rule, the

translator adds those messages in an object of this class. Each message has an id and the

language it is written.

Constructors public SGMultilingualMessages()

Creates an empty messages bundle.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 109 of 133

Methods public java.util.Enumeration getMessageIds()

Returns all the message ids of messages stored in the messages bundle.

Returns

 An enumeration of messages ids as strings.

public java.util.Enumeration getLangIds()

Returns all the languages ids under which messages are stored in the messages

bundle.

Returns

 An enumeration of language ids as strings.

public java.lang.String getMessage(

 String messageId,

 String langId)

For the given message and language ids, only one message cna be stored and is

returned by this method if any, otherwise null is returned.

Parameters

 messageId - The id under which the message is stored.

 langId - The language id under which the message is stored.

Returns

 The message stored in the messages bundle or <code>null</code>.

public class gr.uoa.di.smartgovlang.SGLanguageSyntaxError extends

java.lang.Exception

A class that represent all syntax errors in rules.

Constructors public SGLanguageSyntaxError(

 String rule,

 String message)

Creates a new syntex error exception.

Parameters

 rule - The rule that produced the error.

 message - The syntax error message.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 110 of 133

public class gr.uoa.di.smartgovlang.SGLanguageNotSupported extends

java.lang.Exception

A class used to describe errors during the creation of translators.

Constructors public SGLanguageNotSupported(

 String message)

public SGLanguageNotSupported(

 String message,

 Throwable cause)

public class gr.uoa.di.smartgovlang.SGLangTranslatorFactory

A factory class providing static methods to create custom translators.

NOTE: Currently the only supported languge for the client-side translator is "Javascript-

Struts" and for the server-side translator "Java-Struts".

Constructors public SGLangTranslatorFactory()

Methods public static gr.uoa.di.smartgovlang.SGLangTranslator

createClientTranslator(

 String language)

Creates a new translator for the client-side, that is written in the specified

language.

Parameters

 language - The language of the translated code.

Returns

 The translator.

Throws

 SGLanguageNotSupported - If the language is not supported.

public static gr.uoa.di.smartgovlang.SGLangTranslator

createServerTranslator(

 String language)

Creates a new translator for the server-side, that is written in the specified

language.

Parameters

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 111 of 133

 language - The language of the translated code.

Returns

 The translator.

Throws

 SGLanguageNotSupported - If the language is not supported.

Fields public static SERVER_LANGUAGES

The supported languages for the server-side.

public static CLIENT_LANGUAGES

The supported languages for the client-side.

public abstract class gr.uoa.di.smartgovlang.SGLangTranslator

The abstract translator object that provides the basic functionality offered by all

transaltors.

Constructors public SGLangTranslator(

 String language)

Creates a new translator for the specified language.

Parameters

 language - The language of the translator.

Methods public java.lang.String getLanguage()

Returns the translator language.

Returns

 Translator language.

public gr.uoa.di.smartgovlang.SGTranslatedCode translate(

 Method rule,

 Service fields,

 String elementId)

The method translates the rule as expressed by the first argument. The

translation assumes the rule belongs to the element with the specified id, which

in turn belongs to the general context described by the fields argument.

Parameters

 rule - The castor object for the rule.

 fields - The object describing the runtime fields.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 112 of 133

 context - The name of the element the rule is part of.

Returns

 The translated code and internationalization messages if any.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 113 of 133

Appendix E - Agents JavaDocs

public class gr.uoa.di.dispatcher.dispatcher

This class implements the pending actions queue dispatcher running on the service

delivery environment. The class is executable.

Constructors public dispatcher(

 String propFile)

Creates a new instance of dispatcher

Parameters

 propFile - The dispatcher property file.

Methods public static void main(

 String[] args)

Fields public static final DEFAULT_SLEEP_TIME

The default sleep time for the intervals during the dispatcher processing

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 114 of 133

public class gr.uoa.di.dispatcher.dispatcherException extends

java.lang.Exception

This class models the exceptions thrown by the dispatcher.

Constructors public dispatcherException()

Creates a new instance of dispatcherException

public dispatcherException(

 String message)

Constructs a new exception instance with a given error message.

Parameters

 message - The message associated with the exception.

public dispatcherException(

 Throwable nestedException)

Constructs a new exception instance that wraps another exception instance.

Parameters

 nestedException The exception to be wrapped.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 115 of 133

public class gr.uoa.di.dispatcherIIG.dispatcherIIG

This class implements the pending actions queue dispatcher running on the information

interchange gateway environment. The class is executable.

Constructors public dispatcherIIG(

 String propFile)

Creates a new instance of dispatcher

Parameters

 propFile - The dispatcher property file.

Methods public static void main(

 String[] args)

Fields public static final DEFAULT_SLEEP_TIME

The default sleep time for the intervals during the dispatcher processing

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 116 of 133

public class gr.uoa.di.dispatcherIIG.dispatcherIIGException extends

java.lang.Exception

This class models the exceptions thrown by the dispatcher.

Constructors public dispatcherIIGException()

Creates a new instance of dispatcherIIGException

public dispatcherIIGException(

 String message)

Constructs a new exception instance with a given error message.

Parameters

 message - The message associated with the exception.

public dispatcherIIGException(

 Throwable nestedException)

Constructs a new exception instance that wraps another exception instance.

Parameters

 nestedException The exception to be wrapped.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 117 of 133

public class gr.uoa.di.IIGNI.IIGNI

This class may be used by programs in the IIG environment to post notifications to the

service delivery environment.

Methods public void IIGToSGAgentNotification(

 String notificationName)

This method is used in the environment of the organisation’s information system

and posts a notification event to signify that some event has taken place.

Parameters

 notificationName - A symbolic name for the notification event.

Returns

 Nothing

Throws

 IIGNIException - In case of failure of the underlying IIGNI mechanism.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 118 of 133

public class gr.uoa.di.IIGNI.IIGNIException extends java.lang.Exception

This class models the exceptions thrown by the IIG notification initiator.

Constructors public IIGNIException()

Constructs a new exception instance.

public IIGNIException(

 String message)

Constructs a new exception instance with a given error message.

Parameters

 message - The message associated with the exception.

public IIGNIException(

 Throwable nestedException)

Constructs a new exception instance that wraps another exception instance.

Parameters

 nestedException The exception to be wrapped.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 119 of 133

public class gr.uoa.di.IIGNI.IIGNIFactory

This is the factory for IIG-NI objects. It arranges for creating instances of IIG-NI and

ascertains that only one instance is active within the program at any time. As a parameter

to the constructor, the name of the property file for the IIGNI should be provided.

Constructors public IIGNIFactory()

Methods public static gr.uoa.di.IIGNI.IIGNI newIIGNI(

 String propertyFile)

Factory method that acts as a virtual costructor for IIGNI. The property file

contains the information for the IIGNI

Parameters

 propertyFile - The IIGNI property file

Throws

 IIGNIException - If the IIGNI creation failed

public static gr.uoa.di.IIGNI.IIGNI getIIGNI()

Factory method that returns the IIGNI.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 120 of 133

public class gr.uoa.di.sga.SGAgent

This class provides the functionality for posting requests from the service delivery

environment to external information systems and returning the appropriate replies.

Requests may be real-time (synchronous) or non-real-time (asynchronous). Asynchronous

requests are further characterized as “persistent”, if they are allowed to persist in case of

transient failures or “non-persistent”, indicating that they should be disregarded if they

cannot be immediately executed.

Constructors public SGAgent(

 String propFile)

Default constructor for SGAgent. The propFile parameter points to the property

file which contains information about the agent configuration.

Methods public java.lang.String SGAppToSGAgentRequest(

 long requestId,

 String serviceName,

 String XMLMessage,

 boolean realTime,

 boolean persistent)

This method is used by the SGApp to make a request for a service to a third

party system using SGAgent.

Parameters

 requestId - A unique request identifier that serves to characterize this

request.

 serviceName - A symbolic service name that the message refers to.

 XMLMessage - A message that contains all information that the named

serviceName requires.

 realTime - A request parameter used to shoe if a request is real-time or

not.

 persistent - A request parameter used to shoe if a request is persistent or

not.

Returns

 String Reply to the request

Throws

 SGAgentException - In case of failure of the underlying SGAgent

mechanism.

Fields public static final SGA_NONPERSISTENT

Constant used if the request is not persistent

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 121 of 133

public static final SGA_PERSISTENT

Constant used if the request is persistent

public static final SGA_NONREALTIME

Constant used if the request is not real-time

public static final SGA_REALTIME

Constant used if the request is real-time

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 122 of 133

public class gr.uoa.di.sga.SGAgentException extends java.lang.Exception

This class models the exceptions thrown by the SmartGov agent.

Constructors public SGAgentException()

Constructs a new exception instance.

public SGAgentException(

 String message)

Constructs a new exception instance with a given error message.

Parameters

 message - The message associated with the exception.

public SGAgentException(

 Throwable nestedException)

Constructs a new exception instance that wraps another exception instance.

Parameters

 nestedException The exception to be wrapped.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 123 of 133

public class gr.uoa.di.sga.SGAgentFactory

This is the factory for SGAgent objects. It arranges for creating instances of SGAgent and

ascertains that only one instance is active within the program at any time.

Constructors public SGAgentFactory()

Constructs a new instance of SGAgentFactory.

Methods public gr.uoa.di.sga.SGAgent newSGAgent(

 String propFile)

Factory method that acts as a virtual costructor for SGAgent. The property file

for the SGAgent is given as a parameter.

Throws

 SGAgentException - If the SGAgent creation failed

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 124 of 133

public class gr.uoa.di.SGANI.SGANIFactory

This class implements the factory for SGANI objects. Only one static SGANI object is

created and then returned by the factory when it is requested. When executed the factory

creates an SGANI and starts listening for notification events sent by the IIGNI. The class is

executable.

Constructors public SGANIFactory(

 String propFile)

Creates a new instance of SGANIactory

Parameters

 propFile - The IIGNIproperty file

Methods public gr.uoa.di.SGANI.SGANI newSGANI()

Factory method that acts as a virtual constructor for SGANI.

Throws

 SGANIException - If the SGANI creation failed

public static void main(

 String[] args)

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 125 of 133

public class gr.uoa.di.SGLogging.SGLogger

This class implements a logger for events in the SmartGov platform. The SGLogger is

responsible for sending a message to the SGLogListener along with a message severity

code number.

Methods public void logMessage(

 int severity,

 String message)

This method logs the event described by message with a severity indication as

specified by the first parameter.

Parameters

 severity - An indication of the severity of the logged event

 message - The message to be sent.

Throws

 SGLoggerException - In case of failure of the underlying SGLogger

mechanism.

Fields An indication of the severity of the logged event

public static final SG_LOG_EMERG

public static final SG_LOG_ALERT

public static final SG_LOG_ERROR

public static final SG_LOG_WARNING

public static final SG_LOG_INFO

public static final SG_LOG_DEBUG

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 126 of 133

public class gr.uoa.di.SGLogging.SGLoggerException extends

java.lang.Exception

This class models the exceptions thrown by the SGLogger.

Constructors public SGLoggerException()

Creates a new instance of SGLoggerException

public SGLoggerException(

 String message)

Constructs a new exception instance with a given error message.

Parameters

 message - The message associated with the exception.

public SGLoggerException(

 Throwable nestedException)

Constructs a new exception instance that wraps another exception instance.

Parameters

 nestedException The exception to be wrapped.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 127 of 133

public class gr.uoa.di.SGLogging.SGLoggerFactory

This is the factory for SGLogger objects. It provides an SGLogger and it returns it through

the newSGLogger() method

Constructors public SGLoggerFactory()

Methods public static gr.uoa.di.SGLogging.SGLogger newSGLogger(

 String propertyFile)

Factory method that acts as a virtual costructor for SGLogger. The property file

contains the information for the loger

Parameters

 propertyFile - The SGLogger property file

Throws

 SGLoggerException - If the SGLogger creation failed

public static gr.uoa.di.SGLogging.SGLogger getSGLogger()

Factory method that returns the SGLogger.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 128 of 133

public class gr.uoa.di.SGLogListener.SGLogListenerException extends

java.lang.Exception

This class models the Exceptions thrown by SGLogListener and SGLogListenerFactory.

Constructors public SGLogListenerException()

Creates a new instance of SGLogListenerException

public SGLogListenerException(

 String message)

Constructs a new exception instance with a given error message.

Parameters

 message - The message associated with the exception.

public SGLogListenerException(

 Throwable nestedException)

Constructs a new exception instance that wraps another exception instance.

Parameters

 nestedException The exception to be wrapped.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 129 of 133

public class gr.uoa.di.SGLogListener.SGLogListenerFactory

This is the factory for SGLogListener objects. When executed, it creates a new

SGLogListener and it statrs listening for logging requests. As a parameter during the

execution, the name of the property file for the SGLogListener should be provided. The

class is executable.

Constructors public SGLogListenerFactory()

Creates a new instance of SGLogListenerFactory

Methods public static void main(

 String[] args)

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 130 of 133

public class gr.uoa.di.SGUtil.SGUtil

This class contains utilities that are used by the other SG packages. These are the

following:

1. The loading of properties from a property file to a Property array.

2. The retrieval of a specific property from a property file.

3. The logging of messages using SGLogger

Constructors public SGUtil()

Creates a new instance of SGUtil

Methods public java.lang.String getProperty(

 String propertyName,

 String propertyFile)

This method is used to get a property from a property file.

Parameters

 propertyName - The name of the property to be read

 propertyFile - The property file

Throws

 SGUtilException - in case of failure to read the property

public static synchronized void logMessage(

 int criticality,

 String message)

This method logs the message with the specified criticality. In order to do so,

uses the SGLogger.

Parameters

 criticality - The code name defining hoe critical this message is.

 message - The message to be logged

Throws

 SGUtilException - in case of failure to log the message

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 131 of 133

public class gr.uoa.di.SGUtil.SGUtilException extends java.lang.Exception

This class models the exceptions thrown by the SGUtil class.

Constructors public SGUtilException()

Creates a new instance of SGLoggerException

public SGUtilException(

 String message)

Constructs a new exception instance with a given error message.

Parameters

 message - The message associated with the exception.

public SGUtilException(

 Throwable nestedException)

Constructs a new exception instance that wraps another exception instance.

Parameters

 nestedException The exception to be wrapped.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 132 of 133

public class gr.uoa.di.SSLIIGServer.SSLIIGServer

This class is used to initiate the execution of a SSL-enabled IIG-server. This is equivalent

to an IIG-server, but communicates using secure-socket layer, to provide for

communication encryption and message authenticity. The class is executable.

Constructors public SSLIIGServer()

Creates a new instance of SSLIIGServer

Methods public static void main(

 String[] args)

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 133 of 133

