
 1

IST PROJECT 2001-35399

A Governmental Knowledge-based Platform for Public

Sector Online Services

Project Number: IST-2001-35399
Project Title: A Governmental Knowledge-based Platform for Public

Sector Online Services
Deliverable Type: Public

Deliverable Number: D82
Contractual Date of
Delivery:

31-8-2003

Actual Date of Delivery: 17-10-2003
Title of Deliverable: User’s guide
WP contributing to the
Deliverable:

WP8

Nature of the Deliverable: Report
Editor(s): Tomás Pariente Lobo, Pablo Fernández Pardo
Author(s): Tomás Pariente Lobo, Pablo Fernadez Pardo, Stelios

Gorilas, Costas Vassilakis, Akrivi Katifori, Anna Charissi,
George Lepouras, Nick Adams, John Fraser, Ann
Mackintosh, Vassilis Stoumpos, Pavlos Kattoulas

Abstract: This deliverable constitutes the user’s guide of the tool developed in WP5 and
WP6. It presents how to use the SmartGov Front-End developing environment and the
way to deliver and maintaining services.

Project funded by the European Community under the “Information

Society Technologies” Programme (1998-2002)

 Copyright by the SmartGov Consortium.

The SmartGov Consortium consists of:

Partner’s Name Acronym Role Country

University of Athens UoA Project Coordinator Greece

T-Systems Nova TNB Partner Germany

Indra Sistemas S.A. Indra Partner Spain

Archetypon S.A. ARC Partner Greece

Napier University NU Partner UK

General Secretariat for Information Systems GSIS Partner Greece

City of Edinburgh Council CEC Partner UK

 2

 Table of Contents

1 Introduction... 13
2 Overview... 14

2.1 Introduction .. 14
2.2 Platform client requirements ... 14

2.2.1 Hardware ... 14
2.2.2 Software .. 14

2.3 SmartGov groups of users... 14
2.4 The Transaction Service Lifecycle... 17

3 The SmartGov front-end tool ... 20
3.1 Introduction .. 20
3.2 Installation process .. 22

3.2.1 Requirements ... 22
3.2.1.1 Hardware .. 22
3.2.1.2 Software ... 22

3.2.2 Environment setup .. 22
3.2.2.1 Installing and configuring the data components.................. 22
3.2.2.2 Installing the front-end ... 23
3.2.2.3 Configuring and populating the XML Repository 26
3.2.2.4 Pre-created users structure.. 27

3.3 Structure of the front-end ... 28
3.3.1 Common Features ... 28

3.3.1.1 Using a Web application .. 28
3.3.1.2 Managing sections .. 28
3.3.1.3 Managing multi-lingual tables... 30
3.3.1.4 Managing other tables... 31
3.3.1.5 Pagination ... 32
3.3.1.6 Actions applied to a SmartGov object................................ 32
3.3.1.7 Associate knowledge units to the SmartGov elements 33
3.3.1.8 Categorization of the SmartGov elements using taxonomy

nodes 34
3.3.1.9 Uploading files ... 35

3.3.2 Login page ... 36
3.3.3 SmartGov Portal ... 37

3.4 User-Roles management... 39
3.4.1 User-roles Portal ... 39
3.4.2 User Editor ... 40

 3

3.4.3 Group Editor ... 41
3.5 Managing Knowledge.. 43

3.5.1 The KU life-cycle ... 43
3.5.2 Capturing KUs... 44

3.5.2.1 KU Editor... 44
3.5.3 Retrieving Knowledge .. 51

3.5.3.1 Taxonomy Editing tool... 51
3.5.3.2 Taxonomy Retrieving tool .. 56

3.6 Managing Service elements... 58
3.6.1 The TS life-cycle ... 58

3.6.1.1 Designing the service .. 58
3.6.1.2 Integrating components .. 59
3.6.1.3 Reopening services ... 61

3.6.2 Introduction and common task.. 61
3.6.2.1 Introduction... 61
3.6.2.2 Working with Validation Rules .. 61
3.6.2.3 Methods .. 62

3.6.3 Service Portal ... 63
3.6.3.1 TS Portal ... 63
3.6.3.2 Form Portal.. 63
3.6.3.3 TSE Portal ... 64
3.6.3.4 TSE Group Portal .. 64

3.6.4 Development of Transaction Service Components...................... 65
3.6.4.1 Introduction... 65
3.6.4.2 Transaction Service (TS) Edition page 66
3.6.4.3 Forms ... 69
3.6.4.4 Transaction Service Elements (TSEs) 73
3.6.4.5 Instantiated Transaction Service Elements (ITSEs) 76
3.6.4.6 Group of Transaction Service Elements (TSE groups) 78
3.6.4.7 Instantiated Group of Transaction Service Elements............ 82

3.7 Establishing links between the form visual elements and SmartGov

semantic elements ... 85
3.7.1 Preparing the HTML forms .. 86
3.7.2 Data export and file installation... 90
3.7.3 Link establishment .. 93

3.7.3.1 Inserting form-level tags ... 94
3.7.3.2 Inserting TSE group-level tags ... 98
3.7.3.3 Inserting TSE-level tags ...104

 4

3.7.3.4 Inserting KU-level tags...108
3.7.4 Final form appearance ..109

4 The SmartGov Integrator tool (ARC) ..110
4.1 Introduction ...110

4.1.1 Summary ..110
4.1.2 Purpose, Scope and Audience ..110
4.1.3 Typesetting Conventions ...110

4.2 Requirements ...110
4.3 Environment Setup ...111

4.3.1 Setup actions roadmap ...111
4.3.2 Install Integrator..113

4.3.2.1 Splash screen ...113
4.3.2.2 Installation type ..114
4.3.2.3 Installation directory ..115
4.3.2.4 Shortcut group ..116
4.3.2.5 Tomcat server configuration..117
4.3.2.6 XML Repository configuration ..118
4.3.2.7 Input / output directories ...119
4.3.2.8 SGA configuration file...120
4.3.2.9 Summary ...121

4.3.3 SGA/IIG DBs ...121
4.3.4 Populate IIG login DB ...122
4.3.5 Create IIG XML Repository ..123
4.3.6 Install IIG ...126

4.3.6.1 Splash screen ...126
4.3.6.2 Installation folder ..127
4.3.6.3 Shortcut folder ..128
4.3.6.4 IIG ports ..129
4.3.6.5 IIG EntraPAQ ..130
4.3.6.6 IIG AdelantePAQ ...131
4.3.6.7 IIG XML Repository..132
4.3.6.8 IIG login DB..133
4.3.6.9 Log listeners ...134
4.3.6.10 SGA EntraPAQ...135
4.3.6.11 SGA AdelantePAQ ..136
4.3.6.12 Target IIG ..137
4.3.6.13 SGA NI...138
4.3.6.14 Summary ...139

 5

4.3.7 Use / Fine-tune installed IIG..139
4.3.8 Set up document pre-population ..140
4.3.9 Create Integrator XML Repository...141
4.3.10 Populate Integrator XML Repository..144
4.3.11 Configure the deployment server ...147

4.4 Usage Guide...148
5 Communication services: SmartGov Agents. Installation, configuration and

usage ...151
5.1 Prerequisites ..151
5.2 Bundle contents and installation ...151
5.3 Configuration, Property And DTD files..154

5.3.1 Property files ...154
5.3.2 Configuration files ..158
5.3.3 DTD files ...161

5.4 Database Setup ..164
5.5 Package Documentation...165

5.5.1 gr.uoa.di.SGLogging Package...165
5.5.1.1 Using the logging facilities ..166
5.5.1.2 Example ...167

5.5.2 gr.uoa.di.SGLogListener Package ...168
5.5.3 gr.uoa.di.SGANI Package ..169

5.5.3.1 The SGANI configuration file ...170
5.5.3.2 The SGANI property file..172
5.5.3.3 The Entra PAQ property file...173
5.5.3.4 Extending the SGA-NI ..174

5.5.4 gr.uoa.di.IIGNI Package..174
5.5.4.1 Using the IIG Notification Initiator174
5.5.4.2 The IIG-NI configuration file ...176
5.5.4.3 Extending the IIG-NI..178
5.5.4.4 General format of the IIG-NI configuration file179
5.5.4.5 The SGA Adelante PAQ property file.................................181

5.5.5 gr.uoa.di.dispatcherIIG Package...181
5.5.5.1 The dispatcher property file ..182

5.5.6 gr.uoa.di.dispatcher Package ...183
5.5.7 gr.uoa.di.SGA Package..184

5.5.7.1 The SGA property file...186
5.5.7.2 The SGA Adelante PAQ property file.................................193

5.5.8 gr.uoa.di.SGAClient Package..193

 6

5.5.8.1 Package gr.uoa.di.SGAClient ...194
5.5.9 gr.uoa.di.SSLSGAClient Package ..195

5.5.9.1 Package gr.uoa.di.SSLSGAClient......................................196
5.5.10 gr.uoa.di.DatabaseStore Package ...197
5.5.11 gr.uoa.di.IIGServer Package..201
5.5.12 gr.uoa.di.SSLIIGServer Package ..202
5.5.13 Prerequisites for using SSL communication..............................204
5.5.14 gr.uoa.di.IIGMyP package ...205

5.5.14.1 The IIGMyP property file...210
5.5.14.2 The IIG Entra PAQ property file218

5.5.15 gr.uoa.di.SEPDatabaseStore Package......................................218
5.5.15.1 Package gr.uoa.di.SEPDatabaseStore220

5.6 Database objects documentation - IIG and SGA Entra and Adelante PAQ

Structure ...223
5.6.1 The autokeys table ...223
5.6.2 SGA Entra PAQ ..224
5.6.3 SGA Adelante PAQ..224
5.6.4 IIG Entra PAQ..226
5.6.5 IIG Adelante PAQ ...227
5.6.6 databaseTable ...228
5.6.7 SEPdatabaseTable ..229
5.6.8 SQL Commands for creating the database tables......................231

5.7 SmartGov System Services ..233
5.7.1 Document Storage and Retrieval Services234

5.7.1.1 Preparing the Document Storage and Retrieval Service238
5.7.1.2 JavaDoc for the Document Storage and Retrieval Service ...239
5.7.1.3 JavaDoc for the IIGServiceResults240

5.7.2 Login Validation Service ..243
5.7.2.1 Preparing the Login Validation Service..............................245

6 Conclusions ..247
7 References..248
Appendix A. Glossary of elements ...249
Appendix B. Validation Rules User’s Guide and Reference251

B.1 Attaching validation rules to SmartGov entities...............................251
B.2 Working with validation rules..252
B.3 Validation rule method configuration ...253

B.3.1 Native language validation checks ..254
B.3.2 SmartGov language compact rules ...255

 7

B.3.3 Full Rules ..260
B.3.3.1 Condition Part – Data types ..261
B.3.3.2 Condition Part – Functions ..262
B.3.3.3 Action List ..263

B.4 Reference Tables ..264
B.5 References...268

Appendix C. Front-end databases scripts ...269
User-roles database ..269

MS SQL Server..269
MySQL ...272

Outer users database ..275
MS SQL Server..275
MySQL ...276

XML Repository database ...276
MS SQL Server..276
MySQL ...277

Appendix D. IIG / SGA DBs creation script ...278
MS SQL Server ...278
MySQL...279
Oracle ...281

Appendix E. Login DB creation script ..284
MS SQL Server ...284
MySQL...284
Oracle ...285

Appendix F. Sample XML document for eVies personal details286

 8

 9

Table of Figures

Figure 1 – SmartGov user groups and their main tasks 15
Figure 2 – SmartGov service life-cycle phases road map 18
Figure 3 – Front-End road map ... 21
Figure 4 - Sections in a Front-end page (Header, Life-cycle…)......................... 29
Figure 5 - Sections in an editable page (Header and Knowledge Unit Statistics are

expanded, the other sections are collapsed).. 30
Figure 6 – Multilingual table (the selected area) .. 31
Figure 7 – Multiple values table (the selected area) 31
Figure 8 – List with pagination .. 32
Figure 9 – Action bar location ... 32
Figure 10 – Action bar example... 32
Figure 11 – List of linked KUs ... 33
Figure 12 – Select KUs page ... 34
Figure 13 – Linked taxonomy nodes list ... 34
Figure 14 – Select taxonomy nodes page ... 35
Figure 15 – Upload file page ... 35
Figure 16 - Login page... 36
Figure 17 - SmartGov Portal page ... 37
Figure 18 - User Portal page ... 39
Figure 19 - Groups Portal page .. 40
Figure 20 - User Editor page... 41
Figure 21 - Group Editor page... 41
Figure 22 - Group Editor page... 42
Figure 23 – Linking a user to a group page... 42
Figure 24 - Knowledge life-cycle figure... 44
Figure 25 – KU Portal page... 45
Figure 26 - KU Edition page.. 46
Figure 27 - KU Section edition page... 48
Figure 28 - KU read-only page .. 50
Figure 29 - KU read-only reduced page .. 51
Figure 30 - Taxonomy portal... 51
Figure 31 - Edit Taxonomy page.. 52
Figure 32 - Edit Taxonomy Node page ... 53
Figure 33 - Select nodes by Taxonomy page... 55
Figure 34 - Select nodes by Node Id page (after searching ‘Node60%’)............ 56

 10

Figure 35 - Taxonomy Retrieval tree view page... 57
Figure 36 - Taxonomy node related objects page .. 57
Figure 37 – TS life-cycle figure.. 58
Figure 38 - Validation Check ... 62
Figure 39 - SmartGov TS Portal .. 63
Figure 40 - SmartGov Form Portal ... 64
Figure 41 - SmartGov TSE Portal... 64
Figure 42 - SmartGov TSE Group Portal ... 65
Figure 43 - TS Edition page .. 66
Figure 44 – Form set definition ... 68
Figure 45 - TS read-only page .. 69
Figure 46 - Form Edition page... 71
Figure 47 – Select ITSE to include in a form ... 72
Figure 48 - Form Read-Only page.. 73
Figure 49 - TSE Edition page .. 74
Figure 50 - TSE Read-Only page ... 75
Figure 51 – Instantiated TSE Edition page .. 77
Figure 52 - ITSE Read-Only page .. 78
Figure 53 - TSE Group Edition page ... 80
Figure 54 - TSE Read-Only page ... 81
Figure 55 – Instantiated TSE Group Edition page... 82
Figure 56 - ITSE Group Read-Only page... 84
Figure 57 - A SmartGov form designed in the DreamWeaver MX environment 88
Figure 58 – The SmartGov form rendered in a browser 88
Figure 59 – Graphical front-end for the export procedure 91
Figure 60 - Enabling the use of SmartGov tags ... 92
Figure 61 – Code format preferences dialog.. 93
Figure 62 – Enriched “Insert tag” DreamWeaver MX dialog............................. 94
Figure 63 – Inserting the “form begin” tag ... 95
Figure 64 – Deleting the short form title... 96
Figure 65 – Deleting the form validation error placeholder text 97
Figure 66 – Selecting the first row hosting TSE group elements 99
Figure 67 – Selecting the proper row when inserting the SGGROUP_groupId_END tag........100
Figure 68 – Deleting the short group description ..101
Figure 69 – Deleting the “add row” control placeholder102
Figure 70 – Deleting the “add row” error messages placeholder104
Figure 71 – Deleting the TSE placeholder ..105
Figure 72 – Included TSEs subfolder ...106

 11

Figure 73 – Deleting the short TSE description...107
Figure 74 – Removing the TSE error messages placeholder108
Figure 75 – Deleting the help anchor placeholder ...109
Figure 76 – Form design view after link establishment109
Figure 77 - XML schema for XML documents managed through the storage and

retrieval services ..235
Figure 78 – XML schema for calls returning multiple documents237
Figure 79 - JavaDoc for document storage and retrieval services....................240
Figure 80 - Property file for login validation service244
Figure 81 - Reply for a validation request presenting invalid credentials245
Figure 82 – The Validation Rules section in a form..252
Figure 83 - Rule editing page...253
Figure 84 – Validation rule main editing page ..254
Figure 85 - Entering validation methods in native language255
Figure 86 – Compact SmartGovLang validation method editing256
Figure 87 – Compact SmartGovLang validation method editing256
Figure 88 – Compact SmartGovLang validation method editing257
Figure 89 – Compact SmartGovLang validation method editing258
Figure 90 – Compact SmartGovLang validation method editing259
Figure 91 – Compact SmartGovLang validation method editing260
Figure 92 – Full SmartGovLang rule editing ...261

 12

List of Acronyms

Acronym Explanation

API Application Programming Interface

BEAN Java Bean

DSN Data source name

JDBC Java Database Connectivity

JSP Java Server Page

KU Knowledge unit

LDAP Lightweight Directory Access Protocol

MVC Model-View-Controller

PA Public Authorities

RDBMS Relational Database Management System

RUP Rational Unified Process

SGA SmartGov agent

TS Transaction service

TSE Transaction service element

TSE Group Group of transaction service element

UML Unified Modeling Language

WAP Wireless Application Protocol

WML Wireless Markup Language

XHTML eXtensible Hypertext Markup Language

XML Extensible Markup Language

XSLT Extensible Style sheet Language Template

 13

1 Introduction

The aim of the SmartGov User’s Guide is to provide a reference help about how to

use the SmartGov platform to desing and deliver e-forms based services. The

implementation details and the platform overview are available in the deliverables

D51-61 [D51-61], D52 [D52] and D62 [D62].

The document firstly provides an overview about what the users will be able to

perform with the SmartGov tool and then introduces the different tools included

for the platform.

 14

2 Overview

2.1 Introduction

Some of the parts included in this section also exist within the previous

deliverables (mostly in D41 and D51-D61), but are also included here for

completeness purposes.

2.2 Platform client requirements

The SmartGov platform requires several client requirements related with

hardware and software.

2.2.1 Hardware

No special requirements of hardware are required. A common winows-based PC is

enough to run the SmartGov client-side. As an example, the minimum

requirements could be:

Ø PC Pentium 3, 1 GHs or higher

Ø HDD 2GB or higher

Ø RAM 64MB or higher

2.2.2 Software

Ø Browser: Microsoft Internet Explorer 5.5 or superior (recommended)

Ø Configuration: In Tools/Internet options/General/Configuration, for option

“Check if there are new versions of the saved pages” check “Every time

the page is visited”.

NOTE: Important. If the Configuration of the browser is not set, the Front-end

tool could present problems with the cache of the pages, resulting in problems

with the data consistency.

2.3 SmartGov groups of users

Five user groups or roles have been identified. These groups are: Managers,

Domain Experts, Information Technology Staff (IT Staff), Administrators and End

Users.

The roles regarding the Transaction Service Lifecycle are shown in the Figure 1.

 15

Figure 1 – SmartGov user groups and their main tasks

Ø Managers: The managers are responsible for organising and supervising

public services. They make decisions about the implementation of new

services or the alteration of existing ones. In order to accomplish this task,

they need to have a strategic view of the provision of services. Managers

are able to decide about future changes in the service or the creation of a

new one. Usually, there is more than one manager in the same Public

Authority, who wishes to have access to the same data and statistics.

Ø Domain Experts: The domain experts possess the necessary background

knowledge for the design and the implementation of a public service. This

knowledge includes the legislation that a service is based on, that is laws,

processes, directives, prerequisites and so on. Domain experts play a

consultative role to the managers for the design, evaluation and possible

alterations of public services. To this end, they need to define and obtain

statistics and metrics. They design the interface of the service and the

structure of the form, which is what service users will fill in. They attach

their knowledge about legislation, supporting procedures or required

documents to the form elements. They define validation checks, which are

not limited to data type constraints, but also include inter–element

relations that should be satisfied within the form or even relations that

 16

should hold between different forms. Finally, domain experts provide end

users with accompanying manuals, instructions and sets of examples, to

help them use the service. It is possible that more than one domain expert

works for the implementation of the same service, while each domain

expert may participate in the lifecycle of more than one service, when

his/her expertise is needed.

During the development of an e–service, the domain experts may have to

collaborate with the IT staff to communicate to them their domain

knowledge. Collaboration has to take place when the tasks to be

performed require higher technical skills than the domain experts possess,

and when the links to the installed IT systems or third party systems have

to be established.

Ø IT Staff: The IT Staff possess the necessary technological knowledge for

the development of an electronic public service. They design the system

from scratch, defining system architecture, database schema, user

interface and functionality. They also provide the necessary interfaces for

data exchange between the electronic service platform and the back-end

systems. During the life cycle of the service they have to collaborate with

the domain experts to integrate the domain knowledge, which is of vital

importance, to the application. At the same time they play a consultative

role to the managers and the domain experts with respect to the

technological aspects of the e-service. In addition, they need to define and

obtain technical level statistics and metrics to acquire valuable insight

about the efficiency of the system. Furthermore, they are responsible of

the maintenance of the e-service. They have to handle omissions and

problems that may occur in the electronic services, which could be for

example programming errors, alterations caused by changes of the

supporting legislation, modifications suggested by the managers or the

domain experts.

Ø Administrators: The administrators support the platform users, which are

mainly Public Administrators (managers, domain experts and IT staff) and

indirectly the end users. They help them to familiarize themselves with the

environment of the e-service and cope with possible problems that may

occur. This support is offered via e-mail or telephone and may produce

helpful feedback to the IT staff about the usability of the e-service. They

are also responsible for the management of user accounts, the integrity of

the data (back up functions etc.) and the security of the system. One of

their tasks is also the specification of log files, which contribute not only to

 17

the accountability and non-repudiation but also to the observation of the

system performance and the production of qualitative measurements such

as system usability, identification of common errors made by the users

etc.

Ø End User: The end users are the citizens or enterprises that make use of

the service. These are not users of the SmartGov tool in the proper sense,

because they are only going to use the result of the platform and not the

SmartGov platform itself.

2.4 The Transaction Service Lifecycle

Within the lifecycle of a transaction service (i.e. a service that includes filling and

submission of forms, whose data are then processed by an organisational back-

end system), the following phases may be identified:

1. The manager decides to implement a new service

2. The manager creates a working group, consisting of domain experts, IT

staff, managers and service workers.

3. The group produces the service requirements

4. The group derives the service specifications (process model)

5. The group develops the transaction service elements

a. Forms (domain experts and possibly IT staff)

b. KUs: Knowledge Units (mainly domain experts)

c. TSEs: Transaction Service Elements (domain experts and IT staff)

d. Validation checks (Domain experts and IT staff)

e. Links to back-end systems (mainly administrators)

f. Managerial statistics (Managers)

g. IT-related statistics (IT staff, domain experts).

6. IT staff and administrators integrate elements

7. IT staff and administrators test the new service

8. The group evaluates the new service

9. The service is deployed

10. Service operation and maintenance

11. Collection of feedback

12. Service improvement

13. Discontinuation of a service

 18

Figure 2 – SmartGov service life-cycle phases road map

Not all of these phases are supported by the SmartGov platform. In particular,

phases 1-2 involve managerial actions, such as feasibility studies and human

resource management. Phase 2 is partially covered Within phases 3 and 4 the

initial definitions and documentation (KUs) are collected and entered in the

SmartGov platform. The SmartGov platform comes into full play during phases 5

and 6, where the various transaction service components are developed and

integrated. After the integration step in phase 6, the electronic service is

instantiated and installed on an internally accessible server for testing and

evaluation. These phases may trigger further actions within phase 5, producing

new versions of the electronic service, which are again tested and evaluated

internally in phases 7 and 8 respectively. The SmartGov platform will not provide

tools for service testing and evaluation, but is responsible for generating the

instantiated service version.

When the service has reached a satisfactory state, it is deployed on a publicly

accessible server (phase 9) so that it can be delivered to the end-users. Service

deployment is similar to installing the service on the test environment of phases 7

and 8, with the only difference being the accessibility (and possibly the scale) of

the server.

Once deployed a service enters the operation and maintenance phase (10),

during which end users access the service. Throughout the operation and

maintenance phase, feedback is collected both by end users and via the statistics

collection mechanisms of the SmartGov platform (phase 11), which will be

exploited for service improvement (phase 12). In these phases, the SmartGov

platform offers support for statistics collection, user account management and

database backup and recovery.

Finally, if a service becomes obsolete (for example, due to changes in legislation,

an expiration deadline, or even because it has not been proven to be popular

enough to justify its delivery and maintenance costs), it can be discontinued. In

 19

such cases, delivery of the service through the dissemination platform should

cease and, depending on (a) the possibility that the service will go live again and

(b) organisational policy, it might be required that the SmartGov platform objects

created specifically for this service will be purged.

 20

3 The SmartGov front-end tool

3.1 Introduction

The SmartGov front-end is responsible for providing a development environment

for managing knowledge, developing and populating the design of the elements

that formulate the different transaction services. The repository populated using

the SmartGov front end will be the entry point to the Integrator. This

development environment is available to the actors directly involved in the

lifecycle of electronic transaction services, namely domain experts, IT staff and

managers. The actors employ the SmartGov front end to populate, query and

modify the knowledge and transaction services repositories.

Firstly this chapter explains the process to install and configure the Front-end,

and later it gives an explanation about how the front-end works. The front-end is

a web-based application with a portal-like appearance that allows actors to easily

define and query the services. In this section, some common features and the

navigation methods are explained.

Once introduced the basic functionality, the different areas of the tool will be

described: users management, knowledge management and Service elements

management.

The figure 3 shows a quick view of the main functionality covered by the

SmartGov Front-End tool.

 21

Figure 3 – Front-End road map

 22

3.2 Installation process

3.2.1 Requirements

3.2.1.1 Hardware

CPU: Pentium III, 600 MHz

RAM: > 384 Mb

HDD: > 100Mb free space (depends on the number of hosted services)

3.2.1.2 Software

OS: Windows 2000, Service Pack 3+

Servlet engine: Tomcat 4.1+

JDK: Java2 SE 1.4.2+

RDBMS: Microsoft SQL Server 2000 or Windows MySql 4.x

3.2.2 Environment setup

3.2.2.1 Installing and configuring the data components

The first required step to setup the Front-end involves creating the databases and

the XML Repository.

The Front-end requires three databases:

• The user-roles database, which keep all the data related with the

workgroups defined in the tool, the users that belong to these groups and

the role or roles of these users.

• The outer user database, which keep the basic data of users. This

database only contains a table, which may be created in previous

database. However, the script for this table is isolated from the other ones

because the platform is designed to use outer user systems -LDAP,

database system…- (always requiring an extra time to develop the

corresponding connectors) already existing in the organization where the

platform is installed, and, in that case, this table is not required.

• The Xml store database, which will be shared with the integrator and that

will be the way to interoperate between both components.

To create these databases, the script contained in the Appendix C. must be

executed. The corresponding to the two first databases create all the structure,

but the last one only creates the database and grants access to users, whereas

the whole table structure and prepopulation of data will be made later, as

described in paragraph 3.2.2.3.

 23

3.2.2.2 Installing the front-end

Once the required databases have been created, the web application will be

installed in the Servlet container. Therefore, the last version of the SmartGov.zip

file must be unzipped in the tomcat/webapps folder. Once this process has

finished, a folder called SmartGov must appear in the webapps folder.

After installing the web application, the next step is changing the configuration

files (smartgov.properties), to fit the characteristics of the environment where the

platform is being installed. This are the relevant properties defined in this

configuration file:

 24

Property name Most used values Description

smartgov.databaseType • MySql
• MsSqlServer RDBMS used.

smartgov.bdUsers.user db_user User with granted access to user
and roles database.

smartgov.bdUsers.password egov Password of the user specified in
the previous property.

smartgov.bdUsers.driverClass • org.gjt.mm.mysql.Driver
• com.microsoft.jdbc.sqlserver.SQLServerDriver

JDBC Driver to access the user and
roles database.

smartgov.bdUsers.url
• jdbc:mysql://<db_host_name>/<db_name>
• jdbc:microsoft:sqlserver://<db_host_name>;DatabaseName=<db

_name>;selectMethod=cursor

Connection string to user and roles
database

smartgov.bdOuterUsers.user db_user User with granted access to outer
user database.

smartgov.bdOuterUsers.password egov Password of the user specified in
the previous property.

smartgov.bdOuterUsers.driverClass • org.gjt.mm.mysql.Driver
• com.microsoft.jdbc.sqlserver.SQLServerDriver

JDBC Driver to access the outer
user database.

smartgov.bdOuterUsers.url
• jdbc:mysql://<db_host_name>/<db_name>
• jdbc:microsoft:sqlserver://<db_host_name>;DatabaseName=<db

_name>;selectMethod=cursor

Connection string to outer user
database

smartgov.bdXmlRepository.user xmlstore_user User with granted access to XML
Repository database.

smartgov.bdXmlRepository.password egov Password of the user specified in
the previous property.

smartgov.bdXmlRepository.driverClass • org.gjt.mm.mysql.Driver
• com.microsoft.jdbc.sqlserver.SQLServerDriver

JDBC Driver to access the XML
Repository database.

smartgov.bdXmlRepository.url
• jdbc:mysql://<db_host_name>/<db_name>
• jdbc:microsoft:sqlserver://<db_host_name>;DatabaseName=<db

_name>;selectMethod=cursor

Connection string to XML
Repository database.

smartgov.xmlRepository.serverName madarrgesdoc03 Name of the server where the XML
Repository database is hosted.

smartgov.xmlRepository.portNumber • 3306 (for MySQL)
• 1433 (for Ms Sql Server)

Port to access the XML Repository
database.

 25

Property name Most used values Description

smartgov.xmlRepository.databaseName xmlstore Name of the XML Repository
database.

smartgov.xmlRepository.user xmlstore_user User with all the privileges granted
on XML Repository database

smartgov.xmlRepository.password egov Password of this user

smartgov.xmlRepository.URL
• jdbc:mysql://<db_host_name>/<db_name>
• jdbc:microsoft:sqlserver://<db_host_name>;DatabaseName=<db

_name>;selectMethod=cursor

Connection string to the XML
Repository database.

smartgov.xmlRepository.selectMethod cursor (Only required if Ms. SqlServer is
used).

smartgov.xmlRepository.com.archetypon.xml.
store.datasource.provider

• com.mysql.jdbc.jdbc2.optional.MysqlDataSource
• com.microsoft.jdbcx.sqlserver.SQLServerDataSource

Datasource class to access the
XML Repository database.

smartgov.xmlRepository.com.archetypon.xml.
store.dbms

• MySQL 4.x
• Microsoft SQL Server 2000 RDBMS type

smartgov.xmlRepository.com.archetypon.xml.
store.datasource.classpath

..\\webapps\\SmartGov\\WEB-INF\\lib\\mysql-connector-java-3.0.7-
stable-bin.jar Datasource class path

smartgov.availableLocales es,en,el
Available locales for the Front-end
users. The order is important,
because the first one is the default.

 26

There are two pre-created configuration files, distributed with the installation in

the SmartGov/WEB-INF folder: smartgov.properties.mysql and

smartgov.properties.sqlserver.

The corresponding file to the RDBMS used for the platform must be renamed to

smartgov.properties file, and then it must be modified, according to the following:

• Changing the name of the server hosting the database in the following

properties:

- smartgov.bdUsers.url

- smartgov.bdOuterUsers.url

- smartgov.bdXmlRepository.url

- smartgov.xmlRepository.serverName

- smartgov.xmlRepository.URL

• Changing the value of the property

smartgov.xmlRepository.com.archetypon.xml.store.datasource.cla

sspath to the absolute path where the JBDC driver is located (jar file or a

directory where the driver is unzipped).

Also some changes are required to configure and populate the Xml Store with the

initial elements that are included in the platform. To configure access to the

repository is required an update in the integrator.X.properties (where X is the

RDBMS type), located in the webapps/SmartGov/scripts folder. This file must be

updated to reflect the name of the server where the database is hosted, as

described in the Integrator guide, in section 4.3.2.6. If the Integrator has been

already installed, the integrator.properties file can be reused.

3.2.2.3 Configuring and populating the XML Repository

The “user and roles” and “outer users” databases are prepopulated with a set of

users in the scripts used to create them. However the Front-end uses a more

sophisticated way to create all its structure and to load elements in the platform.

Firstly, to create the Xml Repository, with the required structure, there is a file in

the folder “webapps/SmartGov/scripts” called “createXmlRepository.BAT”. This

.bat file uses an XML file (“exampleOfRepositoryConf.xml” in the same folder) to

create the repository and all the indexes required by the Front-end and the

Integrator. Therefore, once executed this file, it’s not necessary to follow the

steps described in paragraph 4.3.9, because the XML Repository for the

Integrator will be already created. Once this program has been executed, it can

be checked in the XML Repository database, which was empty, that some tables

 27

have been created and populated. Therefore, the XML Repository is ready to be

used.

Please note that this program uses the smartgov.properties file previously

described, so this file must be appropriately modified before proceeding to

configure the repository.

Although with the previous step the platform is ready to be used, it is better, in

order to take advantage of all the capabilities of the SmartGov Front-end and to

make easier its use to the users, to load some pre-created elements in the

repository. The usual elements to load are pre-created Taxonomies and KUs,

which enrich the Front-end, providing support and knowledge to users. Also some

already created services may be loaded, in order to provide examples of the use

of the different elements.

To load the selected elements, it would be used the Document Crawler, which can

be launched executing “Document Crawler.BAT” in the folder

“webapps/SmartGov/scripts”. The usage of this utility is described in paragraph

4.3.10. Please note that, as properties file, can be selected the already configured

for the integrator if it has been already installed, or the file modified in the

previous paragraph (“integrator.X.properties”) which is located in the same folder

that the .bat file.

With the Document crawler can be loaded in the system the taxonomy and the

KUs available in the distribution of the Front-end, and also any pre-created

service, that may act as example for future developments.

3.2.2.4 Pre-created users structure

The DB scripts included in Appendix C. to create users databases create a set of

users, all belonging to group “Test”, with the following characteristics:

User Id Password Role Roles in group Test

user_expert user_expert Expert TS editor

user_manager user_manager Manager KU editor, TS editor

user_staff user_staff IT Staff KU editor, TS editor

administrator administrator Administrator KU editor, TS editor

 28

3.3 Structure of the front-end

3.3.1 Common Features

3.3.1.1 Using a Web application

Some very basic concepts that a user must remember when using a web

application:

Ø URLs

When a user works with a web application -filling fields, navigating pages,

opening links- the URL shown in the Address bar of the web browser is

changing almost with every action. It is not recommended to “bookmark”

a different URL from the URL defined to access the logon page, because

the use of these “temporal” URLs may cause errors and unexpected

behaviour.

Ø Wait until the page is loaded

When a button or a link is clicked, the user must wait till the page is

completely loaded, because if not, the loaded page could not work

correctly.

Ø Using the Tab

The tab key can be used to move the “focus” (where the cursor is located)

from one field to other, or to links or other elements defined in a page.

This is very useful when filling a form.

Ø Using the Mouse

The mouse can be used in several ways when navigating a web page:

- To move to other page: left-clicking once in a link.

- To set the focus in one field: left-clicking once on the field.

- To move around the page: Using the bars at right and below the

page, as in any other “Windows” application.

3.3.1.2 Managing sections

Many of the pages in the Front-end application are divided in sections. These

sections have a double purpose: organize the data, and make easier viewing this

data in screen.

 29

Figure 4 - Sections in a Front-end page (Header, Life-cycle…)

In edition pages (see Figure 5), the user can interact with these sections,

collapsing or expanding them, clicking in the triangular icon located in the left of

the title bar of the section.

 30

Figure 5 - Sections in an editable page (Header and Knowledge Unit

Statistics are expanded, the other sections are collapsed)

3.3.1.3 Managing multi-lingual tables

The SmartGov platform is multi-lingual, not only allowing the user in which

language they want to see the pages, but also allowing, in many fields in the

different objects, to specify different values for different locations.

To manage these multilingual fields, it has been defined and structure (shown in

Figure), which has the following elements:

• Row to add new values: at the bottom of the table, there is a row with a

list to select the language to define (from those already undefined), and

one or more fields to define the values. Once the fields have been filled,

their values are added to the table clicking in the Add button on the right

side.

• Already inserted values: they are listed beside a flag representing the

language to which they belong. In the example figure, “Ku Name” and “Ku

abstract” are the values for English, and “Nombre de la Ku” and “Abstract

de la Ku” the values for Spanish.

• Actions to modify or delete already inserted values: in the right side of the

Multilingual table there are two icons: a yellow ball (edition) and a trash

(deletion).

 31

- Edit: if the Edition icon is clicked, the current values for the

corresponding language are moved to the text fields below, so that

they can be modified. Once modified, the values are updated to the

table click in the Add icon, on the right side.

- Delete: If the deletion icon is clicked, the values corresponding to

the selected row are deleted.

Figure 6 – Multilingual table (the selected area)

The available locales are defined in the properties file smartgov.properties,

described in the section 3.2.2.2 of this document.

3.3.1.4 Managing other tables

When the application requires the management of a list of values, the table used

to this is very similar to the multilingual table:

• Row to add new values: at the bottom of the table, there is a row with a

one or more fields to define the values. Once the fields have been filled,

their values are added to the table clicking in the Add button on the right

side.

• Already inserted values: they are listed in the table.

• Actions to modify or delete already inserted values: in the right side of the

table there are two icons: a yellow ball (edition) and a trash (deletion).

- Edit: if the Edition icon is clicked, the values in the corresponding

row are moved to the text fields below, so that they can be

modified. Once modified, the values are updated to the table click

in the Add icon, on the right side.

- Delete: If the deletion icon is clicked, the values corresponding to

the clicked row are deleted.

Figure 7 – Multiple values table (the selected area)

 32

3.3.1.5 Pagination

There are several list of elements in the Front-end application. These lists include

pagination functionality when is considered necessary, so that the user can

navigate through a list too long to be fully shown in a screen.

When a list contains more than the number of elements that can be shown in one

list (defined in configuration, usually 5 elements), then pagination links are added

at the bottom of the page, so that the user can move to the next or the previous

part of the list.

Figure 8 – List with pagination

3.3.1.6 Actions applied to a SmartGov object

Ø Action bar:

The action bar is an element located at the top and at the bottom of each

element (see Figure 9). All the available actions to perform over this

object are situated in the bar: save, delete…

Figure 9 – Action bar location

Figure 10 – Action bar example

Ø Save object (floppy disk icon):

This element enables the user to update the changes made in the element

currently in edition. When the element currently in edition is an auxiliary

 33

element (Ku Section, Method, Validation Rule) this icon don’t save the

changes to the XML Repository, but it updates the changes in the main

element to which the auxiliary element belongs (Ku, TS, TSE…). The

changes are only saved to the repository when the main element is saved.

Ø Delete object (trash icon):

This item deletes the current element. If the item that we are editing is an

auxiliary one, this deletion is not definitive unless the main object is

saved.

Ø Approve object (life-cycle of TS and KU):

This action causes the current element to be saved an changes its current

status. Please refer to life-cycle of Ku and TS (3.5.1 and 3.6.1) for further

details.

Ø Reject object (life-cycle of TS and KU):

This action causes the current element to be saved an changes its current

status. Please refer to life-cycle of Ku and TS (3.5.1 and 3.6.1) for further

details.

Ø Reopen object (life-cycle of TS and KU):

This action causes the current element to be saved an changes its current

status. Please refer to life-cycle of Ku and TS (3.5.1 and 3.6.1) for further

details.

3.3.1.7 Associate knowledge units to the SmartGov elements

Almost every SmartGov element (TSs, Forms, Instantiated TSE and TSE Groups,

Generic TSEs and TSE Groups, and even other KU) can be linked to a KU. Thus,

the knowledge related with the element can be linked to it.

The part of the application to manage these links is always the same (see figure

11). There is a list with the already linked KUs (that can be unlinked clicking in

the trash icon), and below a link to add an already existing KU to the list. It is

important to notice that it is necessary to create the KU before linking it.

Figure 11 – List of linked KUs

When the link to add new KUs to the list is clicked, the page to select KUs is

shown (see figure 12). This page enables user to select KUs using the list with the

last modified KUs, searching through exiting taxonomies, and even searching

 34

through the Ku Id. In this field it’s allowed the use of wildcards (The “%” matches

any number of occurrences of any character).

Figure 12 – Select KUs page

3.3.1.8 Categorization of the SmartGov elements using taxonomy

nodes

As the KUs, almost every element of the SmartGov platform can be linked to a

taxonomy node. Thus, the user is able to categorize and organize these elements,

making easier their retrieval and future search.

In each element there is a section when the user can view the taxonomy nodes

the element is already related to (see figure 13) and can detach these nodes and

select others. Later this element may be retrieved navigating through the

taxonomies and selecting one of the linked nodes.

Figure 13 – Linked taxonomy nodes list

To select a node to link, a new page is shown (see figure 14), with a list of all the

taxonomy in the top and the selected taxonomy below. The user can select the

taxonomy that the nodes belong to, and then navigate through the taxonomy,

selecting the nodes to link.

 35

Figure 14 – Select taxonomy nodes page

3.3.1.9 Uploading files

The SmartGov Front-end includes a very simple document manager, which

enables user to upload files. These files are uploaded to the web server where the

application is hosted, so they can be used later.

Files can be uploaded in different parts of the Front-end:

- Layout XHTML files in forms

- KU attachments

- Native code methods

The mechanism to upload the file is always more or less the same: an auxiliary

windows is opened (see figure 15) where the user can select a file and then the

file is uploaded and its data included in the element that the user was editing.

This process will be analysed in detail for each case during this manual.

Figure 15 – Upload file page

 36

3.3.2 Login page

To enter to SmartGov Front-end tool, the following URL should be entered:

Login page: http://<host_name>:<port>/SmartGov/logon.jsp

Where <host_name> is the name of the host that should be provided by the

SmartGov administrator in every SmartGov Front-end installation.

Once the correct URL is entered, the SmartGov login page is shown.

Figure 16 - Login page

Figure 16 shows the SmartGov login page, in which the following fields and

actions may be identified:

Fields:

Ø User: The Id of a user of the SmartGov designing environment of services.

This user Id should be provided by the SmartGov administrator.

Ø Password: The password corresponding to the previous user Id. Firstly

provided by the administrator.

Actions:

 37

Ø Submit: By pressing this action the data introduced is sent to the server

and processed. If all validations are OK, the SmartGov main portal page is

called.

Ø Reset: Erases the data entered.

Ø Flags: Change the language during the duration of the current session.

Validations:

Ø Mandatory fields: User and Password

Ø The combination of User and Password should exist in the SmartGov user

security system.

Other issues:

Ø If the user is not able to enter to the system should contact with the

administrator.

3.3.3 SmartGov Portal

Figure 17 - SmartGov Portal page

Figure 17 shows the SmartGov portal page. This page is shown once the user is

successfully logged in the system. The following elements and actions may be

identified in it:

 38

Title bar: Shows the user logged-on and the default work group (if any) to which

the user belongs.

Ø User: Shows the user Id as a link to the page where the user logged-on is

able to change their password.

Ø Work Group: show a selectable combo-box where the user is able to

switch among the different work groups to which he/she belongs. A

change in the work groups causes the reloading of the portal page with the

new selected group with a different Task List and List of Services inside

the Work Group objects.

Ø Logout: next to the user id is located the logout icon, that can be used to

exit the Front-end and cancel current session. The user will be redirected

to the login page (see 3.3.2) and then it is possible to log into de

application as other user or as the same user, or to go on using the web

browser.

Contextual Menu: Shows the options available to the user, depending on the

role that plays in SmartGov. Clicking on one of the options leads to a concrete

editor or portal-page. Several options are common to all roles, but others are

available just for concrete roles, as it can be seen in the following table:

 Administrator Manager Service

Worker

Expert IT Staff

KU Editor

K
M

 Taxonomy

Editor

TSE Editor

TSE Group

Editor

Form Editor

S
er

vi
ce

s

m
an

ag
em

en
t

TS Editor

Group Editor

U
se

r

m
g
n
t.

User Editor

Taxonomy Retrieval: Shows the links to the available taxonomies to perform a

taxonomy-based search. Every taxonomy link loads a taxonomy tree-like page

with its existing taxonomy nodes as it can be shown in 3.5.3.2.

 39

Last Tasks (KUs): Shows a list with some information and the links to the last

modified KUs. It helps to know which KUs have been modified recently and the

author of the update, and it is a quick shortcut to enter directly to the most

recently acquired knowledge.

List of Services Inside the Workgroup: Shows a list with all the TSs that have

been created under the umbrella of the currently selected work group.

Task List: Shows a list with all the objects (TSs and KUs) that needs the

approval of the role to which the current user belongs. Entering to these objects

is the way to approve or reject the tasks. See sections 3.5.1 and 3.6.1 for more

details about KU and TS life-cycle.

3.4 User-Roles management

3.4.1 User-roles Portal

The security part of the application is divided in two main parts: user

management and group management.

When a user clicks in User Editor option, the User Portal page (see figure 18) is

loaded. This portal enables the user to create new users, and to access the

already existing users to modify their characteristics.

Figure 18 - User Portal page

The structure is very similar to the SmartGov Portal (see 3.3.3) The only

differences are the Users list (in the middle of the screen), and the Task List,

which is not present in this page.

In the Users list, all the existing users are listed and their attributes can be

modified making click over them, or a new user can be added to the system (see

section 3.4.2 for more details about the User editor).

 40

The other available option, related with security management, in the contextual

menu, is the Groups Portal Page (see figure 19). As in the User Portal, the

structure is very similar to the SmartGov main portal, replacing the list of last

KUs by a list of the groups the current user belongs to, and eliminating the Task

List.

Figure 19 - Groups Portal page

The Groups List will show all the groups the user belongs to. From these list the

current user can access to these groups to modify their members or their roles in

the group, or can create a new group and add to it user with their corresponding

roles (see section 3.4.3 for more details about the Group Editor page).

3.4.2 User Editor

The figure 20 shows the User edition page. This page is shown once the user

selects an already existing user or tries to create a new one (in this case the

fields will be empty).

Actions:

Ø Save

Ø Delete

Fields:

Ø Id: The Id of the User. If the user is new, this field is updateable. This will

be used later by the user to log on the Front-end.

Ø Password: The password that the user will use to log on the Front-end. It

can be changed by the user once logged on the Front-end, as described in

section 3.3.3, in the description of the Title bar).

Ø SmartGov Role: the role of this user in the Front-end. The possible values

are: Administrator, Domain Expert, Manager, IT Staff and Service Worker.

Ø E-mail: Electronic mail address of the user.

 41

Ø Name and surname: personal data of the user.

Validations:

Ø Mandatory fields: all the fields should be introduced.

Ø The user id must not previously exist.

Figure 20 - User Editor page

3.4.3 Group Editor

The figure 21 shows the page to create a new Group. This page is shown once the

user clicks in the New Group link, in the Groups portal page. Once the Group Id

an Group Name are filled, the Group can be saved and then it is possible to add

users to this group.

Figure 21 - Group Editor page

The figure 22 shows the edition of an already existing group (it is similar to the

page shown when creating a new group, but contains more data).

The following fields and actions may be identified:

Actions in action bar:

Ø Save

Ø Delete

Fields:

 42

Ø Group Id: The Id of the Group. Only can be modified when creating the

group.

Ø Group Name: The name of the group.

Ø User in the group: a list with the users in the group and their roles.

Actions in links:

Ø Edit user roles in the group: Clicking in the user id, the roles of the user in

the group can be modified. If no role is specified for the user, it will be

deleted from the group.

Ø Add new User: This allows to select a user and his roles in the group.

Validations:

Ø Mandatory fields: Group Id and Name.

Ø The Group id must not previously exists.

Figure 22 - Group Editor page

When the current user wants to add a user to the group, a new page is accessed

(see figure 23), where can be selected the user to add and the roles of this user.

Figure 23 – Linking a user to a group page

 43

The following fields and actions may be identified:

Actions in links:

Ø Save changes: add the user to the group with the selected roles.

Fields:

Ø User: The user to be added. This field shows a list with all the user in the

system not ¡n the group.

Ø List of roles of the user in the group: the page shows a list with all the

roles that can be assigned to the user in the group, and besides each role

there is a check box to select it. The roles are shown as follows:

Role Scope Role Explanation

wf_ku editor KUs editor

wf_ku reviewer KUs reviewer

wf_ku approver KUs approver

wf_ts editor TS editor

wf_ts approver TS approver

See sections 3.5.1(KUs) and 0 (TSs) for a deeper explanation about the

TSs and KUs life-cycle.

Validations:

Ø A user must be selected.

Ø At least one role must be selected. If not, the user will not be added to the

group.

3.5 Managing Knowledge

The Knowledge is key part of the SmartGov platform, especially for the Front-

end. Knowledge Units (KUs) and Taxonomies have been included in the system to

allow the user to enrich the process of service development, allowing the users to

search in the already existing knowledge to solve their doubts or improve their

way of working, and also collaborate adding their own knowledge, related with

the tool or with the whole process of offering electronic services to citizens.

The Front-end allows the user to create and modify these Knowledge elements.

Concerning the KUs, it also allows the user to apply a life-cycle over them, in

order to assure the quality and correctness of these elements before using them.

3.5.1 The KU life-cycle

In the figure 24 is shown the KU life cycle. The diagram shows the four possible

states for a KU, the available actions in each state and the required role to

 44

perform this tasks. Thus, all the knowledge created can be validated in the

context of the workgroup.

Figure 24 - Knowledge life-cycle figure

When a user logs on the Front-end application, the SmartGov Portal will show on

the right side the task list. This list will show all the KUs in a state in which the

user has the right role to perform an action, save the approved KUs, that will not

be shown in the task list.

3.5.2 Capturing KUs

3.5.2.1 KU Editor

3.5.2.1.1 KU Portal

 45

Figure 25 – KU Portal page

Figure 25 shows the KU Editor portal page. This page is shown once the user

selects the KU Editor option in the Menu. The structure is similar to the SmartGov

portal (see 3.3.3) plus the possibility to add new KUs if the user has the required

role to do that (all roles except Administrator). Clicking in the name of one of the

KUs the user can access all its data.

3.5.2.1.2 KU Edition page

 46

Figure 26 - KU Edition page

Figure 26 shows the KU Edition page. This page is shown once the user selects a

KU and he/she has the rights to update the KU. The Figure shows the sections

unfolded for clearness purposes. The following fields and actions may be

identified:

Actions:

Ø Save

 47

Ø Delete

Ø Approve (Depending of the role of the user and the state of the KU)

Ø Reject (Depending of the role of the user and the state of the KU)

Fields:

 Header Section

Ø Id: The Id of the KU. If the KU is new, this field is updateable. The user

should provide a KU identifier without spaces and special characters, as

hyphens, slashes, and so on. Notice that this Id should be human readable

in order to easily search and locate the KUs afterwards.

Ø Type:

o Help

o Lessons Learned

o Just-In-Time training

o Best Practices

o Troubleshooting

o Storytelling

o Example

Ø Description Table (Name and Abstract) – See Multi-lingual tables

(3.3.1.3).

Life-cycle Section

Ø Author: The initiator of the KU.

Ø Creation date

Ø State: current state of the Ku.

Ø Last update: the last time that this KU was saved.

Ø Service Expiry: This flags enables to activate if a KU lost its validity when

the service that is linked to expires.

Ø Expiry Date: Sets when this KU lost its validity.

Ku-Sections Section: This section is the core of the KU. Here the KU

content, links and attachments are loaded. The fields are shown as non-

updateable fields. To update or create new sections, the action “New

Section” or the links to previous existing sections should be selected. Later

on (3.5.2.1.3) the way to add or modify sections and the fields involved

will be discussed.

Associate knowledge units: A KU can be associated to other KUs in

order to see structure knowledge. The way of attaching KUs is explained in

3.3.1.7.

Categorization: The way of linking a KU or other SmartGov elements to

Taxonomy Nodes is explained in 3.3.1.8.

 48

Knowledge Unit Statistics: The definition of the desired delivery

environment statistics of the KU, and some information about the life-cycle

and usability of the KU in the design environment is shown is this section.

Ø Life-cycle log: Contains a table that shows the most important steps and

updates in the KU life-cycle: Date of modification, Performer or author of

the update, State to what the KU was driven by the update, and

Comments (if any) of the performer.

Ø Metrics: Categorization of the type of knowledge given by the experts.

Ø Enable delivery environment statistics: The definition of the desired

delivery environment statistics of the KU. If the different types of desired

statistics are set to “Enabled”, then the Integrator will proceed to generate

the required code if the KU is driven to the delivery environment.

Validations:

Ø Mandatory fields: KU Id, and at least one description (name and abstract)

and one KU Section.

Ø The KU id must not previously exists.

3.5.2.1.3 KU Sections page

Figure 27 - KU Section edition page

 49

The KU Section is the core of the KU. When a new section is created, the figure

27 is shown with the following fields and actions:

Actions:

Ø Save: save in session the KU Section. Remember that this saving action

does not mean a real storing in the database until the whole KU will be

saved (“Save” action in the KU) later on.

Ø Delete: delete from session the KU Section. As in the previous action, it

does not mean a real deletion until the KU will be saved (“Save” action in

the KU).

Fields:

Ø Addressed to: The KU content of this section is addressed to the roles

selected in this field (“All roles”, “Manager”, “Domain Expert”, “IT Staff”,

“Service Worker” or “End user”).

Ø Comments: comments that explain the “addressed to” field allocation (if

necessary).

Ø Description: title and content of the section (core content). The title field

will be the name of the section. See Multi-lingual tables (3.3.1.3).

Ø Links: available links (web pages and files). The links should be entered in

pairs of name and URL:

o Name: Name or textual description of the link. A name in the

desired languages should be provided to the link. See Multi-lingual

tables (3.3.1.3).

o URL: URL of the link in web format. It means that the URL should

be entered in a format understandable by the web, for instance

“http://www.xxx.com” instead of “www.xxx.com“. See Multi-lingual

tables (3.3.1.3).

Instead of referring to an existing URL, a file may be uploaded to

the server and a reference to that file would be inserted in the

section. When the action “Upload file” is selected, a new window to

upload a file is presented (see 3.3.1.9). The uploaded file is treated

as a new link.

There is also a shortcut to create a link directly uploading a file. If the

action “Upload file” located under the “Files” title is selected, a new link

will be created with the uploaded file, using as name of the link the name

of the file.

Validations:

Ø Mandatory fields: at least one description (title and content) should be

provided.

http://www.xxx.com
http://www.xxx.com

 50

Other issues:

Ø When a new section is added, the page presents a default name (“New

Section n”, where n is the number of the section in the current KU), and a

Title (“New Section n”) and Content (“…Content…”) for the default

language. These fields should be modified in order to set the correct text

of the section.

3.5.2.1.4 KU read-only page

Figure 28 - KU read-only page

This page shows the KU in read-only mode. This page is shown when selecting

from the different portals and elements with related KUs in the following cases:

1. The user has not rights to modify the KU.

2. The KU is in a state that not allows updates.

Actions:

Ø Reopen (only if the user belongs to the group where the Ku was created

and has the Approver role).

3.5.2.1.5 KU reduced read-only page

 51

Figure 29 - KU read-only reduced page

This page shows a reduced view of the KU in read-only mode. This page is shown

when selecting the KU from the list of elements related with a taxonomy node. It

simplify the view of the KU to its core (name, abstract, description section, links

and associated KUs), what means a user friendly view of the most important

knowledge contained in the KU, avoiding all the data related with the creation and

management process.

3.5.3 Retrieving Knowledge

3.5.3.1 Taxonomy Editing tool

3.5.3.1.1 Taxonomy Editing portal

Figure 30 - Taxonomy portal

Figure 30 shows the Taxonomy portal page. This page is shown once the user

selects the Taxonomy Editor option in the Menu. The structure is similar to the

 52

SmartGov portal (see 3.3.3) plus the possibility to add new Taxonomies if the

user has the required role to do that (Administrator or Expert).

3.5.3.1.2 Edit Taxonomy

Figure 31 shows the Taxonomy Edition page. This page is shown once the user

selects a Taxonomy from the Taxonomy portal.

Figure 31 - Edit Taxonomy page

The following fields and actions may be identified:

Actions:

Ø Save

Ø Delete

Ø Generate file: updates the current state of the Taxonomy to the tree view

that is displayed when clicking in the Taxonomy Retrieval section included

in all the portal pages.

Fields:

 Header Section

Ø Id: The Id of the Taxonomy. If the Taxonomy is new, this field is

updateable. The user should provide a Taxonomy identifier without spaces

and special characters, as hyphens, slashes, and so on.

Ø Description Table (Name and Abstract) – See Multi-lingual tables

(3.3.1.3).

First Level Taxonomy Nodes Section:

 53

This sections shows a list with all the taxonomy nodes in the first level of

the taxonomy. Nodes can be moved up and down using the arrows beside

them, and also deleted from the list with the trash icon. Also the nodes

can be accessed by clicking in their id.

In the bottom of the list there are two actions:

Ø Associate nodes: allows selecting an already existing node (see sections

3.5.3.1.4 and 3.5.3.1.5 to see how to select nodes).

Ø Create new node: allows creating a new node (see section 3.5.3.1.3 about

how to edit nodes). This action will not associate the new node to the

taxonomy; the node must be linked using the previous action.

Validations:

Ø Mandatory fields: Taxonomy Id, and at least one name.

Ø The Taxonomy id must not previously exists.

3.5.3.1.3 Edit Taxonomy Node

Figure 32 shows the Taxonomy Node Edition page. This page is shown once the

user selects a Taxonomy Node from the Taxonomy edition page or from other

Taxonomy Node edition page.

Figure 32 - Edit Taxonomy Node page

The following fields and actions may be identified:

Actions:

 54

Ø Save

Ø Delete

Fields:

 Header Section

Ø Id: The Id of the Taxonomy node. If the Taxonomy is new, this field is

updateable. The user should provide a Taxonomy node identifier without

spaces and special characters, as hyphens, slashes, and so on.

Ø Description Table (Name, Synonym and Abstract) – See Multi-lingual

tables (3.3.1.3).

Nodes linked with the current node Section:

Ø This sections shows a list with all the taxonomy nodes linked with the

current node. The functionality of this list is very similar to the First Level

Nodes list in Taxonomy Edition (see section 3.5.3.1.2 for more details).

Validations:

Ø Mandatory fields: Taxonomy Node Id, and at least one name.

Ø The Taxonomy Node id must not previously exists.

3.5.3.1.4 Associate nodes by Taxonomy

When selecting nodes to associate them to a taxonomy or a taxonomy node, a

way of selecting these nodes is navigating the already existing taxonomies, to

select a node already located in other taxonomy, or in the same taxonomy in

different branch.

For this purpose, a list of all the taxonomies is shown in the page to select nodes

and, by clicking in one of them, the taxonomy is shown below (see figure 33)

allowing to select the nodes that we want to add to the taxonomy or taxonomy

node currently in edition.

Once we have selected the nodes, we can click in the “link nodes” action to

confirm our selection.

 55

Figure 33 - Select nodes by Taxonomy page

3.5.3.1.5 Associate nodes by Node Id

Although the selection of nodes using the taxonomy can be useful in some cases,

the more usual way of selecting a node will be entering its Id, because the most

frequent case is that a node is only in a taxonomy, so we cannot locate that node

navigating other taxonomy.

Therefore, it will be necessary remembering the Ids of the Nodes that we are

creating, so it is important to use a coherent way of assigning id to the nodes.

Anyway, it is allowed the use of wildcard (The “%” matches any number of

occurrences of any character) in the Id field, making easier to search nodes (see

example in figure).

Once performed the search, a list of the nodes fitting the introduced string is

displayed. There is possible to select as many nodes as desired, to associate them

to the taxonomy or taxonomy node currently in edition.

 56

Figure 34 - Select nodes by Node Id page (after searching ‘Node60%’)

3.5.3.2 Taxonomy Retrieving tool

Given that it is possible to link all the elements of the platform to taxonomy

nodes, a useful way of searching elements is through the taxonomy, retrieving all

the elements linked to a node.

This option is available through the “Taxonomy retrieval” list, available in all the

portal pages of the Front-end. In this section there is a list with all the available

taxonomies and, clicking in one of them, it is possible to navigate through the

taxonomy to find the searched node.

3.5.3.2.1 Taxonomy tree view

When the user selects a taxonomy in the “Taxonomy retrieval” list, then the

taxonomy is shown as a tree view, allowing the user to expand or collapse the

different branches (clicking in the plus or minus icon, similar to Windows

Explorer), in order to find the searched node. The figure Error! Reference

source not found. shows a taxonomy with some expanded nodes.

 57

Figure 35 - Taxonomy Retrieval tree view page

Once the user has located the node, the related elements can be seen clicking on

the name of the node.

3.5.3.2.2 Taxonomy node related objects page

When the user selects a node in the taxonomy tree view (see previous

paragraph) a new page opens with the list of related nodes (see figure 36). From

this list it is possible to access all the elements related with the taxonomy node,

clicking on the name.

Figure 36 - Taxonomy node related objects page

 58

3.6 Managing Service elements

The main goal of the SmartGov platform is develop electronic service. Therefore

the creation and management of all the elements related with these services is a

key function in the Front-end. With the added value of the associated knowledge,

the Front-end coordinates the process to create a service, including the

management of the whole life-cycle of the Service.

3.6.1 The TS life-cycle

In the figure Error! Reference source not found. is shown the TS life cycle.

The diagram shows the three possible states for a TS, the available actions in

each state and the required role to perform this tasks. The cycle is very similar to

the KU’s, but simpler.

Figure 37 – TS life-cycle figure

When a user logs on the Front-end application, the SmartGov Portal will show on

the right side the task list. This list will show all the TSs in a state in which the

user has the right role to perform an action, save the approved TSs, that will not

be shown in the task list.

3.6.1.1 Designing the service

Before start working with the Front-end tool, the service operation, the roles

involved, the business rules governing the service and the data that must be

presented and/or collected should be identified and documented. Portions of the

documentation (e.g. supporting legislation, information regarding the workflow,

 59

service development expected time schedule) may be stored within the SmartGov

platform as knowledge units associated with the whole service.

In this phase, the service name is entered, along with a high-level description of

it and at least one set of forms. The description may document the overall service

functionality, the result of the feasibility study and so on. Finally, Knowledge Units

and some taxonomy nodes related with the service may be entered.

The only pre-requisite before the TS generation consist in having at least one

form element created. It is mandatory for the TS to have at least one form set.

The form could be just a dummy form (just the ID and the description) if

anything else have been defined.

After that, Domain Experts and IT Staff add the form elements (Forms, TSE, TSE

Groups), and the KUs attached to them, the categorization and all the methods

and validation rules required.

Once the service is finished, the experts should send TS to approve. The manager

should approve the TS before the integration.

3.6.1.2 Integrating components

Once all necessary elements for a transaction service have been defined, the

integration phase will arrange for performing a synthesis of these elements into

an operational instance of the transaction service. In more detail, the integration

step will perform the following actions:

1. It will access the service definition, extracting from it the links to the

forms that implement the service, the validation checks pertaining to the

service as a whole and the associated KUs.

2. It will retrieve the form definitions and the definitions of the TSEs

appearing on each form, together with the associated validation checks

and KUs. If a TSE group has been placed on a form, all TSEs belonging to

the group will be retrieved, together along with their descriptions, KUs and

validation checks. KUs and validation checks pertaining to the TSE as a

whole will also be retrieved.

3. It will load the information regarding the statistics that need to be

collected.

Once this information is available to the integrator, the service instantiation task

may proceed. The integrator module will generate a page for each form defined

within the service, using the form layout specification. Forms belonging to the

same service will be suitably linked, based on form sequence information

specified for the service; “submit” buttons will also be placed on the forms that

have been designated to provide such functionality. At this stage, the

 60

completeness of references to TSEs should be verified: each TSE declared to

participate in a form, should be linked with an element of the form layout. If this

is not the case, the SmartGov platform user should be informed of the

discrepancy, in order to amend the situation.

Validation checks defined at TSE level and form level will be used to generate

code that will validate user input. This code may be executed:

1. At the front-end (client-device side), if the service designers have

designated that this is desirable and if the client device supports active

features. Regarding the timing of the execution, these checks may be

performed either when the user changes a field value (usual case when

the validation check pertains to the field data type or the field value

range), or when the user leaves the page (typically when the validation

check involves multiple fields).

2. At the server-side. All input should be always validated at the server-side,

since in a distributed environment clients should be considered

untrustworthy, and thus the system may not rest on the perception that

all client-side checks have been properly executed. Server-side checks

may be run when the user leaves a page or when a final submission is

made, depending on the timing specified by the service designers.

The integrator will also generate code for the validation checks defined at service

level. These will be executed on the server-side upon the final submission, since

in general they involve TSEs appearing in different forms, which inhibits execution

at the front-end upon form change (it is not guaranteed that all involved values

will have been provided).

Finally code will be generated to arrange for the communication with third-party

systems through the SmartGov agent. This communication will be mainly

performed when the user invokes a service, in order to retrieve values for TSEs

that need to appear pre-filled in with values obtained from registries or

databases.

Knowledge units that are associated with TSEs, TSE groups, forms and the

transaction service and that have been designated as “help items for end-users”

should be appropriately linked to the forms. The integrator should arrange for the

proper generation of help pages from KUs and embedding of the hyperlinks to the

appropriate anchors.

Statistics definitions will also be translated to pieces of code that will arrange for

collection and storage of relevant statistics. For example, if the sum of the values

filled in a specific form element has been requested to be computed, the

integrator will generate code that will add the value of each submitted form to a

 61

database element; if the number of submissions should be counted, code will be

generated for adding up one to a specific database element upon submission.

Once the final pages and the associated programs have been generated, the files

produced may be installed on a restricted access server for testing and evaluation

purposes, or on a public access service for full service deployment.

3.6.1.3 Reopening services

After the approval of the service, modifications may be required. For instance it

will be common that the service required several integrations and changes in the

form definitions before a total deployment, or a service already deployed may

suffer updates during its life-time.

In order to do that, the Ts should be reopened by the users with the “Approver”

role. The Ts will be in “Editing” state after this operation.

The integrator is the responsible for all the tasks described in section 3.6.1.2. In

the section 4 this module is completely described.

3.6.2 Introduction and common task

3.6.2.1 Introduction

The Front-end enables user to create service or to modify already deployed

services. In both cases this application allows user to collaborate and work

together to complete the service, establishing the Forms and elements taking part

in the service, and also the “help” –using Knowledge Unit” related to the service.

In the following sections this document describes all the tasks to perform

concerning the development of a service. These tasks include:

• Create or modify a TS.

• Define its forms, with their associated XHTML layouts.

• Create the required elements in the form (Generic and Instantiated TSEs

and TSE Groups).

3.6.2.2 Working with Validation Rules

The validation rules enable the user to add “intelligence” to the service, by

incorporating checks to assure that the data entered are conferment to the

organisation’s business rules governing the service.

Validation checks may apply to individual TSEs, TSE groups, forms or TS.

Validation checks pertinent to specific TSEs will mainly check the data type

 62

(integer, string, date etc) and the value range of the data entered. These

validation checks may be considered as properties of the relevant TSEs.

Validation checks applying to TSE groups, forms or services will mainly check if a

certain relationship between different TSEs holds. The TSEs referenced in the

validation check should all be valid in context of the object within which the

validation check is defined; for example, a validation check defined at TSE group

level only references TSEs participating in the TSE group.

Validation checks may be entered either via a graphical interface or in textual

form, using SmartGovLang, a validation rules language that has been defined

within the SmartGov project. In both cases, the definition of complex validation

checks will be carried out by IT staff, rather than domain experts. IT staff should

be allowed to code validation checks directly in the language used by the service

delivery platform (e.g. Java, JavaScript etc.) if this is found to be convenient, or

if the coding language/environment provided is not expressive enough to

implement the desired functionality.

Figure 38 - Validation Check

For a deeper view over the validation checks, please review Appendix B.

3.6.2.3 Methods

Methods are used to define both validation check codification and actions to be

performed when some event occurs in the related elements (for instance when a

form is loaded).

The user has to choose between the following types of methods:

 63

Ø Native Language

Ø SmartGov Language

o Full Rule

o Compact Rules

Please review Appendix B for a deeper explanation.

3.6.3 Service Portal

In the service area of the SmartGov portal menu there are four options, to access

for different portal-like pages.

3.6.3.1 TS Portal

This portal page (see figure 39) is very similar to SmartGov main portal, but the

list of last KUs has been replaced by a list with the last TSs, and the task list is

not shown. The user is able to access the complete definition of the different TSs

clicking in their names.

Figure 39 - SmartGov TS Portal

3.6.3.2 Form Portal

This portal page (see figure 40) is very similar to SmartGov main portal, but the

list of last KUs has been replaced by a list with the last Forms, and the task list is

not shown. The user is able to access the complete definition of the different

Forms clicking in their names.

 64

Figure 40 - SmartGov Form Portal

3.6.3.3 TSE Portal

This portal page (see figure 41) is very similar to SmartGov main portal, but the

list of last KUs has been replaced by a list with the last Generic TSEs and other

list with the last Instantiated TSEs. The task list is not shown. The user is able to

access the complete definition of the different TSEs (Generic or Instantiated) by

clicking in their names.

Figure 41 - SmartGov TSE Portal

3.6.3.4 TSE Group Portal

This portal page (see figure 42) is very similar to SmartGov main portal, but the

list of last KUs has been replaced by a list with the last Generic TSE Groups and

 65

other list with the last Instantiated TSE Groups. The task list is not shown. The

user is able to access the complete definition of the different TSE Groups (Generic

or Instantiated) by clicking in their names.

Figure 42 - SmartGov TSE Group Portal

3.6.4 Development of Transaction Service Components

3.6.4.1 Introduction

During this phase the various components of the electronic service are taking a

concrete form within the SmartGov platform. The following paragraphs elaborate

on the process of creating the different elements. It is important to note that,

once the service process model has been defined, the object definition need not

be carried out sequentially. For instance, the form layout may be developed in

parallel with the TSEs or the KUs that will be placed on the form, and links to

external IT systems can be established independently of all other activities.

Restrictions are placed on the development timeline only when a specific object

depends on the existence of another: for instance a validation check involving two

TSEs cannot be modelled until both involved TSEs have been defined and placed

in a Form or in a TSE Group.

It is necessary to have a form before creating a Ts, a Generic TSE before creating

a TSE Group, and other restrictions described in the following sections.

 66

3.6.4.2 Transaction Service (TS) Edition page

Figure 43 shows the TS Edition page. This page is shown once the user selects a

TS and he/she has the rights to update it. The Figure shows the sections unfolded

for clearness purposes.

Figure 43 - TS Edition page

The following fields and actions may be identified:

Actions:

Ø Save

Ø Delete

Ø Approve (Depending of the role of the user and the state of the TS)

Ø Reject (Depending of the role of the user and the state of the TS)

Fields:

 Header Section

 67

Ø Id: The Id of the TS. If the TS is new, this field is updateable. The user

should provide a TS identifier without spaces and special characters, such

as hyphens, slashes, and so on. Notice that this Id should be human

readable in order to easily search and locate the TSs afterwards.

Ø Description Table (Name and Content) – See Multi-lingual tables (3.3.1.3).

Properties Section

Ø Authentication requirements: The type of authentication that will be used

to verify the identity of the service end-users. The username and

password method is supported by default; all other methods should be

supplied by the organisation’s IT staff.

Ø Allow save

Ø Allow edit

Ø Allow delete

Ø Deadline: Defines when this TS stops being valid; after this date, the

deployed TS will not be usable by end-users.

Validation Rules Section: This section contains all the validations check

to be performed when a service end-user submits a document. Please see

section 3.6.2.2 for further information about Validation Rules.

Available Methods Section: This section contains two methods:

preaction and postaction, which enable SmartGov platform users to specify

actions to be performed when launching the service (preaction) and when

it is finished (postaction).

Included form sets: This section enables the user to create form sets. A

form set is a group of forms directed to a specific platform. The possibility

of defining different form sets has been implemented as a future capability

of the tool to generate services for different platforms (HTML, WAP…),

although currently only “HTML” form sets are supported.

When a new form set is created (clicking in “Add new Form set”) or an

already defined form set is modified (clicking in the name of the form set,

in “Target Platform” column) a new page opens, allowing the user to select

the forms to include in the form set (see figure 44).

 68

Figure 44 – Form set definition

For a more detailed reference about managing tables, see section 3.3.1.4.

Associated knowledge units: KUs can be associated with a TS. The

way of attaching KUs is explained in 3.3.1.7.

Categorization: The way of linking a TS or other SmartGov elements to

Taxonomy Nodes is explained in 3.3.1.8.

Statistics: The definition of the desired delivery environment statistics for

the TS. In this section a set of choices are displayed which enable users to

activate or deactivate the collection of these statistics in the delivery

environment.

Validations:

Ø Mandatory fields: TS Id, and at least one description (name and abstract)

and one Form set.

Ø The TS id must not be in use by any other object in the SmartGov

platform.

If the user does not have the privileges required to edit the TS, a read-only page

will be shown (see figure 45), allowing him/her to view all the characteristics of

the TS. The structure and fields are the same with the Edition Page.

 69

Figure 45 - TS read-only page

3.6.4.3 Forms

Forms are the basic presentation and interaction unit for the end user of the

transaction service. In the context of the SmartGov platform, a form is divided in

two parts:

1. The semantic part, which defines what information is entered in the form,

the validation checks that apply to the form and the knowledge units,

which will be presented to the user.

2. the layout part, which defines the appearance of the elements on the

client device through which the electronic service is accessed.

Although in an ideal world both these parts would be developed in an

integrated environment, in the context of the SmartGov project this is not

feasible because (a) developing a web page editor with modelling power and

user friendliness comparable to the commercial tools service designers are

used to work with, is a huge task outside the scope of the project (b) devoting

person power in development of such a module is not in line with the

objectives of the key action (c) existing products are “closed” platforms and

 70

cannot be extended. Taking these into account, the two parts will be

developed independently as follows:

1. The semantic part is developed using the SmartGov development

platform.

2. The layout part is developed outside the SmartGov platform using any

appropriate tool for form layout definition that targets the dissemination

channel through which the service will be delivered. For example, if the

service will be delivered through the WWW, HTML form editors should be

employed (e.g. DreamWeaver, FrontPage, vi etc.); if the service will be

delivered through the WAP, a WAP page editor (3TL WBuilder, Rasquares

Wap, vi etc) might be used. For services that will be deployed through

multiple dissemination channels, appropriate form sets should be

developed, one for each dissemination channel.

Since the two parts will be developed independently, there is a need to integrate

them, by establishing links between the elements of the semantic part and the

elements of the layout part. This procedure is covered in 3.7. The development of

both parts should adhere to the results produced by the service process model

creation phase, so these parts will be consistent with one another. Any

inconsistencies between the semantic part and the layout part (such as a

reference from the layout portion to a TSE or KU that does not exist) will be

detected at the integration phase, and users will be advised on the actions that

need to be taken to resolve the inconsistencies.

The key advantage of this separation is the independence between presentation

(covered by the layout) and the logic (the Form element itself). In this way, it is

very easy change the visual aspect of a complete service without modifying the

logic, or reusing this logic, given that it is isolated and stored in the different

elements (TSE, TSE Groups, Forms) that can be reused.

Figure 46 shows the Form Edition page. This page is shown once the user selects

a Form and he/she has the rights to update it. The Figure shows the sections

unfolded for clearness purposes.

 71

Figure 46 - Form Edition page

The following fields and actions may be identified:

Actions:

Ø Save

Ø Delete

Fields:

 Header Section

Ø Id: The Id of the Form. If the Form is new, this field is updateable. The

user should provide a Form identifier without spaces and special

characters, such as hyphens, slashes, and so on. Notice that this Id should

be human readable in order to easily search and locate the Forms

afterwards.

Ø Description Table (Name and Description) – See Multi-lingual tables

(3.3.1.3).

 72

Layout Section: this section enables the user to select the layout file

associated with this form. The file will be uploaded into the server where

the application is installed (see section 3.3.1.9 for further details about

uploading).

Validation Rules Section: This section contains all the validations check

to be performed over the form, when the form is submitted. Please see

section 3.6.2.2 for further information about Validation Rules.

Available Methods Section: This section contains two methods: the first

one to be executed when the form is loaded, and the second one to be

executed when the form is submitted.

Included elements: This section enables the user to include Instantiated

TSEs and TSE Groups to the form, using the links “Associate TSE” and

“Associate TSE Group”. These links open new windows to select the

elements to be included in the form. For a more detailed reference about

managing tables, see section 3.3.1.4.

Figure 47 shows an example of the page to select Instantiated TSEs.

Figure 47 – Select ITSE to include in a form

Associate knowledge units: KUs can be associated to a Form. The way

of attaching KUs is explained in 3.3.1.7.

Categorization: The way of linking a Form or other SmartGov elements

to Taxonomy Nodes is explained in 3.3.1.8.

Statistics: The definition of the desired delivery environment statistics of

the Form. In this section, a set of choices are displayed which enable users

to activate or deactivate the collection of these statistics in the delivery

environment.

Validations:

 73

Ø Mandatory fields: Form Id, and at least one description (name and

abstract). The layout file is not mandatory to save the form but a warning

message will be displayed while no file has been selected.

Ø The form id must not be in use by any other object in the SmartGov

platform.

Figure 48 - Form Read-Only page

If the user does not have the privileges required to edit the form, a read-only

page will be shown (see figure 48), allowing him/her to view all the

characteristics of the form. The structure and fields are the same with the Edition

Page.

3.6.4.4 Transaction Service Elements (TSEs)

Transaction service elements will be the basic building blocks for transaction

services. TSEs will be mainly defined by domain experts, and their work will be

complemented by IT staff, who will code the IT related portions, and by service

workers, who may contribute by adding knowledge units that will serve as help

items for the end-users of the transaction service.

Figure 49 shows the Generic TSE Edition page. This page is shown once the user

selects a TSE and he/she has the rights to update it. The Figure shows the

sections unfolded for clearness purposes.

 74

Figure 49 - TSE Edition page

The following fields and actions may be identified:

Actions:

Ø Save

Ø Delete

Fields:

 Header Section

Ø Id: The Id of the TSE. If the TSE is new, this field is updateable. The user

should provide a TSE identifier without spaces and special characters, such

as hyphens, slashes, and so on. Notice that this Id should be human

readable in order to easily search and locate the TSEs afterwards.

Ø Name: The name of the TSE.

Ø Content Table – See Multi-lingual tables (3.3.1.3).

Properties Section:

Ø Max. Length: The maximum allowed length for this TSE. Zero means

unlimited length.

Ø Data type: The data type that this TSE will contain. The possible values

are:

o Currency

o Date

o Integer

 75

o Boolean

o Text

o Real

Ø Value list: Provides a table to add possible values of the TSE, and allowing

to specify the default value (see 3.3.1.4 for more details about table

management).

Validation Rules Section: This section contains all the validations check

to be performed over the form when submitted. Please see section 3.6.2.2

for further information about Validation Rules.

Available Methods Section: In this section, it is possible to add

methods. This is a provision for future platform extension". In future,

methods placed in this section (java code, SmartGovLang etc) may be

included once and could be used in several validation checks.

Associate knowledge units: KUs can be associated with a Form. The

way of attaching KUs is explained in 3.3.1.7.

Categorization: The way of linking a Form or other SmartGov elements

to Taxonomy Nodes is explained in 3.3.1.8.

Validations:

Ø Mandatory fields: Tse Id and data type.

Ø The TSE id must not be in use by any other object in the SmartGov

platform.

Figure 50 - TSE Read-Only page

 76

If the user does not have the privileges required to edit the Generic TSE, a read-

only page will be shown (see figure 50), allowing him/her viewing all the

characteristics of the Tse. The structure and fields are the same with the Edition

Page.

3.6.4.5 Instantiated Transaction Service Elements (ITSEs)

The ITSEs represent instances of Generic TSEs. These instances are created to

include the TSEs in forms, allowing the user to modify or adjust some of the

characteristics of the TSE. Therefore, the structure of the ITSE is very similar to

the TSE’s, as the figure 51 shows. This Instantiated TSE edition page is shown

once the user selects an Instantiated TSE and he/she has the rights to update it.

The Figure shows the sections unfolded for clearness purposes. Given that the

structure is very similar to the previous paragraph, only the differences will be

commented.

 77

Figure 51 – Instantiated TSE Edition page

The following fields and actions may be identified:

Fields:

 Header Section

Ø Id: The Id of the ITSE. This id is generated using as base the Id of the

Generic TSE used to instantiate it. A “T_” prefix is added if the ITSE is

instantiated from a Generic TSE, while a “G_” prefix is added if the ITSE is

instantiated from a Generic TSE Group.

Ø Description Table (Name and content) – See Multi-lingual tables (3.3.1.3).

Properties Section:

Ø Single select: For TSEs that present a list of values to the end-user, if this

flag is “true”, only a single value may be selected; if this flag is “false”,

multiple values may be selected.

Ø Is visible: designates whether the TSE will be visible by the end-user or

will remain hidden.

Ø Is read-only: if this flag is “true” the end-user will not be able to modify

the TSE value; if this flag is “false”, modifications will be allowed.

Ø Is mandatory: if this flag is “true” and the end-user provides no value for

this TSE, an error will be flagged; if this flag is “false”, provision of a value

is not mandatory.

Available Methods Section: In this section is possible to specify four

methods:

- Computation rule: a method to compute the value of this field.

- On value change: What to do when the value of this ITSE changes.

- Retrieve method: how to load its value when the form where it is

included is loaded.

- Store method: how to store its value when the form where it is

included is submitted.

Statistics: The definition of the desired delivery environment statistics of

the ITSE. In this section are displayed a set of flags which enable users

activate or deactivate the collection of these statistics in the delivery

environment.

Validations:

Ø Mandatory fields: all pre-filled when instantiating the object.

 78

Figure 52 - ITSE Read-Only page

If the user does not have the privileges required to edit the Instantiated TSE, a

read-only page will be shown (see figure 52), allowing him/her to view all the

characteristics of the ITSE. The structure and fields are the same with the Edition

Page.

3.6.4.6 Group of Transaction Service Elements (TSE groups)

With layout definition being developed outside the SmartGov platform, a TSE

group defines the following:

Ø a set of TSEs that appear together within services

Ø Repetition information, indicating whether only one instance or multiple

instances of the member TSEs is required. For groups allowing multiple

instances, the member TSEs actually form a table row, which is repeated

as many times as needed, and may be used to model “detail” sections,

e.g. the items that are included in an order along with their prices, the

customers of an enterprise together with the net value and the tax due for

the transactions conducted with each one etc. The repetition information

may indicate the initial, minimum and maximum number of instances and

the step for adding new rows in the group.

Ø Validation checks that must hold among the elements of this set

Ø Knowledge units that apply to the set of TSEs, rather than to individual

elements (e.g. for a TSE group representing a citizen’s identification data,

 79

a KU containing the law that states which information is considered as

“required identification data” may be defined)

It is worth noting that a single TSE may participate in more than one TSE group,

thus the relationship between TSEs and TSE groups is of cardinality “many-to-

many”. For instance, the identification number of a citizen may appear in the TSE

group “Personal Identification Data” and in the TSE group “Page footer”, which

can be placed on the bottom of a page to provide an immediate reference to the

service context. TSE groups may not be nested, i.e. a TSE group may only

contain individual TSEs, not TSE groups. This restriction leads to a more

comprehensible and easy-to-manage framework for SmartGov platform users to

work in, while it does not downgrade the platform functionality since (a) the same

result may be obtained by adding the individual TSEs belonging to the source

group to the target group and (b) the cases that such a functionality will be

needed will be –if existing at all- rare.

TSE groups with no repetition requirements are not an indispensable element of

the SmartGov platform; they are provided for convenience purposes, since the

working team will be able to package in a single entity all the necessary

information for TSEs that usually appear together. Determination of whether a set

of TSEs should be packed in a group with no repetition specification should follow

some “rules of thumb”, such as “if some TSEs will be frequently used together, it

will be beneficial if they were grouped together once and used thereafter as a

single entity”.

Figure 53 shows the Generic TSE Group Edition page. This page is shown once

the user selects a TSE Group and he/she has the rights to update it. The figure

shows the sections unfolded for clearness purposes.

 80

Figure 53 - TSE Group Edition page

The following fields and actions may be identified:

Actions:

Ø Save

Ø Delete

Fields:

 Header Section

Ø Id: The Id of the TSE Group. If the TSE Group is new, this field is

updateable. The user should provide a TSE Group identifier without spaces

and special characters, as hyphens, slashes, and so on. Notice that this Id

should be human readable in order to easily search and locate the TSE

group afterwards.

Ø Name: The name of the TSE.

Ø Content Table – See Multi-lingual tables (3.3.1.3).

Repetition Information Section:

Ø Min Occurrences: The minimum number of rows for the TSEG.

Ø Max. Occurrences: The maximum number of rows for the TSEG.

Ø Initial rows: number of rows shown when the TSEG is loaded.

Ø Rows to process

Ø Control buttons: this field enables the user to specify the type buttons that

must be added to the group in order to manage the number of rows. The

possible values are:

 81

- None

- Delete rows

- Add rows

- Delete and Add rows

Validation Rules Section: This section contains all the validations check

to be performed over the form when submitted. Please see section 3.6.2.2

for further information about Validation Rules.

Included elements: The TSEs included in this TSE Group.

Associate knowledge units: KUs can be associated to a Form. The way

of attaching KUs is explained in 3.3.1.7.

Categorization: The way of linking a Form or other SmartGov elements

to Taxonomy Nodes is explained in 3.3.1.8.

Validations:

Ø Mandatory fields: Tse Group Id, name and one content. At least one

element must be included.

Ø The TSE group id must not be in use by any other object in the SmartGov

platform.

Figure 54 - TSE Read-Only page

If the user does not have the privileges required to edit the Generic TSE group, a

read-only page will be shown (see figure 54), allowing him/her viewing all the

characteristics of the group. The structure and fields is the same that for the

Edition Page.

 82

3.6.4.7 Instantiated Group of Transaction Service Elements

The Instantiated TSE Group represent instances of Generic TSE Groups. These

instances are created to include the groups in forms, allowing the user to modify

or adjust some of their characteristics. Therefore, the structure of the ITSEG is

very similar to the TSE Group’s, as the figure 55 shows. This Instantiated TSE

group edition page is shown once the user selects an Instantiated TSE Group and

he/she has the rights to update it. The Figure shows the sections unfolded for

clearness purposes. Given that the structure is very similar to the previous

paragraph, only the differences will be commented.

Figure 55 – Instantiated TSE Group Edition page

The following fields and actions may be identified:

 83

Fields:

 Header Section

Ø Id: The Id of the ITSE Group. This id is generated using as base the Id of

the Generic TSE Group used to instantiate it. A numeric suffix is added to

distinguish the different instances of a TSE Group. If the Instantiated TSE

Group has been created outside the Front-end, its name may follow

different rules.

Ø Description Table (Name and content) – See Multi-lingual tables (3.3.1.3).

Included elements Section: This section is very similar to the section in

the TSE Group, but in this page the list elements are Instantiated TSEs,

not generic TSEs.

Available Methods Section: In this section is possible to specify three

general methods:

- Retrieve method: how to load the values of the different TSEs when

the form where it is included is loaded.

- Store method: how to store the values of the different TSEs when

the form where it is included is submitted.

- Computation rule: a method to compute the values of the TSEs.

In addition to these general methods, specific methods to execute when

the value of an ITSE changes can be defined.

Statistics: The definition of the desired delivery environment statistics of

the ITSE Group. In this section a set of choices are displayed enableing

users activate or deactivate the collection of these statistics in the delivery

environment.

Validations:

Ø Mandatory fields: all pre-filled when instantiating the object.

 84

Figure 56 - ITSE Group Read-Only page

If the user does not have the privileges required to edit the Instantiated TSE

Group, a read-only page will be shown (see figure 56), allowing him/her viewing

all the characteristics of the ITSE Group. The structure and fields is the same that

for the Edition Page.

 85

3.7 Establishing links between the form visual

elements and SmartGov semantic elements

A form participating in a SmartGov service essentially combines two facets:

1. the visual part, comprising of XHTML elements

2. the semantic part, consisting of links to SmartGov objects, such as KUs,

TSEs, TSE groups etc.

These two facets must be integrated in a way that is (a) easy and intuitive for the

domain experts to use, with basic only technical skills and (b) is possible to be

sequentially processed in order to produce the final service forms, together with

the accompanying code. Moreover, it is highly desirable to produce high-quality

forms, in order to make the service attractive to the users if its target group.

Taking these facts into account, the SmartGov project has specified a procedure

for extending one of the most popular HTML editors, namely DreamWeaver MX, to

allow for the integration step to be performed easily by domain experts that only

have basic skills in HTML page editing. According to this procedure, domain

experts use DreamWeaver MX to specify the associations between visual

elements of the XHTML forms and SmartGov platform items. Domain experts

select through a click-and-drag procedure the visual elements and then select the

associated SmartGov item through intuitive dialog boxes. When these selections

have been made, DreamWeaver MX formulates a proper custom tag that uniquely

identifies the SmartGov platform item, and embeds this tag into the XHTML code.

Upon service generation the integrator module recognises these custom tags and

arranges for retrieving the information pertaining to the relevant SmartGov

platform items from the SKDB and appropriately enhancing form functionality.

More specifically, the complete procedure comprises of the following steps:

1. domain experts populate the SKDB with SmartGov platform items

(transaction services, forms, TSE groups TSEs and KUs), using the

SmartGov front end. It is important that all links between SmartGov

platform items have been established i.e.:

a. the transaction service refers to all forms (through the available

form sets) and all KUs it contains

b. each form description is complete in regard to the KUs it is

associated with and TSE groups and TSEs appearing on the form

c. each TSE group refers to all TSEs and KUs it contains

 86

d. each TSE description is complete in regard to KUs the TSE is

associated with

This step is accomplished as described in previous portions of this

manual.

2. domain experts, possibly assisted by the IT staff, prepare the XHTML

forms for the service. This is accomplished using standard commercial

off-the-shelf tools such as Macromedia DreamWeaver, Microsoft

FrontPage etc.

3. the IT staff exports SmartGov items (KUs, TSEs, TSE groups etc) from

the SKDB into appropriately formatted XML files. These files are

installed in predefined locations, in order to be accessible by the

DreamWeaver MX environment. File installation is also performed by

the IT staff.

4. the domain experts establish the links between the visual XHTML

entities and the semantic items of the SmartGov platform by

highlighting first the desired XHTML entities and then selecting the

SmartGov item that the highlighted elements should be linked to.

XHTML entity highlighting is performed through the standard “click-

and-drag” methodology of window-based environments, whereas the

selection of the SmartGov platform items is performed via a tree-

structured index that may correspond to the organisational taxonomy

that has been entered in the SmartGov platform or, alternatively, to

the Service/form set/form hierarchy which is used by the SmartGov

development environment. It is also possible that both selection paths

may co-exist, and the users can make use of the one more suited to

their preferences.

In the following paragraphs, steps (2), (3), (4) and (5) will be covered in

detail, since step (1) has been discussed in previous portions of this manual.

The actual procedure for addressing step (2) is documented in the relevant

tool’s manual, however some issues on preparing forms to be used in the

context of electronic services developed using the SmartGov platform are

presented.

3.7.1 Preparing the HTML forms

An XHTML form to be used within a SmartGov platform service may be prepared

as any other XHTML form, using an HTML editor. However, the form design

should cater for all phases of the user interaction with the service i.e.:

 87

1. data input. Input areas should be provided with appropriate labels.

Note here that since SmartGov services are multilingual, simple

provision of text labels is not sufficient.

2. access to help. Anchors from where the user can access the on-line

help texts should be provided

3. navigation/submission. Widgets that will allow the user to navigate

between forms and submit the document should be made available

4. system error output. Values provided by the user are validated by the

system and, in case of errors appropriate errors are emitted. The

designers should reserve space on the form for these error messages

to be displayed.

5. dynamic group expansion and shrinking. For repeating groups, in

particular, certain controls have to appear on the form to enable the

user to add and delete rows.

Important note: for repeating groups (i.e. TSE groups whose

elements may be cloned multiple times) only one instance of the

elements should be placed on the form, as shown in Figure 57. The

Integrator module will cater for producing code that will allow addition

and deletion of rows dynamically, during service execution.

Figure 57 presents an example of a form designed for a SmartGov service in the

DreamWeaver MX design environment, while Figure 58 presents the same form

rendered in a browser. On the top, a short title (VIES ACQUISITIONS) and a long

description (Form for VIES acquisitions) of the form appear. The question mark

icon appearing on the right of the short title is intended to serve as an anchor for

accessing help associated with the form. Similarly, the other question marks on

the form provide anchors for accessing help on the items appearing on their left.

Below the general information on the form, a line appears displaying the taxable

entity’s VAT id, which is effectively a TSE. On the line we can identify two

portions:

 88

Figure 57 - A SmartGov form designed in the DreamWeaver MX environment

Figure 58 – The SmartGov form rendered in a browser

1. the TSE label (the text Taxable entity's VAT id) and

2. the TSE value area (the box on the right of the label)

 89

Since this TSE will have a pre-populated value, no validation checks will be

associated with it and no errors will be emitted for its value; therefore, there is no

need to allocate space for an error message.

SmartGov good practice tip 1:

Place labels on the left of the form, values on the right. If many TSEs

appear on the same form, use a two-column table placing labels on the

left column and input areas on the right. The table helps keeping labels

and input areas aligned. Place help anchors, if any, on the right of the

respective input area.

If a field is bound to emit validation errors, allocate space either on the

right of the input area (expanding the table to a three-column one) or

immediately below (or above) the input area.

The Transaction data area is actually the space that the user will type values in.

In SmartGov terminology, this area hosts a TSE group with four TSEs, namely the

country prefix, the VAT id, the value of the supplies and the value of triangular

supplies. The group has a generic label (Transactions data) and is organised in a

four-column table (one column per TSE), with each column having a column label

(the TSE short name). The two following rows of the TSE provide the input areas

in which the service user will provide the values (first row) and the space in which

relevant errors will be reported (second row). The third and fourth row,

respectively, host the controls for adding and removing rows from the group and

for displaying errors that may occur upon row addition and deletion (e.g. while

trying to remove rows from an empty group).

SmartGov good practice tip 2:

Always use tables when entering repeating groups. Use as many columns

as the number of TSEs within the group and place error report areas

directly beneath the value input area. If the group contains too many TSEs

to fit in a single row, place firstly TSEs in the first row until no more space

is left, then insert a new row into which error report areas for the newly

placed TSEs will be hosted. Repeat the process by adding row pairs, until

no more TSEs are left within the group.

Controls for adding and removing lines should be placed at the bottom of

the group.

The two following lines display summary information for the group, allowing the

user to view the sum of the declared transactions value and triangular

transactions value. Since these fields are automatically calculated, only the label

and number appear, with no provision for error reporting areas.

 90

SmartGov good practice tip 3:

Keep group summary data as close as possible to the bottom of the

pertinent group. Use descriptive labels for them and, whenever possible,

align them with the columns they report summary data on.

Finally, at the bottom-left part of the form, two navigation arrows appear allowing

the user to move to the previous form (left arrow) and to the next form (right

arrow).

SmartGov good practice tip 4:

Form navigation controls should appear on the bottom of the form, either

on the left or on the right.

Once the HTML form has been prepared using the guidelines presented above,

the link establishment procedure may commence.

3.7.2 Data export and file installation

The data export and file installation procedure step is performed by the IT staff.

During this phase the SmartGov XML repository is queried to retrieve descriptions

and identities of SmartGov platform objects. The data retrieved is formatted as

needed for use by the DreamWeaver tool and installed in the appropriate location.

Data retrieval and formatting are performed using the dwexport.jar Java

archive, which contains all the appropriate functionality. In order to initiate the

export and installation procedure, the following commands should be executed:

set CLASSPATH=dwconvert.jar;xmlstore-2.0.0.jar;xmlstoreapi-2.0.0.jar
java XMLToDWConverter repositotyPropFile DWeaverInstallationPath folderName locale

Note that in the first command the Java archives (jars) providing the

implementation of the export functionality and the XML store are referenced;

these may need to be replaced with the full java archive pathname, if they do not

reside in the current directory. In the second command, parameters are as

follows:

1. repositoryPropFile: the settings for the XML repository property file to

be queried.

2. DWeaverInstallationPath: the location where DreamWeaver MX is installed

on the system. Care should be taken if the installation path contains

spaces e.g. C:\Program Files\Macromedia\Dreamweaver MX, in which

case it must be enclosed in double quotes, i.e. entered as
"C:\Program Files\Macromedia\Dreamweaver MX"

3. folderName: The name of the folder into which SmartGov tag content will

be placed. The value “SmartGov” is recommended

 91

4. locale: the SmartGov Services and Knowledge repository holds

multilingual resources for various elements of the SmartGov entities, such

as names, descriptions etc. During the export procedure, the locale that

will be used during the form design procedure is specified (en for English,

el for Greek es for Spanish etc). This should be set to match the

preferences of the expert working in the link establishment procedure.

Please note that the specification of a single locale affects only the

DreamWeaver MX environment, and does not restrict the multilinguality

capabilities of the running service.

Alternatively to invoking the export procedure through the command-line, users

may use the graphical front-end to accomplish the same task. Figure 59 displays

the SmartGov DreamWeaver Integration graphical front-end. The user should

provide appropriate values for the form fields, which correspond to the

parameters of the command-line version. When all form fields have been entered,

the “Export” button should be pressed to initiate the export process. The “Export

messages” area displays information regarding the progress of the export

process.

Figure 59 – Graphical front-end for the export procedure

Upon completion of the execution of this command, the tags related to the form

design for the service “serviceName” have been installed in DreamWeaver and

are ready for use.

The final step required is to enable the usage of SmartGov tags in HTML

documents. This can be accomplished through the “Edit/Tag libraries…” menu,

selecting the “SmartGov Site Tags” folder from the upper pane, checking the

“HTML” control in the lower pane and finally clicking “OK”.

 92

Figure 60 - Enabling the use of SmartGov tags

Notes to system administrators:

1. The export procedure generates tags in a single locale, in order to

minimise user confusion caused by a large number of offered selections. If

multiple users on the same machine need to work using different locales

during the same period, this can be accomplished provided that:

a. A multi-user OS is installed on the computer (Windows NT,

Windows 2000 or Windows XP)

b. The different users use different accounts to log into the computer.

c. The files are not placed into the DreamWeaver MX installation

directory but rather in each user’s personal DreamWeaver MX

configuration folder. For Windows NT systems this folder is usually

located at
C:\WinNT\profiles\<username>\Application Data\Macromedia\Dreamweaver MX\Configuration

while for Windows 2000 and Windows XP systems this folder is

located at
C:\Documents and Settings\<username>\Application Data\Macromedia\Dreamweaver MX\Configuration

For more information, please refer to your DreamWeaver MX

documentation.

2. The case of the SmartGov tags should not be altered for the linkage

procedure to work properly. To ensure that no conversion occurs, please

verify that the DreamWeaver MX preferences do not specify forceful tag

case conversion. From the Edit menu select “Preferences”, select the

 93

“Code format” category and verify that the “Override case of tags”

checkbox is clear (this is the default setting).

Figure 61 – Code format preferences dialog

3.7.3 Link establishment

Once the “data export and file installation” step has been completed, the

DreamWeaver MX tag library will have been enriched with tags corresponding to

the SmartGov platform objects. These tags must be placed on the form, replacing

the visual elements placed in the initial form design, in order to allow the

Integrator module to create the application the final service. Deletion of existing

visual elements can be done by highlighting individual elements and pressing the

“Delete” key (or selecting “Edit/Clear” from the menu). Tag insertion can be

performed through the “Insert/Tag” menu of the DreamWeaver MX.

SmartGov good practice tip 5:

The appearance of the form will be distorted in this stage, it is thus

advisable to create a copy of the original form design and work with this

copy.

Figure 62 presents an example of the enriched DreamWeaver MX “Insert tag”

menu. A new top-level folder entitled “SmartGov site tags” is now available,

which will contain one entry for each service created using the SmartGov front-

 94

end (“Income tax service” in the example screenshot). Each service folder

contains additional subfolders for each form within the service, and each of these

form folders will contain additional subfolders for the TSEs and KUs that are

linked to this form.

Figure 62 – Enriched “Insert tag” DreamWeaver MX dialog

In the following paragraphs the procedure for inserting tags for each SmartGov

entity type is presented.

3.7.3.1 Inserting form-level tags

For any form with id equal to formId the following tags are available and may be

used:

Tag name Description Manda

tory?

SGFORM_formId_BEGIN Marks the beginning of the form YES

SGFORM_formId_END Marks the end of the form YES

SGFORM_formId_NAME The name of the form is inserted here NO

SGFORM_formId_DESCRIPTION The description of the form is inserted here NO

SGFORM_formId_ERROR Error messages produced by the form

validation checks

NO

3.7.3.1.1 Inserting the SGFORM_formId_BEGIN tag

In order to insert the SGFORM_formId_BEGIN tag the form designer should click

at a form location before any SmartGov item on the form, including the form title.

The start of the XHTML form document will usually be an appropriate location.

 95

After clicking on the desired location, select “Insert/Tag” from the menu, navigate

to the appropriate form sub-folder in the tags hierarchy by first opening the

SmartGov site tags folder, then the relevant service and finally selecting the

appropriate form node, and from the right pane choose the

SGFORM_formId_BEGIN tag; finally the designer should click on the “Insert”

button. The tag choosing procedure is illustrated in Figure 63.

Figure 63 – Inserting the “form begin” tag

No differences in the form appearance should be visible, the tag, however will

have been inserted. If the designer wants to verify the tag insertion, she must

switch to code view by selecting “View/code” from the DreamWeaver MX menu.

3.7.3.1.2 Inserting the SGFORM_formId_END tag

In order to insert the SGFORM_formId_BEGIN tag the form designer should click

at a form location after any SmartGov item on the form, including the form

navigation elements. The end of the XHTML form document will usually be an

appropriate location. After clicking on the desired location, select “Insert/Tag”

from the menu, navigate to the appropriate form sub-folder in the tags hierarchy

by first opening the SmartGov site tags folder, then the relevant service and

finally selecting the appropriate form node, and from the right pane choose the

SGFORM_formId_END tag; finally the designer should click on the “Insert”

button.

No differences in the form appearance should be visible, the tag, however will

have been inserted. If the designer wants to verify the tag insertion, she must

switch to code view by selecting “View/code” from the DreamWeaver MX menu.

3.7.3.1.3 Inserting the SGFORM_formId_NAME tag

 96

This tag should replace the short description of the form, if such a description

appears on it. If no such description appears, the tag insertion step may be

skipped altogether. Firstly, the designer should select the short form description

and delete it. Afterwards, the designer should select “Insert/Tag” from the menu,

navigate to the appropriate form sub-folder in the tags hierarchy by first opening

the SmartGov site tags folder, then the relevant service and finally selecting the

appropriate form node, and from the right pane choose the

SGFORM_formId_NAME tag; finally the designer should click on the “Insert”

button.

Figure 64 – Deleting the short form title

After this step, a comment mark indicator will appear at the place that the form

short description formerly was; this space is internally occupied by the

appropriate tag, and will be filled in by the Integrator module.

3.7.3.1.4 Inserting the SGFORM_formId_ DESCRIPTION tag

This tag should replace the long description of the form, if such a description

appears on it. If no such description appears, the tag insertion step may be

skipped altogether. Firstly, the designer should select the long form description

and delete it. Afterwards, the designer should select “Insert/Tag” from the menu,

navigate to the appropriate form sub-folder in the tags hierarchy by first opening

the SmartGov site tags folder, then the relevant service and finally selecting the

appropriate form node, and from the right pane choose the

SGFORM_formId_DESCRIPTION tag; finally the designer should click on the

“Insert” button.

 97

After this step, a comment mark indicator will appear at the place that the form

long description formerly was; this space is internally occupied by the appropriate

tag, and will be filled in by the Integrator module.

3.7.3.1.5 Inserting the SGFORM_formId_ERROR tag

This tag should be placed at the location where errors resulting from form

validation checks will be displayed. If no validation errors are associated with the

form or form elements, this step may be skipped altogether. Firstly, the designer

should select any text indicating this space and delete it, as illustrated in Figure

65. Afterwards, the designer should select “Insert/Tag” from the menu, navigate

to the appropriate form sub-folder in the tags hierarchy by first opening the

SmartGov site tags folder, then the relevant service and finally selecting the

appropriate form node, and from the right pane choose the

SGFORM_formId_ERROR tag; finally the designer should click on the “Insert”

button.

Figure 65 – Deleting the form validation error placeholder text

After this step, a comment mark indicator will appear at the place that the form

validation error placeholder text formerly was; this space is internally occupied by

the appropriate tag, and will be filled in by the Integrator module. Please note

that during service runtime this space may expand or shrink, depending on the

number of validation checks that have failed and the error messages emitted by

each validation error.

 98

3.7.3.2 Inserting TSE group-level tags

For any TSE group with id equal to groupId the following tags are available and

may be used:

Tag name Description Manda-

tory?

SGGROUP_groupId_BEGIN Marks the beginning of the

group

YES

SGGROUP_groupId_END Marks the end of the group YES

SGGROUP_groupId_NAME The name of the TSE group is

displayed here

NO

SGGROUP_groupId_DESCRIPTION The description of the TSE

group is displayed here

NO

SGGROUP_groupId_ERROR Error messages produced by

the TSE group validation

checks are displayed here

NO

SGGROUP_groupId_ADD_BUTTON The TSE group Add button is

displayed here

YES

SGGROUP_groupId_REMOVE_BUTTON The TSE group remove

button is displayed here

YES

SGGROUP_groupId_ADD_BUTTON_ERRORS Errors from adding rows are

inserted here

YES

SGGROUP_groupId_REMOVE_BUTTON_ERRORS Errors from removing rows

are displayed here

YES

3.7.3.2.1 Inserting the SGGROUP_groupId_BEGIN tag

The SGGROUP_groupId_BEGIN tag should be placed exactly at the beginning of

the visual elements that comprise the group’s elements. If a table is used for the

group’s elements (see SmartGov good practice tip 2 in section 3.7.1), then the

first row hosting group elements may be selected by moving the mouse pointer to

the left of the row (the pointer becomes an horizontal right arrow) and clicking

the left mouse button, as illustrated in Figure 66. Afterwards, the designer should

select “Insert/Tag” from the menu, navigate to the appropriate form sub-folder in

the tags hierarchy by first opening the SmartGov site tags folder, then the

relevant service and finally selecting the appropriate form node, and from the

right pane choose the SGGROUP_gropuId_BEGIN tag; finally click on the “Insert”

button.

 99

Figure 66 – Selecting the first row hosting TSE group elements

No differences in the form appearance should be visible, the tag, however will

have been inserted. If the designer wants to verify the tag insertion, she must

switch to code view by selecting “View/code” from the DreamWeaver MX menu.

3.7.3.2.2 Inserting the SGGROUP_groupId_END tag

The SGGROUP_groupId_END tag should be placed exactly at the end of the visual

elements that comprise the group’s elements. If a table is used for the group’s

elements (see SmartGov good practice tip 2 in section 3.7.1), then the row

immediately after the last row hosting group elements (including the error

message placeholders for the group elements) may be selected by moving the

mouse pointer to the left of the row (the pointer becomes an horizontal right

arrow) and clicking the left mouse button, as illustrated in Figure 67. Afterwards,

the designer should select “Insert/Tag” from the menu, navigate to the

appropriate form sub-folder in the tags hierarchy by first opening the SmartGov

site tags folder, then the relevant service and finally selecting the appropriate

form node, and from the right pane choose the SGGROUP_gropuId_END tag;

finally click on the “Insert” button.

 100

Figure 67 – Selecting the proper row when inserting the SGGROUP_groupId_END tag

No differences in the form appearance should be visible, the tag, however will

have been inserted. If the designer wants to verify the tag insertion, she must

switch to code view by selecting “View/code” from the DreamWeaver MX menu.

3.7.3.2.3 Inserting the SGGROUP_groupId_NAME tag

This tag should replace the short description of the group, if such a description

appears on it. If no such description appears, the tag insertion step may be

skipped altogether. Firstly, the designer should select the short group description

and delete it, as illustrated in Figure 68. Afterwards, the designer should select

“Insert/Tag” from the menu, navigate to the appropriate form sub-folder in the

tags hierarchy by first opening the SmartGov site tags folder, then the relevant

service and finally selecting the appropriate form node, and from the right pane

choose the SGGROUP_groupId_NAME tag; finally the designer should click on the

“Insert” button.

 101

Figure 68 – Deleting the short group description

After this step, a comment mark indicator will appear at the place that the group

short description formerly was; this space is internally occupied by the

appropriate tag, and will be filled in by the Integrator module.

3.7.3.2.4 Inserting the SGGROUP_formId_ DESCRIPTION tag

This tag should replace the long description of the group, if such a description

appears on it. If no such description appears, the tag insertion step may be

skipped altogether. Firstly, the designer should select the long group description

and delete it. Afterwards, the designer should select “Insert/Tag” from the menu,

navigate to the appropriate form sub-folder in the tags hierarchy by first opening

the SmartGov site tags folder, then the relevant service and finally selecting the

appropriate form node, and from the right pane choose the

SGGROUP_groupId_DESCRIPTION tag; finally the designer should click on the

“Insert” button.

After this step, a comment mark indicator will appear at the place that the group

long description formerly was; this space is internally occupied by the appropriate

tag, and will be filled in by the Integrator module.

3.7.3.2.5 Inserting the SGGROUP_groupId_ERROR tag

This tag should be placed at the location where errors resulting from group

validation checks will be displayed. If no validation errors are associated with the

group or group elements, this step may be skipped altogether. Firstly, the

designer should select any text indicating this space and delete it. Afterwards, the

designer should select “Insert/Tag” from the menu, navigate to the appropriate

 102

form sub-folder in the tags hierarchy by first opening the SmartGov site tags

folder, then the relevant service and finally selecting the appropriate form node,

and from the right pane choose the SGGROUP_groupId_ERROR tag; finally the

designer should click on the “Insert” button.

After this step, a comment mark indicator will appear at the place that the group

validation error placeholder text formerly was; this space is internally occupied by

the appropriate tag, and will be filled in by the Integrator module. Please note

that during service runtime this space may expand or shrink, depending on the

number of validation checks that have failed and the error messages emitted by

each validation error.

3.7.3.2.6 Inserting the SGGROUP_groupId_ADD_BUTTON tag

This tag should be placed at the location where the “add row” control for the

group should appear. Firstly, the designer should select any text or widget

indicating this space and delete it, as depicted in Figure 69 (the button labelled

“add row” is selected). Afterwards, the designer should select “Insert/Tag” from

the menu, navigate to the appropriate form sub-folder in the tags hierarchy by

first opening the SmartGov site tags folder, then the relevant service and finally

selecting the appropriate form node, and from the right pane choose the

SGGROUP_groupId_ADD_BUTTON tag; finally the designer should click on the

“Insert” button.

Figure 69 – Deleting the “add row” control placeholder

 103

After this step, a comment mark indicator will appear at the place that the group

“add row” control placeholder formerly was; this space is internally occupied by

the appropriate tag, and will be filled in by the Integrator module.

3.7.3.2.7 Inserting the SGGROUP_groupId_REMOVE_BUTTON tag

This tag should be placed at the location where the “remove row” control for the

group should appear. Firstly, the designer should select any text indicating this

space and delete it, as depicted in Figure 69. Afterwards, the designer should

select “Insert/Tag” from the menu, navigate to the appropriate form sub-folder in

the tags hierarchy by first opening the SmartGov site tags folder, then the

relevant service and finally selecting the appropriate form node, and from the

right pane choose the SGGROUP_groupId_REMOVE_BUTTON tag; finally the

designer should click on the “Insert” button.

After this step, a comment mark indicator will appear at the place that the group

“remove row” control placeholder formerly was; this space is internally occupied

by the appropriate tag, and will be filled in by the Integrator module.

3.7.3.2.8 Inserting the SGGROUP_groupId_ADD_BUTTON_ERRORS tag

This tag should be placed at the location where errors emitted during “add row”

operations for the group should appear (e.g. adding rows to a group having

reached its row limit). Firstly, the designer should select any text indicating this

space and delete it, as depicted in Figure 70. Afterwards, the designer should

select “Insert/Tag” from the menu, navigate to the appropriate form sub-folder in

the tags hierarchy by first opening the SmartGov site tags folder, then the

relevant service and finally selecting the appropriate form node, and from the

right pane choose the SGGROUP_groupId_ADD_ERRORS_BUTTON tag; finally the

designer should click on the “Insert” button.

After this step, a comment mark indicator will appear at the place that the group

“add row” error messages placeholder text formerly was; this space is internally

occupied by the appropriate tag, and will be filled in by the Integrator module.

 104

Figure 70 – Deleting the “add row” error messages placeholder

3.7.3.2.9 Inserting the SGGROUP_groupId_REMOVE_BUTTON_ERRORS tag

This tag should be placed at the location where errors emitted during “remove

row” operations for the group should appear (e.g. removing rows from a group

with no rows in it). Firstly, the designer should select any text indicating this

space and delete it. Afterwards, the designer should select “Insert/Tag” from the

menu, navigate to the appropriate form sub-folder in the tags hierarchy by first

opening the SmartGov site tags folder, then the relevant service and finally

selecting the appropriate form node, and from the right pane choose the

SGGROUP_groupId_REMOVE_ERRORS_BUTTON tag; finally the designer should

click on the “Insert” button.

After this step, a comment mark indicator will appear at the place that the group

“remove row” messages placeholder text formerly was; this space is internally

occupied by the appropriate tag, and will be filled in by the Integrator module.

3.7.3.3 Inserting TSE-level tags

For any TSE with id equal to tseId the following tags are available and may be

used:

Tag name Description Manda-

tory?

SGTSE_tseId The actual TSE area is displayed here YES

 105

Tag name Description Manda-

tory?

SGTSE_tseId_NAME The name of the TSE is displayed here NO

SGTSE_tseId_DESCRIPTION The description of the TSE is displayed here NO

SGTSE_tseId_ERROR Error messages produced by the TSE

validation checks are displayed here

NO

3.7.3.3.1 Inserting the SGTSE_tseId tag

This tag should be placed at the location where the actual TSE area will be

displayed on the form. The actual widget used for the TSE is selected by the

Integrator module, depending on the TSE semantic information. For example,

TSEs with Boolean types will be represented via check boxes; TSEs for which the

user should select a value among a set of pre-defined ones will be represented as

a drop-down list and so on.

Firstly, the designer should select any text or control indicating this space and

delete it, as shown in Figure 71. Afterwards, the designer should select

“Insert/Tag” from the menu, navigate to the appropriate form sub-folder in the

tags hierarchy by first opening the SmartGov site tags folder, then the relevant

service and finally selecting the appropriate form node, and from the right pane

choose the SGGTSE_tseId tag; finally the designer should click on the “Insert”

button

Figure 71 – Deleting the TSE placeholder

For the designer’s convenience, a separate sub-folder is provided under each

form folder, labelled “Included TSEs”, as illustrated in Figure 72. This subfolder

 106

contains only the TSEs appearing on the form, facilitating the selection of the

appropriate TSE-related tags.

Figure 72 – Included TSEs subfolder

After this step, a comment mark indicator will appear at the place that the TSE

control placeholder text formerly was; this space is internally occupied by the

appropriate tag, and will be filled in by the Integrator module.

3.7.3.3.2 Inserting the SGTSE_tseId_NAME tag

This tag should replace the short description of the TSE, if such a description

appears on it. If no such description appears, the tag insertion step may be

skipped altogether. Firstly, the designer should select the short TSE description

and delete it, as illustrated in Figure 73. Afterwards, the designer should select

“Insert/Tag” from the menu, navigate to the appropriate form sub-folder in the

tags hierarchy by first opening the SmartGov site tags folder, then the relevant

service and finally selecting the appropriate form node, and from the right pane

choose the SGTSE_tseId_NAME tag; finally the designer should click on the

“Insert” button. The designer may also use the convenience “Included TSEs”

subfolder.

 107

Figure 73 – Deleting the short TSE description

After this step, a comment mark indicator will appear at the place that the TSE

short description formerly was; this space is internally occupied by the

appropriate tag, and will be filled in by the Integrator module.

3.7.3.3.3 Inserting the SGTSE_tseId_ DESCRIPTION tag

This tag should replace the long description of the TSE, if such a description

appears on the form. If no such description appears, the tag insertion step may

be skipped altogether. Firstly, the designer should select the long TSE description

and delete it. Afterwards, the designer should select “Insert/Tag” from the menu,

navigate to the appropriate form sub-folder in the tags hierarchy by first opening

the SmartGov site tags folder, then the relevant service and finally selecting the

appropriate form node, and from the right pane choose the

SGTSE_tseId_DESCRIPTION tag; finally the designer should click on the “Insert”

button. The designer may also use the convenience “Included TSEs” subfolder.

After this step, a comment mark indicator will appear at the place that the TSE

long description formerly was; this space is internally occupied by the appropriate

tag, and will be filled in by the Integrator module.

3.7.3.3.4 Inserting the SGTSE_tseId_ERROR tag

This tag should be placed at the location where errors emitted from the

validations associated with the TSE should be displayed. Note that these

validations include “implicit” checks, such as data-type validations (e.g. a numeric

TSE is always checked to determine if the user actually entered a numeric value).

If implicit or explicit validation checks are associated with the TSE, the tag

 108

insertion step may be skipped altogether. Firstly, the designer should select the

long TSE validation checks error text placeholder and delete it as shown in Figure

74. Afterwards, the designer should select “Insert/Tag” from the menu, navigate

to the appropriate form sub-folder in the tags hierarchy by first opening the

SmartGov site tags folder, then the relevant service and finally selecting the

appropriate form node, and from the right pane choose the SGTSE_tseId_ERROR

tag; finally the designer should click on the “Insert” button. The designer may

also use the convenience “Included TSEs” subfolder.

Figure 74 – Removing the TSE error messages placeholder

After this step, a comment mark indicator will appear at the place that the TSE

error messages formerly was; this space is internally occupied by the appropriate

tag, and will be filled in by the Integrator module.

3.7.3.4 Inserting KU-level tags

For any KU with id equal to KUId the tag SGKU_kuId is available. This tag is

optional, and can be placed at the location that help anchors should appear on

the form. Firstly, the designer should select the help anchor placeholder and

delete it, as depicted in Figure 75. Afterwards, the designer should select

“Insert/Tag” from the menu, navigate to the appropriate form sub-folder in the

tags hierarchy by first opening the SmartGov site tags folder, then the relevant

service and finally selecting the appropriate form node, and from the right pane

choose the SGKU_kuId tag; finally the designer should click on the “Insert”

button. The designer may also use the convenience “Included KUs” subfolder,

which is a direct descendant of the relevant form folder.

 109

Figure 75 – Deleting the help anchor placeholder

After this step, a comment mark indicator will appear at the place that the help

anchor placeholder formerly was; this space is internally occupied by the

appropriate tag, and will be filled in by the Integrator module.

3.7.4 Final form appearance

After having completed the link establishment activities, the form will appear with

virtually no content on it, as depicted in Figure 76, with only comment mark

indicators present. These comment mark placeholders contain all the information

necessary for the Integrator module to create the services.

Figure 76 – Form design view after link establishment

The XHTML form is now ready for uploading to the SmartGov platform and for

processing by the Integrator module.

 110

4 The SmartGov Integrator tool (ARC)

4.1 Introduction

4.1.1 Summary

The SmartGov Integrator is a functionally complex component. It interacts with

various system components directly (SmartGov Agent-SGA, Information

Interchange Gateway-IIG, XMLStore) or indirectly (Front-end UI application). For

this reason, it is absolutely critical for the component to be set up correctly.

4.1.2 Purpose, Scope and Audience

The purpose of this document is to provide setup instructions for the correct

deployment of the Integrator component and serve as a simple usage guide.

The scope of this document is not to explain the internals of the Integrator, how it

co-operates with various system components or the technologies used. Instead,

this document is meant to serve as a step-by-step installation guide for end-users

to avoid possible pitfalls. And get up-and-running a.s.a.p.

This document is targeted towards the members of the SmartGov consortium and

whichever third party might be interested in installing the Integrator component.

4.1.3 Typesetting Conventions

Monospace text (e.g., DataServices) designates identifiers, such as keys in a

properties file. Slanted text (e.g., ./temp/foo) is used to designate file names and

paths. Slanted (e.g., yyyy) monospace text designates placeholders for user

input. Bold text (e.g. Deployment) is used for emphasis.

4.2 Requirements

For the Integrator to operate smoothly, two distinct, application server

installations are required, in two different hosts: one for service development

and one for the final deployment and operation of the generated service.

However, in cases when this is not feasible, both application server installations

may co-exist in the same host (provided that they operate on different ports).

The following tables describe the minimum hardware/software requirements for

each of the two hosts:

 111

Hardware Development Deployment

CPU Pentium IV, 1.8 GHz Pentium IV, 2.8 GHz

RAM > 512 Mb > 756 Mb

HDD > 100Mb free space > 100Mb free space

Software Development Deployment

OS Windows 2000, Service Pack 3+ Windows 2000, Service Pack 3+

Servlet Engine Tomcat 4.1+ Tomcat 4.1+

JDK Java2 SE 1.4.2+ Java2 SE 1.4.2+

4.3 Environment Setup

The Integrator co-operates closely with the XMLStore during design-time to

retrieve service description files. On the other hand, during run-time, the

generated service propagates and retrieves documents to the SGA, which in turn

propagates changes to the IIG. These three components require a DB to be setup

in a host, accessible by the development and deployment hosts.

4.3.1 Setup actions roadmap

To correctly set up the Integrator and all peripheral components, the following

actions need to be taken in the following order. Each action item corresponds to a

subsequent section of the document.

• Install Integrator

The Integrator is available as a self-installing package. See 4.3.2 for more

details.

• Create SGA/IIG DBs

The SGA and the IIG rely heavily on the existence of databases for the

temporary storage of outgoing/incoming messages as well as for storing

authentication information. For more details, see 4.3.3.

• Populate IIG login DB

During authentication, user credentials are checked against a back-end DB

containing all registered users. To be able to create a running service, one

or more user accounts have to be created. For details, see 4.3.4.

• Create IIG XML Repository

The IIG needs to access a run-time XML Repository to store incoming user

documents. The details on how this is done can be found in 4.3.5.

• Install IIG

 112

The IIG comes bundled as an installer. Section 4.3.6 details the screens of the

installer in relation to the previous steps.

• Fine-tune installed IIG

After the IIG has been installed, there are a number of steps that may be

needed to enhance its functionality. Section 4.3.7 provides more info.

• Set up document pre-population

This step is optional and concerns certain applications where initial values

should be displayed for certain fields, originating from a back-end system.

Section 4.3.8 details the steps needed to be taken for the creation of a pre-

population “DB” for the eVies service, where each user should have his/her

own personal details.

• Create Integrator XML Repository

The Front-End and the Integrator share a common, design-time service

element repository. Section 4.3.9 details the steps required for the creation of

the repository so as it is accessible by the Integrator.

• Populate Integrator XML Repository

For testing purposes (e.g. when the Front-End is not installed) the design-

time repository may need to be populated with service elements. For details, see

4.3.10.

• Configure the deployment server

The generated service uses a contained SGA agent to communicate with the

IIG. For the SGA to function properly, a set of configuration files has to be

updated. Moreover, the Integrator requires a special account on the

deployment server. The details on this process are given in section 4.3.11.

 113

4.3.2 Install Integrator

4.3.2.1 Splash screen

Displayed at the beginning of the installation. At this point you should stop all

Tomcat processes that may be running on both deployment and development

hosts.

 114

4.3.2.2 Installation type

This screen allows the selection of the installation type. Normal installation selects

all features, while Minimal does not install the Document Crawler and XMLStore

Manager.

 115

4.3.2.3 Installation directory

This directory only contains uninstall information about the application. It is of

absolutely no importance as the installation process, not the Integrator itself, only

uses it.

 116

4.3.2.4 Shortcut group

This screen determines where the application’s shortcuts should be placed.

 117

4.3.2.5 Tomcat server configuration

This screen requires the directory where the development Tomcat server is

installed. It also requires the host name and port where the deployment Tomcat

listens on. It is very important to specify all information correctly, as denoted in

the image, for the application to function properly.

It is also a very good idea to have the development server installed in a directory

path that does not contain spaces (e.g. avoid c:\Program Files\Tomcat, d:\My

Server\Tomcat 4, etc). Tomcat is known to occasionally present erratic behavior

when installed in such a directory.

 118

4.3.2.6 XML Repository configuration

Specifies the connectivity information for the Integrator to locate the service

element repository. The information defined in this screen should be identical with

that defined later on, in section 4.3.8.

The different fields of the screen are explained below

• Class name: Should be left as is, unless otherwise noted in the

documentation.

• Database type: Type of DBMS that the XML Repository is installed on. Only

two values are accepted at this time: Microsoft SQL Server 2000 and MySQL

4.x. Putting any other value in this field will require re-installation or manual

correction.

• Classpath root folder: Browse to select a folder where the classes of the JDBC

driver have been extracted. One can only select a folder at this stage and not

a JAR. This has been done so because of the Microsoft JDBC driver being

delivered in multiple JARs. So, if your driver is delivered as a ZIP/JAR, you will

need to extract it in a folder and select this folder in this field. Be careful to

modify the final path that you will select in this field. Replace all back-slashes

(\) with forward-slashes (/).

 119

• Datasource class: The JDBC Datasource implementation of the driver (e.g.

com.microsoft.jdbcx.sqlserver.SQLServerDataSource for the official

Microsoft SQL Server driver,

com.mysql.jdbc.jdbc2.optional.MysqlDataSource for the official MySQL

driver). Consult your driver’s documentation.

• Server name: The qualified intranet name of the host that the XML Repository

is (or will be) installed.

• DB name: The name of the DB that contains (or will contain) the XML

Repository.

• Username: SQL login for the target host

• Password: For the previous login

4.3.2.7 Input / output directories

The first field defines which folder should be used to temporarily store the

generated service files. This feature is useful so as to have a backup copy. File

separators should be added as shown. The directory will be created at run-time if

not present.

The second field defines the directory where the xHTML files used by the service

are located. Care should be taken to take into account the relative url defined in

the service description files. (E.g. if the xHTMLs are located in c:\Foo\Html and

 120

service description files refer to files Html/XXX.xhtml, and then you should specify

c:\\Foo in this dialog). If you are using the Integrator along with the Front-End,

this folder should be the same as the one where the Front-End saves uploaded

xHTML files. All files placed inside this directory should have an .xhtml file

extension.

4.3.2.8 SGA configuration file

This screen requires the location of the SGA configuration file in the deployment

server. The deployed service will use this value to locate it and attempt to

initialize the agent. For information on how to setup the SGA configuration files,

see 4.3.11. The recommended value for this field is

c:/SmartGov/conf/sga/SGAConfig.txt.

 121

4.3.2.9 Summary

Contains the summary of the installation parameters.

4.3.3 SGA/IIG DBs

The SGA and the IIG have two internal Pending Actions Queues (PAQs) where

they store messages, which for some reason failed to be sent. These PAQs are

implemented over a relational DB and are one for incoming (EntraPAQ) and one

for outgoing messages (AdelantePAQ), making a total of four different DBs .

Moreover, the current version of the IIG implicitly requires a DB to maintain

service user logins.

The schema of the first four DBs is exactly the same, so, in a low-traffic

environment they can be “merged” into one physical DB. In that case, all different

modules will establish connections to the same DB. In addition, since the table

names of the login DB are different than those used in the PAQ DBs, this DB may

also be merged with the previous. So, to make things short, this step shall create

at least one or at most 5 different DBs (as combinations in DB merging may be

chosen – e.g. both SGA PAQs in one host, etc)

To create the PAQ DBs, follow these steps:

1. Connect to the DB host that you wish, through the administration client (e.g.

Enterprise Manager for MS SQL Server).

 122

2. Create a new DB. Note down its name and its logical function (e.g. DB named

Test1 shall be the SGA PAQ) as this will be used later on.

3. Connect to the new DB and execute against it the proper script found in

Appendix D.

4. If you choose to create more than one DB, go to step 2, being careful to

select different names.

To create the login DB, follow these steps:

1. Connect to the DB host that you wish, through the administration client (e.g.

Enterprise Manager for MS SQL Server).

2. Create a new DB.

3. Connect to the new DB and execute against it the proper script found in

Appendix E.

If you choose to create one common DB for all the PAQs and the login information

then concatenate the two relevant scripts before executing against the target DB.

4.3.4 Populate IIG login DB

After the IIG login DB has been created, a number of end-user accounts needs to

be added to be able to use the generate service later on. Each user account is

allowed to access one or more services, identified by their unique id, as defined

during the design stage.

Suppose we have two services (TaxService and eVies) and want to update the

DB so as to “capture” the usage scenario depicted in the following table.

Alias Full Name Password Allowed to use…

Foo John Foo foo TaxService
Doe Jack Doe doe TaxService

eVies

In that case, the login DB’s SGUserData table should look like the following image

 123

At the same time, the SGUserServices table should look like this

4.3.5 Create IIG XML Repository

This step supposes that the Integrator has been installed in 4.3.2 selecting

Normal setup. In a different case, the features mentioned here are not available.

To create the IIG XML Repository perform the following steps:

1. Create a DB through the target DBMS’ user interface. Only MS SQL Server

2000 and MySql v.4.x are supported. We assume that the target DB is named

IIGXmlStore, located in an SQL Server host, named testHost.

2. From the Windows Start menu, select Programs -> SmartGov -> XMLStore

Manager. The XML Store Manager application is launched.

 124

3. Press the left New… button to create a new document type for service

description files. Name it ServiceResults.

4. Press the right New... button to create a new index for the created document

type.

For the IIG to work correctly, 3 different indexes need to be created in total in

the same manner.

Their details follow (all entries are case-sensitive):

• Name: servResUsername

i. XPath: /ServiceResults/userName/text()

ii. Value type: string

iii. Non-unique

• Name: servResServiceName

 125

i. XPath: /ServiceResults/serviceName/text()

ii. Value type: string

iii. Non-unique

• Name: servResTimestamp

i. XPath: /ServiceResults/timestamp/text()

ii. Value type: string

iii. Non-unique

5. After all indexes are created and listed in the main window (make sure the

Document Type list entry is selected), the Save… button is pressed.

The information presented in the image matches the suppositions mentioned

earlier. The driver property has been added by using the New… button. The

class path can either be a directory or a JAR file, inside which all driver classes

reside.

If the target DB host were a MySQL server, then it would be

• DBMS type: MySQL 4.x

• DataSource class: com.mysql.jdbc.jdbc2.optional.MysqlDataSource

• Port number: 3306

• Username: root

• Password: <none>

 126

6. Pressing the Save… button creates the following tables: XpathIndex,

servResServiceName, servResUsername, servResTimestamp. Open the target

DB with a DB client application to verify the creation of the new tables.

4.3.6 Install IIG

4.3.6.1 Splash screen

Shown at the beginning of the installation.

 127

4.3.6.2 Installation folder

In this screen the destination folder where all program files will be copied is set.

The directory path must not contain spaces. Moreover, make sure that all back-

slashes (\) in the path are changed to forward-slashes (/), otherwise the

component may not work correctly.

 128

4.3.6.3 Shortcut folder

In this screen the user determines the folder that will contain the component’s

shortcuts.

 129

4.3.6.4 IIG ports

This screen specifies the connectivity information for the IIG component. The

fields are:

• Port: The port where the text-based IIG will listen on

• SSL IIG port: the port where the SSL-based IIG will listen on.

• Client IP: The allowed client IP. The IIG has a built-in security mechanism that

accepts calls from specific IP addresses for each published method call. This

field should be filled in with the IP of the service deployment host. Do not

specify 127.0.0.1 as the IP if you are using localhost: use Start -> Run ->

cmd -> ipconfig to see the localhost’s IP address.

 130

4.3.6.5 IIG EntraPAQ

This information will allow the IIG (both text-based and SSL version) to connect

to its EntraPAQ DB. The information defined in this step should be in line with

what was defined in section 4.3.3. The fields are:

• Database name: the name of the physical DB that will host the IIG EntraPAQ

• Username: The SQL login used to connect to the DB

• Password: the password of the SQL login

• Driver class: The JDBC driver implementation class. This may be

com.microsoft.jdbc.sqlserver.SQLServerDriver for the official SQL

Server driver (pre-selected), org.gjt.mm.mysql.Driver for the MySQL

driver, etc. Consult your driver’s documentation.

• Connect string: The JDBC connection string to use while connecting to the DB.

The value is

jdbc:microsoft:sqlserver://change_the_host_name:1433;SelectMethod=
cursor;DatabaseName= for the SQL Server driver (pre-selected),

jdbc:mysql://change_the_host_name/ for the MySQL driver, etc. In the

previous strings, only the host name needs to be changed. Consult your

driver’s documentation.

 131

4.3.6.6 IIG AdelantePAQ

This information will allow the IIG to connect to its AdelantePAQ DB. The

information defined in this step should be in line with what was defined in section

4.3.3. The fields have the same meaning as in 4.3.6.5.

 132

4.3.6.7 IIG XML Repository

This information will allow the IIG to connect to its local XML Repository. The

information defined in this step should be in line with what was defined in section

4.3.5. The fields have the same meaning as in section 4.3.2.6.

 133

4.3.6.8 IIG login DB

This screen contains connectivity information for the DB containing service user

logins. The information defined in this step should be in line with what was

defined in section 4.3.3. The fields have the same meaning as in 4.3.6.5.

 134

4.3.6.9 Log listeners

This screen allows the user to define the log listeners that will be used to log error

messages generated by the IIG and the agent. The fields are:

• IIG listener host: Do not change this value, unless you are going to use a log

listener other than the one installed by default. In a different case, specify the

name of the log listener host.

• IIG listener port: Do not change this value, unless you are going to use a log

listener other than the one installed by default. In a different case, specify the

port on which the other log listener listens on.

• SGA listener host: If you are not going to use the bundled, test SGA client,

ignore this value.

• SGA listener port: If you are going to use this host for the SGA log listener,

specify this port accordingly. This field should be in line with the information

specified in section 4.3.11.

 135

4.3.6.10 SGA EntraPAQ

This information will allow the local, test SGA client to connect to its EntraPAQ

DB. The information defined in this step should be in line with what was defined

in section 4.3.3. The fields have the same meaning as in 4.3.6.5.

Ignore this screen, unless you are going to use the local, test SGA client.

 136

4.3.6.11 SGA AdelantePAQ

This information will allow the local, test SGA client to connect to its AdelantePAQ

DB. The information defined in this step should be in line with what was defined

in section 4.3.3. The fields have the same meaning as in 4.3.6.5.

Ignore this screen, unless you are going to use the local, test SGA client.

 137

4.3.6.12 Target IIG

This information will allow the local, test SGA client to connect to the two different

IIGs.

Ignore this screen, unless you are going to use the local, test SGA client.

 138

4.3.6.13 SGA NI

This information specifies the port where the SGA NI component will listen on.

Ignore this screen, unless instructed otherwise.

 139

4.3.6.14 Summary

The final screen before the installation begins.

4.3.7 Use / Fine-tune installed IIG

To launch the IIG go to the Start menu and select Programs -> IIG -> Start

IIG Servers. This will launch

• the IIG server

• the SSL IIG server

• the IIG dispatcher

• the IIG log listener

A successful launch results in 4 different console windows being added in the

desktop.

To launch the SGA servers, go to the Start menu and select Programs -> IIG ->

Start SGA Servers. This will launch

• the SGA log listener

• the SGA dispatcher

• the SGA NI

A successful launch will result in 3 different console windows being added to the

desktop. However, if steps 4.3.6.10 to 4.3.6.13 have been ignored, only one

 140

console window should remain open at the end, the log listener. This is also

normal.

If you want to re-create the IIG DBs, you will have to follow the instructions

found in section 4.3.3. To easily locate the DB creation scripts, from the Start

menu, select Programs -> IIG -> Auxiliary -> SQL scripts. This directory

contains all the SQL scripts to generate the DBs, as included in Appendix D and

Appendix E.

The delivered IIG component, by default, supports Microsoft SQL Server 2000 for

the deployment of the PAQ and login DBs. If you want to use a different DBMS,

then you will need to

• specify the necessary information in screens 4.3.6.5, 4.3.6.6, 4.3.6.8,

4.3.6.10 and 4.3.6.11

• copy the DBMS’ specific driver in the appropriate folder. The

JARs/ZIPs/classes should be copied in the folder accessible by the Start menu

shortcut Programs -> IIG -> Auxiliary -> Place additional JARs here .

• Close all IIG console windows and re-launch them from the Start menu

shortcut.

The included SSL IIG server is not usable as it misses the necessary security

certificates. Before using it, you will have to create them. To do so, select from

the Start menu Programs -> IIG -> Auxiliary -> Create SSL certificates.

You will have to restart the SSL IIG process.

The IIG servers (both text-based and SSL), as installed by the setup program,

only allow one SGA agent to access them, located in the IP address specified in

4.3.6.4. If you have more than one deployment hosts and you want all of them to

share the same IIG, you will have to explicitly declare the additional IP addresses.

This can be done via Start menu shortcut Programs -> IIG -> Auxiliary ->

Allow additional SGAs here. Edit the XML file with an editor (even WordPad

will do), creating copies of the different IIGCredentials elements for each new

IP address and save the file. You will have to restart the IIG processes for the

changes to take effect.

4.3.8 Set up document pre-population

After the login DB has been created in step 4.3.3, a set of XML files should be

created to cater for pre-population of document fields, upon end-user login. The

idea is the following: when a user logs in to the service for the first time (and,

hence, no submitted documents exist), the back-end IIG creates an empty

document with certain values pre-filled, such as name, telephone, etc. The

 141

mechanism to do so is quite simple: the IIG looks for properly named XML files in

its working directory.

To be able to pre-populate the form with each user’s personal data, you will have

to do the following

• For each user defined in table SGUserData in section 4.3.4, create a file

named username.xml, inside folder <IIG install dir>\defaultXml. Here,

username denotes the same value as the one added in column username in

table SGUserData.

• Edit the file with Notepad or an XML editor (e.g. XMLSpy) and insert the XML

excerpt found in Appendix F. Replace all XXX placeholders with the

appropriate values and save the file. If there are values that have characters

non-Latin (e.g. Greek) the file must be saved as UTF-8. All date values must

be saved in the DD/MM/YYYY format. XML editors do so by default. If using

Notepad, you should select from the menu File -> Save As -> Encoding -

> UTF-8.

Important note: The XML structure found in Appendix F is only suitable for the

eVies service. A different service requires a different document. Moreover, you

cannot have two services that require automatic initial pre-filling using the same

IIG server. If you feel that these issues are important, send an email to

SmartGov@archetypon.gr for more information.

4.3.9 Create Integrator XML Repository

The Integrator, when installed selecting the Normal setup option, comes bundled

with a visual management tool to assist in the creation of the back-end relational

DB.

To create the XML Repository DB perform the following steps

1. Create a DB through the target DBMS’ user interface. Only MS SQL Server

2000 and MySql v.4.x are supported.

2. Execute the XML Repository Manager application from the Start menu,

selecting Programs -> SmartGov -> XmlStore Manager.

mailto:SmartGov@archetypon.gr

 142

3. Press the left New… button to create a new document type for service

description files. Name it ServiceDescriptor.

4. Press the right New... button to create a new index for the created document

type.

For the Integrator to work correctly, five different indexes need to be created

in total in the same manner.

Their details follow (case-sensitive, the Name might be different):

• Name: KU

i. XPath: /KU/KUId/text()

ii. Value type: string

iii. Unique

• Name: Form

 143

i. XPath: /form/formId/text()

ii. Value type: string

iii. Unique

• Name: InstantiatedTSE

i. XPath: /instantiatedTSE/instantiatedTSEId/text()

ii. Value type: string

iii. Unique

• Name: InstantiatedTSEGroup

i. XPath:

/instantiatedTSEGroup/instantiatedTSEGroupId/text()

ii. Value type: string

iii. Unique

• Name: TS

i. XPath: /TS/TSId/text()

ii. Value type: string

iii. Unique

5. After all indexes are created and listed in the main window (make sure the

Document Type list entry is selected), the Save… button is pressed.

 144

The driver property has been added by using the New… button1. The class

path can either be a directory or a JAR file, inside which all driver classes

reside.

6. Pressing the Save… button creates the tables. Open the target DB with a DB

client application to verify the creation of the new tables.

4.3.10 Populate Integrator XML Repository

The Document Crawler is a visual utility that crawls through any number of

folders and stores all encountered files inside a specified XML Repository.

Directory crawling is not recursive and all non-valid XML files are ignored. To be

able to use this tool, you must select Normal setup during Integrator installation.

To add files to the XML Repository

1. Launch the Document Crawler from the Start menu, in Programs ->

SmartGov -> Document Crawler.

2. Pressing the Add.. button a file dialog appears, allowing the user to select any

folder.

1 This particular property MUST be set as shown in the image in the case of SQL
Server using the Microsoft JDBC driver.

 145

3. This process can be repeated any number of times to include all directories

that hold service description files. To remove a directory from the list, select it

and press Remove.

4. To be able to connect to the XML Repository, we need to specify a connection

properties file. Pressing the ellipsis button (…) allows us to locate it.

It is a good idea to re-use the connection properties file created during the

Integrator installation. The path to this file is

<deployment_Tomcat_dir>\webapps\Integrator\scripts\integrator.properties.

 146

5. Finally, you will need to specify the document type that the added documents

will belong to, by editing the last field. The value entered here will have to be

the same as the one entered in step 3, section 4.3.9. After all parameters

have been set, we can press the Execute! Button.

It should be noted here that all documents “belonging” to the specified

document type already in the repository will be removed. This allows you to

“update” existing files in the repository en masse.

It is a good idea to use the tool to populate the repository with files belonging

to the same service each time, i.e. do not specify directories containing XML

files belonging to many services. This is necessary because each time the tool

is used, all documents belonging to the specified document type are deleted.

To be able to update the description files for a service, you should specify the

document type these files have been saved as. If descriptor files belonging to

a different service are saved under the same document type, then they will be

removed as well, which is probably wrong.

6. During execution, the tool provides feedback on which files are being

processed.

 147

4.3.11 Configure the deployment server

During Tomcat installation at a certain point it asks which JVM to use. Avoid

specifying the JRE proposed by default (usually located in c:\Program Files\…).

Instead browse for the installation directory of the JDK v.1.4+. The installation

directory of the JDK should not contain spaces.

After installing Tomcat, go to My Computer -> <right click> -> Properties -

> Advanced -> Environment Variables. Make sure that the following variables

are added in the System Variables pane

• JAVA_HOME: The value of the variable is the installation directory of the JDK.

• CATALINA_HOME: The value of the variable is the installation directory of

Tomcat.

After performing these changes, restart Tomcat (the executable or the service).

The Integrator employs the remote deployment feature found in Tomcat

v.4.1.18+. to do so, and to avoid compromising the deployment server’s security,

the Integrator assumes that there is a smartGov login configured on the target

server with manager privileges. To create this login on the deployment host:

• Locate and edit the Tomcat user configuration file. This is located in

<deployment Tomcat install dir>\conf\tomcat-users.xml.

• Add the following entry right before the </tomcat-users> XML tag. Save and

restart Tomcat.

<user username="smartGov" password="smartGov" roles="manager"/>

 148

The Integrator installer copies a ZIP file containing a ready-to-use set of

configuration files for the service SGA. This ZIP file should be copied and

extracted to the deployment server.

The ZIP file can be accessed via the Start menu, shortcut Programs -> SmartGov

-> SGA Configuration files. Extract the contents of the file in the deployment

host(s) under folder c:\SmartGov.

If you want to…

• extract the configuration files into a different directory: Extract the file

into any directory. This path should be specified in the Integrator installer, as

shown in section 4.3.2.8. Update the paths in file

<extraction_dir>\sga\conf\SGAConfig.txt.

• change the host and port where the IIG servers listen on: Edit file

<extraction_dir>\sga\conf\SGAIIGConf.xml. Change the ports to reflect the

values specified in section 4.3.6.4. change the host IP to be that where the

IIG process are executed. Be careful to only specify an IP, not a machine

name.

• change the SGA EntraPAQ DB to be used: Edit file

<extraction_dir>\sga\conf\EntraPAQConfig.txt. Change the values as

necessary. The semantics are the same as explained in section 4.3.6.5.

• change the SGA AdelantePAQ DB to be used: Edit file

<extraction_dir>\sga\conf\AdelantePAQConfig.txt. Change values as

necessary. The semantics are the same as in 4.3.6.5.

• change the SGA log listener to send error messages to: Edit file

<extraction_dir>\sga\conf\SGLogConfig.txt. Change values to be in line with

those specified in 4.3.6.9.

4.4 Usage Guide

The Integrator component is accessible as a web-based application.

The URL to launch the Integrator is http://development:port/Integrator,

where development is the name of the development host and port is the port

where the development Tomcat server is listening.

 149

Usage of the tool is really simple, as the only required parameter from the user is

the unique id of the service, which the Integrator shall process and deploy.

Pressing the Deploy Service button, the Integrator process is launched and its

different sub-tasks are executed. Feedback is provided on-screen in the lower

part of the screen. Normal output is colored light blue, while error messages are

colored light brown.

 150

Error messages are an indication for technical personnel to correct errors is

service definition files (misspellings, missing files, DB failures…). A successful

build and deployment is indicated with a BUILD SUCCESSFUL final message.

 151

5 Communication services: SmartGov Agents.

Installation, configuration and usage

The SmartGov platform includes facilities for communication between the service

delivery platform and the organisational information systems. These facilities are

an indispensable part of the SmartGov platform and must be installed and

configured for the service delivery platform to operate successfully. In this

section, the procedures for installing and configuring the communication services

are documented and details on the operation of the services are provided.

It should be noted that the users of the SmartGov services will be the IT staff and

system administrators of the PAs, thus the documentation provided is necessarily

technical and detailed.

5.1 Prerequisites

Before proceeding to install the SmartGov Agents bundle, it should be verified

that:

1. The Java runtime environment version 1.4.1 or higher is installed on the

system

2. The PATH variable includes the directory in which the java executable

resides (typically, the bin directory under the JRE installation directory).

This can be ascertained by issuing the following command in a shell window:

java –version
If an error message indicating that the java command cannot be found is

printed or the version reported is older than 1.4.1, then the system

administrators should proceed in installing the appropriate JRE, or

configuring the PATH variable.

The administrators should also verify that the appropriate JDBC drivers for the

DBMS that will host various necessary tables are installed in the system and the

DBMS runtime libraries, if required, are present and registered to the execution

environment (e.g. in the LD_LIBRARY_PATH variable for Solaris systems).

5.2 Bundle contents and installation

The communication services bundle includes the following files:

1. SGAgent.jar. This file contains the code implementing the SmartGov

communication services, both for the service delivery environment and the

organisational information system. The file may be placed anywhere in the

file system, however it must be added to the locations searched by the

 152

Java Runtime Environment (JRE) for class loading. These locations are

commonly listed in the CLASSPATH environment variable, or specified via

the –cp or –classpath flag to the Java virtual machine, as illustrated in

the following examples:

Windows Platform

mkdir c:\smartgov
mkdir c:\smartgov\sga
copy SGAgent.jar c:\smartgov\sga
java –cp C:\smartgov\sga\SGAgent.jar gr.uoa.di.SGANI.SGANIFactory

c:\smartgov\SGANIPropertyFile.txt

or

mkdir c:\smartgov
mkdir c:\smartgov\sga
copy SGAgent.jar c:\smartgov\sga
set CLASSPATH c:\smartgov\sga\SGAgent.jar
java gr.uoa.di.SGANI.SGANIFactory c:\smartgov\SGANIPropertyFile.txt

Unix Platform

mkdir /usr/smartgov
mkdir /usr/smartgov/sga
cp SGAgent.jar /usr/smartgov/sga
java –cp /usr/smartgov/sga/SGAgent.jar gr.uoa.di.SGANI.SGANIFactory

/usr/smartgov/sga/SGANIPropertyFile.txt

or

mkdir /usr/smartgov
mkdir /usr/smartgov/sga
cp SGAgent.jar /usr/smartgov/sga
CLASSPATH=/usr/smartgov/sga/SGAgent.jar; export CLASSPATH
java gr.uoa.di.SGANI.SGANIFactory /usr/smartgov/sga/SGANIPropertyFile.txt

(The line CLASSPATH=... in the latter case applies for the Bourne, Korn

and Bash shells; for C-Shell and tcsh, the line

setenv CLASSPATH /usr/smartgov/sga/SGAgent.jar
should be used instead)

The CLASSPATH variable may also be set in a machine-wide fashion. For

Microsoft Windows this can be accomplished by right-clicking on My
Computer and selecting Properties, then selecting Advanced and

Environment Variables and, finally, adding or modifying the CLASSPATH

variable. For Unix environments, the OS vendor’s instruction for setting

platform-wide variables should be consulted.

2. SGAconf.zip. This file contains the XML configuration files, the document

type definition (DTD) files and the component property files required for

 153

the operation of the communication services. The file SGAconf.zip is a zip

archive, which must initially be unzipped. The unzip process will create two

top-level directories named "windows" and "unix", for use in the

respective environments (unix subsumes linux). Practically, any

configuration may be used in either environment; the two separate folders

are provided for convenience, to minimise the required editing.

Configuration files in the windows directory assume that they will be

placed under c:\smartgov while configuration files in the unix directory

assume that they will be installed in /usr/smartgov. Each of the

directories contain a subdirectory conf, which in turn contain two

subdirectories namely sga and iig. The directory conf/iig contains all

the files needed for operation of the Information Interchange Gateway

(the component attached to the organisational information system), while

the directory conf/sga contains all the files needed for operation of the

SmartGov agent (the component running on the service delivery

environment). For more information on the configuration files, see sections

“Configuration, Property And DTD files” and “Package Documentation”.

3. SQLscripts.zip. This zip archive contains scripts that initialise the

databases used by the communication services. Three scripts are included

in the archive, namely sgaora.sql, sgamysql.sql and sgamssql.sql to

be used with Oracle, MySQL and MS SQL Server, respectively. For more

details see section “Database Setup”.

4. SGsyssvc.jar. This Java archive contains the implementations of the

services required for the operation of the service delivery environment.

The zip file contents must be extracted to some file system location and

the IIGCommMethConfFile.xml configuration file should be edited

accordingly to point to the actual location of the extracted files. For more

information on configuring the system services, see section “SmartGov

system services”.

5. scripts.zip. This directory contains batch scripts for starting the

SmartGov communication services and for generating the appropriate

certificates to be used with the Secure Socket Layer services. Of course,

certificates provided by Certificate Authorities may be used with the

Secure Socket Layer, however organisations may create their own, self-

signed certificates for their installations, in order to minimise costs. For

more information on the SSL certificates, see section

gr.uoa.di.SSLIIGServer Package.

 154

5.3 Configuration, Property And DTD files

A number of property files are necessary for providing the value of parameters required by the various modules of the SmartGov

platform. These property files are described in detail in the package documentation section. A list is provided here, along with a summary

of their contents and where there should be provided as a parameter.

5.3.1 Property files

Property file Bundle filename Comments

SGLogger

property file

conf/sga/SGLogConfig.txt
conf/iig/SGLogConfig.txt

The SGLogger property file defines the address details that the SGLogger

entities may use to contact the SGLogListener. Two files are provided, to be

used in the service delivery environment (SGA) and the organizational

information system (IIG) respectively. The location is passed as a

parameter to the newSGLogger method of the SGLoggerFactory class of the

gr.uoa.di.SGLogging package.

If the SGUtil.logMessage method is used, the system property

SGLogger.propertyFile should be set to point to the location of the

property file. For more information on the SGLogger property file, see

section “gr.uoa.di.SGLogging Package”.

 155

Property file Bundle filename Comments

SGLogListener

property file

conf/sga/SGLogListenerConf.txt
conf/iig/SGLogListenerConf.txt

The SGLogListener property file defines parameters used by the

SGLogListener, such as the port to listen to and the log file destination. Two

files are provided, to be used in the service delivery environment (SGA) and

the organizational information system (IIG) respectively. Its location is

provided as a parameter when the

gr.uoa.di.SGLogListener.SGLogListenerFactory class is executed. For more

information on the SGLogListener property file, see section

“gr.uoa.di.SGLogListener Package”.

SGA-NI

property file

conf/sga/SGANIConfig.txt The SGA-NI property file defines parameters used by the SGA Notification

Interceptor, such as the port to listen to and the location of the EntraPAQ

configuration file. Its location is provided as a parameter when the

gr.uoa.di.SGANI.SGANIFactory class is executed. For more information on

the SGA-NI property file, see section “gr.uoa.di.SGANI Package”.

EntraPAQ

property file

conf/sga/EntraPAQConfig.txt
conf/iig/EntraPAQConfig.txt

This file contains details for accessing the queue of tasks built due to

reception of notification events (SGA side) or non real-time requests (IIG

side). Its location is provided as a property

(SGA.EntraPAQ.propertyFile=<property file spec>) in the SGA-NI

property file (SGA side) For more information on the EntraPAQ property file,

see sections “gr.uoa.di.SGANI Package” and gr.uoa.di.IIGMyP package.

 156

Property file Bundle filename Comments

IIG-NI

property file

conf/sga/IIGNIConfig.txt This file contains configuration details for the IIG notification initiator in the

form of pointers to other configuration files.

Its location is provided as a parameter to the newIIGNI method of the

gr.uoa.di.IIGNI.IIGNIFactory class. For more information on the IIG-NI

property file, see section “gr.uoa.di.IIGNI Package”.

Dispatcher

property file

conf/sga/dispatcherConfig.txt
conf/iig/dispatcherConfig.txt

This file contains details on the operation of the pending actions queue

dispatcher. Two files are provided, to be used in the service delivery

environment (SGA) and the organizational information system (IIG)

respectively.

Its location is provided as a parameter when the

gr.uoa.di.dispatcher.dispatcher class is executed (SGA side) or the

gr.uoa.di.dispatcherIIG.dispatcherIIG class is executed (IIG side). For more

information on the dispatcher property file, see sections

“gr.uoa.di.dispatcherIIG Package” and “gr.uoa.di.dispatcher Package”.

SGA property

file

conf/sga/sgaconfig.txt The main configuration file for the SmartGov agent. Its location is passed

as parameter to the newSGAgent method of the

gr.uoa.di.SGA.SGAgentFactory class. For more information on the SGA

property file, see section “gr.uoa.di.SGA Package”.

 157

Property file Bundle filename Comments

Adelante PAQ

property file

conf/sga/AdelantePAQConfig.txt
conf/iig/AdelantePAQConfig.txt

This file contains details for accessing the pending outgoing requests queue.

Two files are provided, to be used in the service delivery environment

(SGA) and the organizational information system (IIG) respectively. Its

location is provided as a property in the SGA property file

(SGA.AdelantePAQConfFile=<configuration file spec>) . For more

information on the Adelante PAQ property file, see sections “gr.uoa.di.SGA

Package” and “gr.uoa.di.IIGNI Package”.

IIG MYP

property file

conf/iig/iigMyPconfig.txt The main configuration file for the Information Interchange Gateway. Its

location is passed as a command-line parameter to the execution of the

gr.uoa.di.IIGServer.IIGServer and

gr.uoa.di.SSLIIGServer.SSLIIGServer classes. For more information on

the IIG MYP property file, see section “gr.uoa.di.IIGMyP package”.

Database

store

configuration

file

conf/sga/DatabaseStoreConf.txt This file contains information regarding the software drivers used for

connecting to the database when using a store to database method for

servicing a request at the SGA.

SEP database

store

configuration

file

conf/iig/SEPDatabaseStoreConf.txt This file contains information regarding the software drivers used for

connecting to the database when using a store to database method for

servicing a request at the IIG. For more information on the SEP database

store configuration file, see section “gr.uoa.di.SEPDatabaseStore Package”.

 158

5.3.2 Configuration files

Configuration

file

Bundle filename Comments

SGA-NI

configuration file

conf/sga/SGANI_Conf.xml An XML document containing the name and description of a method

associated with each notification the SGA-NI is configured to receive. Its

location is provided as a property in the SGA-NI property file

(SGA.SGAServicesConfFile=<config file spec>). For more information

on the SGA-NI configuration file, see section “gr.uoa.di.SGANI Package”.

SGA Services

configuration file

conf/sga/SGAServicesConf.xml An XML document that binds the service names that an SGA can serve, with

corresponding symbolic names for IIG and symbolic names for the

communication methods to be used for the communication between SGA

and IIG. Its location is provided as a property in the SGA property file

(SGA.SGAServicesConfFile=<conf file spec>). For more information on

the SGA services configuration file, see section “gr.uoa.di.SGA Package”.

SGA – IIG

configuration file

conf/sga/SGAIIGConfFile.xml An XML document file that binds the symbolic name for the IIG with all

physical level information required for initiating communication with

designated IIG. Its location is provided as a property in the SGA property

file (SGA.SGAIIGConfFile=<config file spec>). For more information on

the SGA IIG configuration file, see section “gr.uoa.di.SGA Package”.

 159

Configuration

file

Bundle filename Comments

SGA

Communication

Methods

configuration file

conf/sga/SGACommMethConfFile.xml An XML document that binds the symbolic name for the communication

methods with all the physical level information required for implementing

each method. The file location is provided as a property in the SGA property

file (SGA.SGACommMethConfFile=<config file spec>). For more

information on the SGA communication methods configuration file, see

section “gr.uoa.di.SGA Package”.

IIG-NI

configuration file

conf/iig/IIGNIConf.xml An XML document containing the names of notifications and their associated

communication information for contacting the SGA-NI. Its location is

provided as a property in the IIG-NI property file

(IIG.NI.confFile=<config file spec>). For more information on the

IIG-NI configuration file, see section “gr.uoa.di.IIGNI Package”.

IIG services

configuration file

conf/iig/IIGServicesConfFile.xml An XML document that binds the service names that an IIG can serve, with

corresponding symbolic names for the communication methods and the

separate external processes. Its location is provided as a property in the

IIG property file (IIGMyP.IIGServicesConfFile=<conf file spec>). For

more information on the IIG services configuration file, see section

“gr.uoa.di.IIGMyP package”.

 160

Configuration

file

Bundle filename Comments

IIG

communication

methods

configuration file

conf/iig/IIGCommMethConfFile.xml An XML document that binds the symbolic name for the communication

methods with all the physical level information required for implementing

each method. The file location is provided as a property in the IIG property

file (IIGMyP.IIGCommMethConfFile=<config file spec>).>). For more

information on the IIG communication methods configuration file, see

section “gr.uoa.di.IIGMyP package”.

IIG SEP

configuration file

conf/iig/IIGSEPConfFile.xml An XML document that binds the symbolic name for the separate external

processes with all the physical level information required for implementing

SEP. The file location is provided as a property in the IIG property file

(IIGMyP.IIGSEPConfFile=<config file spec>). For more information on

the IIG SEP configuration file, see section “gr.uoa.di.IIGMyP package”.

IIG security file conf/iig/IIGSecurity.xml A file that associates request senders with the credentials they must

present to the IIG, in order to be authenticated. The file location is provided

as a property in the IIG property file (IIGMyP.IIGSecurityFile=<config
file spec>). For more information on the IIG security configuration file,

see section “gr.uoa.di.IIGMyP package”.

IIG SSL server

information file

conf/iig/SSLserverInfo.xml A file used by the secure socket layer-based version of the IIG. This file

provides information on the keystore, the supported cipher suites and other

parameters needed by the secure socket layer. The location of this file is

provided as a command-line parameter when the class

 161

Configuration

file

Bundle filename Comments

gr.uoa.di.SSLIIGServer.SSLIIGServer. For more information on the IIG

security configuration file, see section “gr.uoa.di.SSLIIGServer Package”.

5.3.3 DTD files

The DTD files are used for validating the content structure of configuration files or messages that are received. Their contents should not

be edited, however their presence is required in specific directories. These requirements are listed in the following table.

DTD file Bundle filename Comments

SGA-NI

configuration

DTD

conf/sga/SGANI_Conf.dtd DTD document that validates the SGA-NI configuration file. It should be

located in the same directory with the SGA-NI configuration file. The

<!DOCTYPE … line in the SGA-NI configuration file should only reference the

DTD file name, and not the full path specification.

SGA Services

DTD

conf/sga/SGAServicesConfFile.dtd DTD document that validates the SGA services configuration file It should

be located in the same directory with the SGA Services configuration file.

The <!DOCTYPE … line in the SGA services configuration file should only

reference the DTD file name, and not the full path specification.

SGA

Communication

Methods DTD

conf/sga/SGACommMethConf.dtd DTD document that validates the SGA Communication Methods

configuration file. It should be located in the same directory with the SGA

Communication Methods configuration file The <!DOCTYPE … line in the SGA

Communication Methods configuration file should only reference the DTD

file name, and not the full path specification.

 162

DTD file Bundle filename Comments

SGA – IIG DTD conf/sga/SGAIIGConfFile.dtd DTD document that validates the SGA-IIG configuration file. It should be

located in the same directory with the SGA –IIG configuration file The

<!DOCTYPE … line in the SGA - IIG configuration file should only reference

the DTD file name, and not the full path specification.

IIG-NI DTD conf/iig/IIGNIConf.dtd DTD document that validates the IIG-NI configuration file. It should be

located in the same directory with the IIG-NI configuration file. The

<!DOCTYPE … line in the IIG NI configuration file should only reference the

DTD file name, and not the full path specification.

IIG Services

DTD

conf/iig/IIGServicesConfFile.dtd DTD document that validates the IIG services configuration file It should be

located in the same directory with the IIG Services configuration file. The

<!DOCTYPE … line in the IIG services configuration file should only reference

the DTD file name, and not the full path specification

IIG

Communication

Methods DTD

conf/iig/IIGCommMethConfFile.dtd DTD document that validates the IIG Communication Methods configuration

file. It should be located in the same directory with the IIG Communication

Methods configuration file The <!DOCTYPE … line in the IIG Communication

Methods configuration file should only reference the DTD file name, and not

the full path specification.

IIG SEP DTD conf/iig/IIGSEPConfFile.dtd DTD document that validates the IIG Separate External Processes (SEP)

configuration file. It should be located in the same directory with the IIG

SEP configuration file The <!DOCTYPE … line in the IIG SEP configuration file

should only reference the DTD file name, and not the full path specification.

 163

DTD file Bundle filename Comments

IIG security DTD conf/iig/IIGSecurity.dtd DTD document that validates the IIG Security configuration file. It should

be located in the same directory with the IIG Security configuration file The

<!DOCTYPE … line in the IIG Security configuration file should only reference

the DTD file name, and not the full path specification.

IIG SSL server

information DTD

conf/iig/SSLserverInfo.dtd DTD document that validates the IIG SSL server information configuration

file. It should be located in the same directory with the IIG SSL server

information configuration file The <!DOCTYPE … line in the IIG SSL server

information configuration file should only reference the DTD file name, and

not the full path specification.

XML Packet DTD conf/iig/XMLPacket.dtd DTD document that validates the request messages received by the IIG. It

may be located anywhere in the file system, and its location is designated

by the IIGMyP.XMLPacketPath property in the IIG property file. If an

application is built that creates and sends request messages to the IIG

without using the SmartGov Agent library, it should arrange so that in the

<!DOCTYPE … line in the request packets only the DTD file name is

referenced, and not any absolute location.

 164

5.4 Database Setup

The communication services use in several cases a database for persistent

storage. A database is used in both the SGA and IIG part of the SG Agent and it

should be made available to ensure its correct operation. The communication

services may be used with any DBMS, provided that the appropriate JDBC driver

is installed; in certain cases, adaptations need to be made to cater for DBMS

particularities: for instance, in MySQL 3.x varchar-type fields are limited to 255

characters and the schema must be modified to use BLOB-type columns when

columns of more length are required.

After installing the DBMS, the following actions should be performed:

1. a DBMS user, e.g. smartgov, should be created.

2. for DBMSs not supporting the “per user schema” model (e.g. MySQL) the

creation of a separate database is highly recommended. Full rights to this

database should be granted to the user created in step (1).

3. The tables needed by the SmartGov Agent bundle should be created in the

user’s schema or database. This can be accomplished by executing the

appropriate SQL batch under the credentials of the user created in step

(1). The distribution includes three sample SQL batches, namely

sgaora.sql, sgamysql.sql and sgamssql.sql to be used with Oracle,

MySQL and MS SQL Server, respectively. The typical procedure for

creating the database objects is as follows:

a. If Oracle is used, the command

sqlplus username/password < sgaora.sql
should be issued, where username and password are the

credentials for the user created in step (1).

b. If MySQL is used, the command

mysql -uusername –ppassword dbname < sgaora.sql
should be issued, where username and password are the

credentials for the user created in step (1) and dbname is the name

of the database created in step (2).

c. If SQL Server is used then the Query Analyzer tool should be

launched and the connection to the DBMS should be established by

entering the user credentials in the “Connect to SQL server” dialog

box. Then the File/Open menu should be selected and the

sgamssql.sql should be selected. Finally the Query/Execute menu

should be selected to complete the task.

 165

Note that in a typical SmartGov platform installation, two separate database

installations are expected to be operating, one for the service delivery

environment and one for the organisational information system. Though it is

possible to use one database installation for both the service delivery

environment and the organisational information system, this is not

recommended, due to security issues that may arise. If however only one

database installation is available, two different users and/or databases should be

created, and the configuration files should be modified accordingly to provide the

appropriate connection information.

Finally, the appropriate JDBC driver should be installed in the standard extensions

directory of the Java Runtime Environment – typically the lib/ext subdirectory

under the JRE installation directory).

5.5 Package Documentation

5.5.1 gr.uoa.di.SGLogging Package

The gr.uoa.di.SGLogging package provides facilities for message logging in the

SmartGov environment. Messages may be logged for various purposes, including

the notification of a system operator about an event requiring imminent attention,

monitoring of the activities taking place in the context of the platform, debugging

activities etc. Certain events are logged automatically by SmartGov platform

components (e.g. request initiation, receive of a reply), whereas applications may

use these facilities to log arbitrary messages.

Applications (including SmartGov platform components) willing to exploit the

logging facilities should use the provided API to fulfill this task. Additionally,

within the SmartGov platform, an SGLogListener process (also provided with the

implementation) should be running, which is responsible for collecting the logging

requests and placing the respective messages in a persistent store.

A logging request includes (a) the message to be logged (free text) and (b) a

severity code, indicating the importance and/or the expected reactions to the

message. The SmartGov platform allows for six levels of severity, as listed in the

following table.

Table 1. Severity code numbers, names and corresponding messages.

Severity code

name

Severity

code

number

Text to be

displayed in the

log file

Use

SG_LOG_EMERG 1 EMERGENCY An event requiring

 166

immediate attention

SG_LOG_ALERT 2 ALERT An event requiring

attention

SG_LOG_ERROR 3 ERROR An error condition

SG_LOG_WARNING 4 WARNING A warning message

SG_LOG_INFO 5 INFO An informational

message

SG_LOG_DEBUG 6 DEBUG IT staff use for

debugging purposes

When a message is placed in the persistent store, it is complemented with the

following additional information:

1. The timestamp that the message was received and stored (date and time)

2. A textual description of the severity designation

3. The actual message

An example of a log message is the following:

03-07-2003 13:58:49 ERROR IIG-NI: Notification with name wrongNotif
could not be sent to SGA-NI.

5.5.1.1 Using the logging facilities

In order to use the logging facilities, an application should import the SGLogger,

SGLoggerFactory and SGLoggerException classes contained in the package, which

implement all the necessary functionality. In more detail, the application willing to

log messages should perform the following steps:

1. Use the newSGLogger method of the SGLoggerFactory class to create a

new object of type SGLogger. Only one instance of the SGLogger class is

allowed to exist at any given time in the context of an application.

2. Invoke the logMessage method of the SGLogger object, in order to actually

log the message. The logMessage method accepts two parameters,

corresponding to the severity designation and the actual message, for

example:

SGL.logMessage(SGLogger.SG_LOG_EMERG, "Message to be logged");
While performing any of the steps listed above, certain error conditions may

arise; in these cases, an exception of type SGLoggerException is thrown, which

can be caught and appropriately handled by the application.

Since the SmartGov logging facility follows the client-server model, it is important

for the applications to be able to locate the SGLogListener entity, which intercepts

all logging requests and arranges for their persistent storage. The information

necessary to locate the SGLogListener entity should be provided in a property file,

 167

and the location of the file is passed as a parameter to the newSGLogger method.

This property file contains two lines, designating the communication details with

the SGLogListener. The one is the name of the host where the SGLogListener is

located and the other the port at which the SGLogListener is listening for logging

requests. The property file must have the following form:

#SGLogger property file
SGA.Logger.port=<port>
SGA.Logger.host=<host>

For example:

#SGLogger property file
SGA.Logger.port=30000
SGA.Logger.host=hydra.mm.di.uoa.gr

5.5.1.2 Example

A sample application using the gr.uoa.di.SGLogging package is listed below:

public class testLogger {
 /** Creates a new instance of testLogger */
 public testLogger() { }
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("testLoggerUsage: testLogger <propertyFile> ");
 }
 else{
 try{
 /** Creates an instance of the SGLogger, giving as argument the
 the property file./
 SGLogger SGL = SGLoggerFactory.newSGLogger(args[0]);
 /*Log the event*/
 SGL.logMessage(SGL.SG_LOG_EMERG, "Message to be logged");
 System.err.println("Exited OK.");
 }
 catch(SGLoggerException SGLEx){
 System.err.println("Cannot create logger");
 System.exit(1);
 }
 }
 }
}

In order to facilitate the usage of the SGLogger, a static logMessage method is

provided in the gr.uoa.di.SGUtil.SGUtil class. The logMessage method accepts

two parameters, corresponding to the severity designation and the actual

message, for example:

 168

SGUtil.logMessage(SGLogger.SG_LOG_EMERG, "Message to be logged");

The SGUtil.logMessage method arranges for the creation of the appropriate

SGLogger instance (if necessary) and then uses this instance to log the

messages.

Both the gr.uoa.di.SGUtil and gr.uoa.di.SGLogger packages should be

imported for the call to this method to work.
The SGUtil.logMessage method needs to have information regarding the

connection details of the SGLogListener process. This information should be

provided by means of a property file (as is the case with the SGLogger package)

and the system property SGLogger.propertyFile should be set to point to the

location of this file. If the property is not set, the SGUtil.logMessage function

ignores calls for logging.

The SGLogger.propertyFile system property may be set programmatically from

within a Java program using the System.setProperty method:

System.setProperty("SGLogger.propertyFile", "/path/to/property/file");

or by using the –D flag to the Java Virtual Machine when the Java program is

being run:

java -DSGLogger.propertyFile=/path/to/property/file myprog.java

5.5.2 gr.uoa.di.SGLogListener Package

The gr.uoa.di.SGLogListener package implements the process that is

responsible for collecting the logging requests and placing the messages to be

logged in a persistent store. Logging requests originate from the SGLogger,

whose functionality is described in another section of this document.

The SGLogListener is started by executing the class SGLogListenerFactory,

providing as parameter the location of the SGLogListener property file.

java gr.uoa.di.SGLogListener.SGLogListenerFactory <property file>
For example,

java gr.uoa.di.SGLogListener.SGLogListenerFactory c:\SG\SGLListPrF.txt
The SGLogListener then waits for logging requests to arrive (to a specified port).

These requests are received in the form of text messages, which the

SGLogListener writes to a file.

The path to the file that the SGLogListener will write the log messages to, and the

port that will be monitored for incoming logging requests should be specified in a

property file, and the location of the file is provided as a parameter when the

SGLogListenerFactory is executed. More specifically, the property file contains

three lines, designating:

 169

1. the TCP/IP port where the SGLogListener is listening for logging requests

(SGA.LogListener.port property)

2. the backlog of the listener server socket, which is the maximum queue length

for incoming connection requests (SGA.LogListener.backlog property)

3. the file were the messages will be stored
(SGA.LogListener.destinationFile property)

The format of the property file is as follows:

#SGLogListener property file
SGA.LogListener.port=<port>
SGA.LogListener.backlog=<backlog>
SGA.LogListener.destinationFile=<destination specification >

For example:

#SGLogListener property file
SGA.LogListener.port=30000

SGA.LogListener.backlog=50

SGA.LogListener.destinationFile=c:\\smartgov\\logs\\LogDest.txt

5.5.3 gr.uoa.di.SGANI Package

The gr.uoa.di.SGANI package provides facilities for intercepting and storing

notifications in the SmartGov SGA-EPAQ (incoming queue for the service delivery

platform). The SGA Notifications Interceptor (SGA-NI) is an autonomous program

that continuously runs on the SmartGov service delivery platform and listens for

notifications signifying that an external to the platform event has taken place. The

SGA-NI responds to these notifications by placing a suitable entry in the SGA-

EPAQ, which will be handled by the SGA-PAQUED. The notifications are sent to

SGA-NI by the IIG Notification Initiator (IIG-NI).

SGA-NI performs the following actions:

1. Listen to a specified port for incoming notifications

2. Upon receiving a notification, look up in the SGA-NI XML configuration file

the information concerning the method associated with the notification.

3. Store the method information in the SGAEPAQ.

The SGA-NI is started by executing the class SGANIFactory, providing as

parameter the location of the SGA-NI property file, described in the following

paragraphs.

java gr.uoa.di.SGANI.SGANIFactory <property file>
For example,

 170

java gr.uoa.di.SGANI.SGANIFactory c:\smartgov\cfg\\SGLANIPropertyFile.txt

The SGA-NI creates a server socket, and listens to a port, also specified in the

property file, for incoming notifications. These notifications are received in the

form of text messages. Upon receiving a notification, the SGA-NI looks it up in a

configuration file. This configuration file contains the information about the

methods associated with each notification and its location (file specification

including directory and file name) is defined in the property file.

The method information extracted from the configuration file is stored in the SGA-

EPAQ. The SGA-EPAQ is implemented as a database table. In order to facilitate

the storage and retrieval of data in the database, the gr.uoa.di.EntraPAQ

package is used, which is described in another part of this document. The

information for connecting to the database (connection credentials, network

information etc) is provided by means of a separate property file; the location of

this property file is specified as a property within the SGA-NI property file. The

contents of the SGA-EPAQ property file are explained below.

SGA-NI uses the SGLogger, which is described in another part of this document,

to log information on the following events:

1. receiving a notification

2. failure to store the notification in the database, due to communication failure

with the IIG-Notification Initiator

3. failure while retrieving the method information from the XML configuration file

4. database connection failure.

Since SGA-NI uses SGLogger facilities, it needs to have access to a property file

with the information necessary for connecting to the SGLogListener. The location

of this property file is specified as a property within the SGA-NI property file.

5.5.3.1 The SGANI configuration file

The SGA-NI configuration file is an XML document which contains the description

in XML format of the methods associated with a notification.

This file contains the following information for each notification:

1. The name of the notification

2. The method description, which contains the following items

a. The command path, i.e. the complete file specification of the OS-

level command that will be executed as a response to the reception

of the notification

b. The working directory, i.e. the OS directory that will be set as

“current” before the execution of the command is started

 171

c. The command parameters, i.e. command-line arguments that will

be passed to the command.

d. The input file, i.e. a file containing data that will be read by the

command as input

e. The output file, i.e. a file into which the command’s output will be

stored.

f. The error file, i.e. a file into which error messages emitted by the

command (if any) will be stored.

g. The environmental variable list, which consists of pairs of variable

names and values. This item is optional. We note here that for Java

programs, in particular, environment variables may be suppressed

by the Java runtime environment, depending on the JRE version,

since Java designers have characterised the environment variable

mechanism as “non-portable”. For communicating parameters to

Java programs, the property file approach is recommended.

SGA-NI configuration files are validated against a DTD document, which must be

located in the same directory with the SGA-NI configuration file. If an installation

uses multiple SGA-NI configuration files, which are stored in different directories,

then a copy of the DTD document should be placed in each of these directories.

The DTD contents are as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!--DTD XML Schema describing the SGA-NI XML configuration file -->

<!ELEMENT root (notificationInfo*)>

<!ELEMENT notificationInfo (notificationName, method)>

<!ELEMENT notificationName (#PCDATA)>

<!ELEMENT method (commandPath, workingDirectory, parameters, inputFile, outputFile, errorFile, envVariable*)>

<!ELEMENT commandPath (#PCDATA)>

<!ELEMENT workingDirectory (#PCDATA)>

<!ELEMENT parameters (#PCDATA)>

<!ELEMENT inputFile (#PCDATA)>

<!ELEMENT outputFile (#PCDATA)>

<!ELEMENT errorFile (#PCDATA)>

<!ELEMENT envVariable (envVariableName, envVariableValue)>

<!ELEMENT envVariableName (#PCDATA)>

<!ELEMENT envVariableValue (#PCDATA)>

An SGA-NI configuration file should contain only the name and not the full path of

the DTD document. As stated above, the DTD document should reside in the

same directory with the document. An example of an SGA-NI XML configuration

file is illustrated bellow.

 172

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE root SYSTEM "SGANI_Conf.dtd">

<root>

 <notificationInfo>

 <notificationName>dataReady</notificationName>

 <method>

 <commandPath>java testProgram</commandPath>

 <workingDirectory>Z:\\smartgov\\wp\\wp06\\api\\sga</workingDirectory>

 <parameters/>

 <inputFile>c:\\smartgov\\test\\testPinput.txt</inputFile>

 <outputFile>Z:\\smartgov\\test\\testPoutput.txt</outputFile>

 <errorFile>Z:\\smartgov\\test\\testPerror.txt</errorFile>

 </method>

 </notificationInfo>

 <notificationInfo>

 <notificationName>dataLost</notificationName>

 <method>

 <commandPath>java testProgram2</commandPath>

 <workingDirectory>c:\\smartgov\\test </workingDirectory>

 <parameters/>

 <inputFile>c:\\smartgov\\test\\testPAinput.txt</inputFile>

 <outputFile>c:\\smartgov\\test\\testPAoutput.txt</outputFile>

 <errorFile>c:\\smartgov\\test\\testPAerror.txt </errorFile>

 </method>

 </notificationInfo>

</root>

5.5.3.2 The SGANI property file

The SGA-NI property file is provided as a parameter when the SGANIFactory is

executed and contains the information necessary for SGA-NI to operate. This

information is stored in five properties, which are the following:

§ The port where the SGA-NI listens for incoming notifications.

§ The backlog of the SGA-NI server socket, which is the maximum queue

length for incoming connection requests.

§ The file name of the SGA-NI configuration file (described above). A full file

specification may be provided, including the directory and the filename of

the configuration file.

§ The property file of the SGA-EPAQ, which contains information for the

database connection.

§ The property file of the SGLogger, providing information on contacting the

logging facilities for event information logging

 173

The property file must have the following form:

SGA.NI.port=<port>
SGA.NI.backlog=<backlog>
SGA.NI.confFile=<configuration file specification >
SGA.EntraPAQ.propertyFile=<property file specification >

SGLogger.propertyFile=<property file specification >

For example:

Property file for the SGA NI
SGA.NI.port=30000
SGA.NI.backlog=50
SGA.NI.confFile=c:\\smartgov\\cfg\\SGANI\\SGANI_Conf.xml
SGA.EntraPAQ.propertyFile=c:\\smartgov\\cfg\\entraPAQ\\EntraPAQConfig.txt
SGLogger.propertyFile=Z:\\smartgov\\cfg\\SGLogging\\SGLogConfigSGA.txt

5.5.3.3 The Entra PAQ property file

The EntraPAQ (SGA-EPAQ) property file is provided as a property in the SGA-NI

property file and contains the necessary information for connecting with the

database where the Entra PAQ is stored. It contains the following four properties:

§ The user name for connecting with the database where the Entra PAQ is

stored.

§ The name of the database where the Entra PAQ is stored.

§ The password for connecting with the database where the Entra PAQ is

stored.

§ The driver for connecting with the database where the Entra PAQ is stored.

§ The connection string for connecting with the database where the Entra

PAQ is stored.

The property file must have the following form:

SGA.EntraPAQ.username=<username>
SGA.EntraPAQ.database=<database name>
SGA.EntraPAQ.password=<password>
SGA.EntraPAQ.driver=<driver class name>
SGA.EntraPAQ.connectString=<connection string>

For example

 174

Property file for the SGA EntraPAQ
SGA.EntraPAQ.username=smartgov
SGA.EntraPAQ.database=smartgov
SGA.EntraPAQ.password=sg123
SGA.EntraPAQ.driver=oracle.jdbc.driver.OracleDriver
SGA.EntraPAQ.connectString=jdbc:oracle:oci8:@

5.5.3.4 Extending the SGA-NI

Currently, the SGA-NI uses the TCP/IP communication protocol in order to receive

notifications from the IIG-NI. It creates a ServerSocket and listens to a port for

incoming notifications. If the IIG-NI uses another communication protocol, the

SGANI should be modified appropriately in order to be able to receive the

notifications. In order to implement such an extension, the programming team

should:

1. replace the TCP/IP-oriented properties in the SGA-NI configuration file

(SGA.NI.port and SGA.NI.backlog) with properties appropriate for the

protocol that will be supported.

2. Modify the code that looks up the specific properties in the property file so

that it accesses the properties specified in step (1).

3. load the libraries that support the selected protocol and arrange so that these

libraries are used instead of the TCP/IP libraries.

5.5.4 gr.uoa.di.IIGNI Package

The gr.uoa.di.IIG-NI package provides facilities for sending notifications from

the IIG to the SmartGov SGA-NI. Notifications may be sent for various purposes,

including the completion of a back-end batch process, the request for a specific

action to be taken at the side of the service delivery environment etc.

Applications (including SmartGov platform components) willing to exploit the

notification facilities should use the provided API to fulfill this task. Additionally,

within the SmartGov platform, an SGA Notification Interceptor (SGA-NI) process

(provided with the implementation and described in the previous paragraphs)

should be running, which is responsible for receiving the notifications and placing

them in a persistent store, the SGA EPAQ.

5.5.4.1 Using the IIG Notification Initiator

In order to use the IIG Notification Initiator, an application should import the

IIGNI, IGNIFactory and IIGNIException classes contained in the package, which

 175

implement all the necessary functionality. In more detail, the application willing to

send notifications should perform the following steps:

1. Use the newIIGNI method of the IIGNIFactory class to create a new

object of type IIGNI. Only one instance of the IIGNI class is allowed to

exist at any given time in the context of an application.

2. Invoke the IIGToSGAgentNotification method of the IIGNI object, in

order to actually send the notification. The IIGToSGAgentNotification

method accepts one parameter, the name of the notification to be sent,

for example:

NI.IIGToSGAgentNotification("dataReady");
While performing any of the steps listed above, certain error conditions may

arise; in these cases, an exception of type IIGNIException is thrown, which can

be caught and appropriately handled by the application. Such an exception is

thrown when:

1. the notification name does not correspond to a valid

notification contained in the IIGNI XML configuration file or

2. if there were problems with the communication with SGA-

NI.

In the latter case, the notification is stored in the IIG AdelantePAQ (IIG-APAQ:

outgoing queue for the organizational or third-party information system) and the

IIG dispatcher will attempt to resend this notification.

All the events concerning the notification status are logged using the SGLogger,

described in an earlier paragraph. The SGLogger logs the event of a notification

being sent and the errors that may arise during this process. Since IIG-NI uses

SGLogger facilities, it needs to have access to a property file with the information

necessary for connecting to the SGLogListener. The location of this property file is

specified as a property within the IIG-NI property file. If the SGLogger property

file is not provided, or communication with the logger is not possible, the IIG-NI

will operate successfully but events will not be logged.

Since the IIG-NI sends the notifications to the SGA-NI, it is important for the

applications to be able to locate the SGA-NI entity, which will receive the

notifications and will arrange for the persistent storage of their corresponding

methods. The information necessary to locate the SGA-NI entity that notifications

will be sent to should be provided in a configuration file, whose location is

specified within the IIG-NI property file. Furthermore, the locations of the IIG

AdelantePAQ and SGLogger property files are provided within the IIG-NI property

file.

 176

The location of the IIG-NI property file is passed as a parameter to the newIIGNI

method. The IIGNI property file contains the following three lines:

§ The file name of the IIGNI configuration file.

§ The property file of the IIG-APAQ.

§ The property file of the SGLogger.

The property file must have the following format:

IIG.NI.confFile=<configuration file specification>
IIG.AdelantePAQ.propertyFile=<property file specification>
SGLogger.propertyFile=<property file specification>
The property file may also contain comment lines, beginning with the hash (#)

symbol. For example:

Property file for the SG IIGNI
IIG.NI.confFile=c:\\smartgov\\cfg\\IIGNI\\IIGNIConf.xml
IIG.AdelantePAQ.propertyFile=c:\\smartgov\\cfg\\adelantePAQIIG\\APAQIIGConfig.txt
SGLogger.propertyFile=c:\\smartgov\\cfg\\SGLogging\\SGLogConfigIIG.txt

5.5.4.2 The IIG-NI configuration file

The IIGNI configuration file is an XML document which contains the

communication information associated with a notification in XML format.

This file contains the following information for each notification:

1. The name of the notification

2. The communication information for contacting the SGA-NI listener. In the

case of the TCP/IP protocol, this information consists of the host name

that the SGA-NI listener is run on and port that the SGA-NI listener listens

to.

IIG-NI configuration files are validated against a DTD document, which must be

located in the same directory with the IIG-NI configuration file. If an installation

uses multiple IIG-NI configuration files, which are stored in different directories,

then a copy of the DTD document should be placed in each of these directories.

The DTD contents are as follows:

 177

<?xml version="1.0" encoding="UTF-8"?>

<!--The DTD of the IIG-NI configuration file-->

<!ELEMENT root (notificationInfo*)>

<!ELEMENT notificationInfo (notificationName, comType, comData)>

<!ELEMENT notificationName (#PCDATA)>

<!ELEMENT comType (#PCDATA)>

<!ELEMENT comData (tcpIpCom)>

<!ELEMENT tcpIpCom (address, port)>

<!ELEMENT address (#PCDATA)>

<!ELEMENT port (#PCDATA)>

An IIG-NI configuration file should contain only the name and not the full path of

the DTD document. As stated above, the DTD document should reside in the

same directory with the document. An example of an IIG-NI XML configuration

file is illustrated bellow.

 178

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE root SYSTEM "IIGNIConf.dtd">

<root>

 <notificationInfo>

 <notificationName>dataReady</notificationName>

 <comType>tcpIp</comType>

 <comData>

 <tcpIpCom>

 <address>hydra.mm.di.uoa.gr</address>

 <port>30000</port>

 </tcpIpCom>

 </comData>

 </notificationInfo>

 <notificationInfo>

 <notificationName>dataLost</notificationName>

 <comType>tcpIp</comType>

 <comData>

 <tcpIpCom>

 <address>hydra.mm.di.uoa.gr</address>

 <port>30000</port>

 </tcpIpCom>

 </comData>

 </notificationInfo>

 <notificationInfo>

</root>

5.5.4.3 Extending the IIG-NI

Currently the IIGNI uses the TCP/IP communication protocol in order to send

notifications to the SGA-NI. All the implementation details for the actual message

transfer are encapsulated into the class IIGNITcpIpHandler, contained in the

gr.uoa.di.IIGNI package. This class may be modified (or copied, renamed and

modified) in order to use other communication protocols. The modifications

should be the following:

1. The communication information should be stored in an appropriate XML

file, of the general format described in the following section.

2. The class IIGNITcpIpHandler should be modified accordingly:

a. The following class attributes should be modified to reflect the new

communication information.

 179

/**The communication type. */
static final String comType = "communicationType";

/**This array contains the names of the elements containing the

communication information. */

static final String[] comElements ={"property1", "property2", "property3"}
;

/**This variable contains the number of comInf elements, in this case 2*/
static final int comInfNum=<number of properties>;

For example, for the TCP/IP:

/**The communication type. In this case it is a constant of type

String with value tcpIp*/
static final String comType = "tcpIp";

/**This array contains the names of the elements containing the
communication information. */
static final String[] comElements ={"address", "port"} ;

/**This variable contains the number of comInf elements, in this case 2*/
static final int comInfNum=2;

b. The sendMessage() method should be modified accordingly in order to

be able to send messages with the specified protocol. The libraries

implementing the target protocol should be also imported.

c. The DTD corresponding to the XML configuration file should be

modified accordingly, to describe the elements required for the new

protocol.

5.5.4.4 General format of the IIG-NI configuration file

The IIG-NI XML configuration file contains the following information for each

notification:

1. The name of the notification

2. The communication information for the SGANI listener

The general format of the DTD for this document is the following:

 180

<?xml version="1.0" encoding="UTF-8"?>

<!--The DTD of the IIG-NI configuration file-->

<!ELEMENT root (notificationInfo*)>

<!ELEMENT notificationInfo (notificationName, comType, comData)>

<!ELEMENT notificationName (#PCDATA)>

<!ELEMENT comType (#PCDATA)>

<!ELEMENT comData (tcpIpCom)>

<!ELEMENT newCom (property1, property2)>

<!ELEMENT property1 (#PCDATA)>

<!ELEMENT property2 (#PCDATA)>

The IIGNI XML configuration file should contain the name of the DTD. The DTD

should be in the same directory with the document. An example of an IIGNI XML

configuration file is the following:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE root SYSTEM "IIGNIConf.dtd">

<root>

 <notificationInfo>

 <notificationName>notification1</notificationName>

 <comType>communicationType</comType>

 <comData>

 <newCom>

 <property1>property1 value</property1>

 <property2>property2 value</property2>

 </newCom>

 </comData>

 </notificationInfo>

 <notificationInfo>

 <notificationName>dataLost</notificationName>

 <comType>communicationType</comType>

 <comData>

 <newCom>

 <property1>property1 value</property1>

 <property2>property2 value</property2>

 </newCom>

 </notificationInfo>

</root>

 181

5.5.4.5 The SGA Adelante PAQ property file

The Adelante PAQ property (SGA-APAQ) file is provided as a property in the IIG-

NI property file and contains the necessary information for connecting with the

database where the Adelante PAQ is stored. It contains the following five

properties:

§ The user name for connecting with the database where the Adelante PAQ

is stored.

§ The name of the database where the Adelante PAQ is stored.

§ The password for connecting with the database where the Adelante PAQ is

stored.

§ The driver for connecting with the database where the Adelante PAQ is

stored.

§ The connection string for connecting with the database where the Adelante

PAQ is stored.

The property file must have the following form:

IIG.AdelantePAQ.username=<username>
IIG.AdelantePAQ.database=<database name>
IIG.AdelantePAQ.password=<password>
IIG.AdelantePAQ.driver=<driver class name>
IIG.AdelantePAQ.connectString=<connection string>

For example,

Property file for the SGA EntraPAQ
IIG.AdelantePAQ.username=smartgov
IIG.AdelantePAQ.database=smartgov
IIG.AdelantePAQ.password=sg123!
IIG.AdelantePAQ.driver=oracle.jdbc.driver.OracleDriver
IIG.AdelantePAQ.connectString=jdbc:oracle:oci8:@

5.5.5 gr.uoa.di.dispatcherIIG Package

The gr.uoa.di.dispatcherIIG package provides facilities for using the IIG

Pending Actions Queue Dispatcher (IIG-PAQUED). The IIG-PAQUED is an

autonomous program that periodically scrutinises the IIG Entra and Adelante

pending actions queues on the SmartGov service delivery platform, extracts

actions that can be carried out, and initiates their execution.

The IIG-PAQUED is started by executing the class

gr.uoa.di.dispatcherIIG.dispatcherIIG. A property file should be provided as

a parameter for the execution of the IIG-PAQUED; the contents of the property

file are described in the following paragraphs. The IIG-PAQUED periodically

 182

retrieves all records from the Entra (incoming) and Adelante (outgoing) PAQ and

processes them, accordingly, executing the method described in each PAQ entry.

The periodicity of the scheduler scrutinising the PAQ will be determined by the IT

staff supporting the actual runtime environment, taking into account any

peculiarities and constraints placed by the actual working systems. The period of

invocation may be variant, ranging from minutes to days, depending upon the

processing requirements of each message class. For example, messages related

to warehouse stock updating maybe processed in 10 minutes intervals, while

messages related to certificate applications could be processed in a daily basis.

The time interval during which the IIG-PAQUED remains idle between two

successive inspections of the PAQ is specified by a property in the dispatcher

property file; this property is named IIG.dispatcher.sleepTime. If no such

property is specified, the default sleep interval is used, as set in the static

variable DEFAULT_SLEEP_TIME = 2520000 (42 minutes, expressed in

milliseconds).

While processing the PAQ entries, certain error conditions may arise; in these

cases, an exception of type dispatcheIIGrException is thrown.

All the events concerning the processing status are logged using the SGLogger,

described in a previous part of this document. The SGLogger logs the following

events:

1. the beginning of the processing

2. the errors that may arise during the execution.

Since the dispatcher uses logging facilities, it needs to have access to a property

file into which the details of the communication with the SGLogListener process

are specified. A special property within the dispatcher property file designates the

location of the dispatcher property file. If the SGLogger property file is not

provided, the dispatcher will operate normally, but events will not be logged.

5.5.5.1 The dispatcher property file

The dispatcher property file contains the following properties:

§ the location of the IIG EntraPAQ property file

§ the location of the IIG AdelantePAQ property file

§ The configuration file of the IIG-NI.

§ The property file of the SGLogger.

§ The dispatcher sleep time interval in milliseconds

The property file must have the following form:

 183

Property file for the IIG dispatcher
IIG.EntraPAQ.propertyFile=<EntraPAQ property file>
IIG.AdelantePAQ.propertyFile=<AdelantePAQ property file>
IIG.NI.confFile=<configuration file name>
SGLogger.propertyFile=<property file name>
IIG.dispatcher.sleepTime=<time in milliseconds>
For example:

Property file for the IIG dispatcher
IIG.EntraPAQ.propertyFile=c:\\smartgov\\cfg\\iig\EntraPAQConfig.txt
IIG.AdelantePAQ.propertyFile= c:\\smartgov\\cfg\\iig\adelantePAQConfig.txt
IIG.NI.confFile=c:\\smartgov\\cfg\\IIGNI\\IIGNIConf.xml
SGLogger.propertyFile=c:\\smartgov\\cfg\\SGLogging\\SGLogConfigSGA.txt
IIG.dispatcher.sleepTime=2520000

5.5.6 gr.uoa.di.dispatcher Package

The gr.uoa.di.dispatcher package provides facilities for using the SGA Pending

Actions Queue Dispatcher (SGA-PAQUED). The SGA-PAQUED is an autonomous

program that periodically scrutinises the SGA Entra and Adelante pending actions

queues on the SmartGov service delivery platform, extracts actions that can be

carried out, and initiates their execution.

The SGA-PAQUED is started by executing the class

gr.uoa.di.dispatcher.dispatcher. A property file should be provided as a

parameter for the execution of the SGA-PAQUED; the contents of the property file

are described in the following paragraphs. The SGA-PAQUED periodically retrieves

all records from the Entra (incoming) and Adelante (outgoing) PAQ and processes

them, accordingly, executing the method described in each PAQ entry.

The periodicity of the scheduler scrutinising the PAQ will be determined by the IT

staff supporting the actual runtime environment, taking into account any

peculiarities and constraints placed by the specific working systems. The period of

invocation may be variant, ranging from minutes to days, depending upon the

processing requirements of each message class. For example, messages related

to warehouse stock updating maybe processed in 10 minutes intervals, while

messages related to certificate applications could be processed in a daily basis.

The time interval during which the SGA-PAQUED remains idle between two

successive inspections of the PAQ is specified by a property in the dispatcher

property file; this property is named SGA.dispatcher.sleepTime. If no such

property is specified, the default sleep interval is used, as set in the static

variable DEFAULT_SLEEP_TIME = 2520000 (42 minutes, expressed in

milliseconds).

 184

While processing the PAQ entries, certain error conditions may arise; in these

cases, an exception of type dispatcherException is thrown.

All the events concerning the processing status are logged using the SGLogger,

described in a previous part of this document. The SGLogger logs the following

events:

1. the beginning of the processing

2. the errors that may arise during the execution.

Since the dispatcher uses logging facilities, it needs to have access to a property

file into which the details of the communication with the SGLogListener process

are specified. A special property within the dispatcher property file designates the

location of the dispatcher property file. If the SGLogger property file is not

provided, the dispatcher will operate normally, but events will not be logged.

The dispatcher property file contains five properties, which are the following:

§ the location of the SGA EntraPAQ property file

§ the location of the SGA AdelantePAQ property file

§ The configuration file of the SGA.

§ The property file of the SGLogger.

§ The dispatcher sleep time interval in milliseconds

The property file must have the following form:

Property file for the SG dispatcher
SGA.EntraPAQ.propertyFile=<EntraPAQ property file>
SGA.AdelantePAQ.propertyFile=<AdelantePAQ property file>
SGA.SGAConfFile=<configuration file name>
SGLogger.propertyFile=<property file name>
SGA.dispatcher.sleepTime=<time in milliseconds>

For example:

Property file for the SG dispatcher
SGA.EntraPAQ.propertyFile=c:\\smartgov\\cfg\\iig\EntraPAQConfig.txt
SGA.AdelantePAQ.propertyFile= c:\\smartgov\\cfg\\iig\adelantePAQConfig.txt
SGA.SGAConfFile=c:\\smartgov\\cfg\\sga\\SGAConfFile.txt
SGLogger.propertyFile=c:\\smartgov\\cfg\\SGLogging\\SGLogConfigSGA.txt
SGA.dispatcher.sleepTime=2520000

5.5.7 gr.uoa.di.SGA Package

The gr.uoa.di.SGA package provides facilities for using the SG Agent (SGA), a

class library containing the methods that allow SmartGov applications to submit

requests and retrieve results.

Applications developed within the SmartGov Framework (SGoVApps) delegate all

communications with external IT systems to the SmartGov Agent (SGA). The SGA

 185

communicates with the Information Interchange Gateway (IIG) and returns

results to the calling application. A generic communication event is an event that

spans the SmartGov Platform and reaches a 3rd party system. Initiation of

communication may be initiated from the SGoVApp (SmartGov Application) or

from the IT system and each receiving party has the responsibility of checking all

necessary conditions that must hold for the event to complete.

A SGoVApp initiates communication sending requests to an SGA using the

following SGA method:

public String SGAppToSGAgentRequest(long requestId, String
serviceName, String XMLMessage, boolean realTime, boolean
persistent);

The method parameters and their associated semantics are presented in the

following table.

requestId A unique request identifier that serves to

characterize this request

serviceName
A symbolic service name that the message refers

to. The receiving SGA is expected to forward the

encapsulated XMLMessage to the named service

XMLMessage

A message that contains all information that the

named serviceName requires. The SGA does not

interpret this message, rather it is passed as is to

the next step

realTime

Indicates whether the communication event is

happening in real-time and consequently an

immediate response is expected. When this flag is

set, the SGA does not closes the communication

channel with the SGoVApp but it immediately

forwards the message to the appropriate IIG and

returns the result to the calling SGoVApp

persistent

Indicates whether the message should persist in

case of communication errors or other abruptions

and retransmitted later. If this flag is set, message

is stored in the SGA Adelante Pending Actions

Queue.

In more detail, the application willing to send a request to the SGA should

perform the following steps:

 186

1. Use the newSGAgent method of the SGAgentFactory class to create a new

object of type SGAgent. A property file should be provided as a parameter

to the newSGAgent method; the contents of the property file are described

in the following paragraphs.

2. Invoke the SGAppToSGAgentRequest method of the SGAgent object, in

order to actually make the request. The logMessage method accepts the

parameters mentioned previously, for example:

result = myAgent.SGAppToSGAgentRequest(15,
"getPersonalInfo", "<?xml version="1.0" encoding="utf-8"
?><name>George Georgiou</name> <name>Petros Petriou</name>
<name>Eleni Hatzimixail</name> <name>Costas Tses</name>",
SGA_NONREALTIME, SGA_PERSISTENT);

5.5.7.1 The SGA property file

The SG Agent property file contains six properties, which are the following:

§ SGA.SGAServicesConfFile: The path for the XML file that binds the

service names that SGA can serve, with corresponding symbolic names for

IIGs and symbolic names for the communication methods to be used for

the communication between SGA and IIG.

The SGAServices configuration file is validated against a DTD document,

which must be located in the same directory with the SGAServices

configuration file. The DTD contents are as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!--DTD XML Schema describing the SGAServices configuration file)-->

<!ELEMENT SGAServices (service*)>

<!ELEMENT service (serviceName, IIGName, methodName+)>
<!ELEMENT serviceName (#PCDATA)>

<!ELEMENT IIGName (#PCDATA)>

<!ELEMENT methodName (#PCDATA)>

An SGAServices configuration file should contain only the name and not

the full path of the DTD document. As stated above, the DTD document

should reside in the same directory with the document. An example of an

SGAServices XML configuration file is illustrated bellow:

 187

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE SGAServices SYSTEM "SGAServicesConfFile.dtd">

<SGAServices>

 <service>

 <serviceName>getPersonalInfo</serviceName>

 <IIGName>taxationIIG</IIGName>

 <methodName>SSLtcpIp1</methodName>

 <methodName>tcpIp2</methodName>

 <methodName>localFileStore2</methodName>

 </service>

 <service>

 <serviceName>getPersonalInfo</serviceName>

 <IIGName>communityIIG</IIGName>

 <methodName>tcpIp1</methodName>

 <methodName>localDataStore1</methodName>

 <methodName>SSLtcpIp1</methodName>

 </service>

 <service>

 <serviceName>getPersonalInfo2</serviceName>

 <IIGName>vatIIG</IIGName>

 <methodName>tcpIp3</methodName>

 <methodName>localDataStore3</methodName>

 <methodName>localFileStore3</methodName>

 </service>

 <service>

 <serviceName>getTaxPay</serviceName>

 <IIGName>taxationIIG</IIGName>

 <methodName>tcpIp1</methodName>

 <methodName>localDataStore1</methodName>

 <methodName>localFileStore1</methodName>

 </service>

 <service>

 <serviceName>getContact</serviceName>

 <IIGName>communityIIG</IIGName>

 <methodName>tcpIp1</methodName>

 </service>

</SGAServices>

§ SGA.SGACommMethConfFile: The path for the XML file that binds the

symbolic names for the communication methods with all the physical level

information required for implementing the designated method.

 188

The SGACommunicationMethods configuration file is validated against a

DTD document, which must be located in the same directory with the

SGACommunicationMethods configuration file. The DTD contents are as

follows:

<?xml version="1.0" encoding="UTF-8"?>

<!--DTD XML Schema describing the SGACommunicationMethods configuration file)-->

<!ELEMENT commMethods (method*)>

<!ELEMENT method (methodName, (tcpIpMethod | SSLtcpIpMethod | localDataStore | localFileStore))>

<!ELEMENT methodName (#PCDATA)>

<!ELEMENT tcpIpMethod (password, passwordEnc)>

<!ELEMENT SSLtcpIpMethod (keystorePath,
keystorePassword, keyPassword,

keystoreType, KeyManagerAlgorithm,
SSLVersion, supportedSuites+)>

<!ELEMENT localDataStore (connectionStr)>

<!ELEMENT localFileStore (fileName)>

<!ELEMENT password (#PCDATA)>

<!ELEMENT passwordEnc (#PCDATA)>

<!ELEMENT keystorePath (#PCDATA)>

<!ELEMENT keystorePassword (#PCDATA)>

<!ELEMENT keyPassword (#PCDATA)>

<!ELEMENT keystoreType (#PCDATA)>

<!ELEMENT KeyManagerAlgorithm (#PCDATA)>

<!ELEMENT SSLVersion (#PCDATA)>

<!ELEMENT supportedSuites (#PCDATA)>

<!ELEMENT connectionStr (#PCDATA)>

<!ELEMENT fileName (#PCDATA)>

An SGACommunicationMethods configuration file should contain only the

name and not the full path of the DTD document. As stated above, the

DTD document should reside in the same directory with the document. An

example of an SGACommunicationMethods XML configuration file is

illustrated bellow:

 189

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE commMethods SYSTEM "SGACommMethConfFile.dtd">
<commMethods>
 <method>
 <methodName>tcpIp1</methodName>
 <tcpIpMethod>
 <password>test1</password>
 <passwordEnc>plaintext1</passwordEnc>
 </tcpIpMethod>
 </method>
 <method>
 <methodName>SSLtcpIp1</methodName>
 <SSLtcpIpMethod>
 <keystorePath>D:\j2sdk1.4.1_01\bin\trustcerts</keystorePath>
 <keystorePassword>userpass</keystorePassword>
 <keyPassword>userpass</keyPassword>
 <keystoreType>JKS</keystoreType>
 <KeyManagerAlgorithm>SunX509</KeyManagerAlgorithm>
 <SSLVersion>SSLv3</SSLVersion>
 <supportedSuites>SSL_RSA_WITH_RC4_128_MD5</supportedSuites>
 <supportedSuites>SSL_DH_anon_WITH_RC4_128_MD5</supportedSuites>
 <supportedSuites>SSL_DH_anon_WITH_3DES_EDE_CBC_SHA</supportedSuites>
 <supportedSuites>SSL_DH_anon_WITH_DES_CBC_SHA</supportedSuites>
 <supportedSuites>SSL_DH_anon_EXPORT_WITH_RC4_40_MD5</supportedSuites>
 <supportedSuites>SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA</supportedSuites>
 </SSLtcpIpMethod>
 </method>
 <method>
 <methodName>localDataStore1</methodName>
 <localDataStore>
 <connectionStr>smartgov:smartgov:sg123</connectionStr>
 </localDataStore>
 </method>
 <method>
 <methodName>localFileStore1</methodName>
 <localFileStore>
 <fileName>c:\smartgov\filestores\sga\file1.txt</fileName>
 </localFileStore>
 </method>
 <method>
 <methodName>localFileStore2</methodName>
 <localFileStore>
 <fileName> c:\smartgov\filestores\sga\file2.txt</fileName>
 </localFileStore>
 </method>
</commMethods>

 190

There are 4 types of supported communication methods between SGA and

IIG, which are presented below:

1. localFileStore method, where SGA stores the XML Message in a file.

The location and the name of the file are specified in the

SGACommunicationMethods XML configuration file with the following

declaration:

<localFileStore>
 <fileName>c:\smartgov\filestores\file.txt</fileName>
</localFileStore>

The file path must be valid for the system that the SGA is run on; on Unix systems
file specification components are separated by forward slashes, whereas on
Windows based systems the separator character is the backslash, and drive
letters should be included or UNC filenames can be used.

2. localDataStore method, where SGA stores the XML Message to a

database. The information for connecting to the database (database

name, username and password) are defined in

SGACommunicationMethods XML configuration file with the following

declaration:

<localDataStore>
 <connectionStr>database:username:password</connectionStr >
</localDataStore>

It is important to be noted that the connection string must consist of the name of
the database, the username and password to be used for the connection, given in
the same order as above and separated with a “:” (colon character) from each
other.

3. TCP IP method, where the SGA communicates with the IIG through

TCP/IP sockets. A password and an encrypted password are used for

security reasons, allowing for authentication to be performed by the

receiving IIG. These passwords are defined in

SGACommunicationMethods XML configuration file with the following

declaration:

<tcpIpMethod>
 <password>bla</password>
 <passwordEnc>bla1</passwordEnc>
</tcpIpMethod >

4. TCP IP with SSL method, where the SGA communicates with the IIG

using SSL over TCP/IP. In this case several communication parameters

need to be set, such as the path where keystore is located, the

keystore password, the key password, the keystore type, the key

manager algorithm, the SSL version and the supported cipher suites.

 191

All these are defined in SGACommunicationMethods XML configuration

file with the following declaration:

<SSLtcpIpMethod>
 <keystorePath>D:\j2sdk1.4.1_01\bin\trustcerts</keystorePath>
 <keystorePassword>userpass</keystorePassword>
 <keyPassword>userpass</keyPassword>
 <keystoreType>JKS</keystoreType>
 <KeyManagerAlgorithm>SunX509</KeyManagerAlgorithm>
 <SSLVersion>SSLv3</SSLVersion>
 <supportedSuites>SSL_RSA_WITH_RC4_128_MD5</supportedSuites>
</SSLtcpIpMethod >

§ SGA.SGAIIGConfFile: The path for the XML file that binds the symbolic

name for the IIG with all physical level information required for initiating

communication with the designated IIGs.

The SGAIIG configuration file is validated against a DTD document, which

must be located in the same directory with the SGAIIG configuration file.

The DTD contents are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!--DTD XML Schema describing the SGAIIG configuration file)-->
<!ELEMENT IIGInfo (IIG*)>
<!ELEMENT IIG (IIGName, address, port, credentials)>
<!ELEMENT IIGName (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT port (#PCDATA)>
<!ELEMENT credentials (#PCDATA)>

An SGAIIG configuration file should contain only the name and not the full

path of the DTD document. As stated above, the DTD document should

reside in the same directory with the document. An example of a SGAIIG

XML configuration file is illustrated bellow:

 192

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE IIGInfo SYSTEM "SGAIIGConfFile.dtd">
<IIGInfo>
 <IIG>
 <IIGName>taxationIIG</IIGName>
 <address>smartgov.mm.di.uoa.gr</address>
 <port>5656</port>
 <credentials>PASSWORD:pass1</credentials>
 </IIG>
 <IIG>
 <IIGName>communityIIG</IIGName>
 <address>smartgov2.mm.di.uoa.gr</address>
 <port>3000</port>
 <credentials>PASSWORD:pass2</credentials>
 </IIG>
 <IIG>
 <IIGName>vatIIG</IIGName>
 <address>smartgov3.mm.di.uoa.gr</address>
 <port>50000</port>
 <credentials>PUBLICKEY:pass3</credentials>
 </IIG>
</IIGInfo>

§ SGA.AdelantePAQConfFile: The path for the configuration file of the SGA

Adelante PAQ, which is actually the configuration file of the dispatcher.

§ SGA.DatabaseStoreConfFile: The path for the configuration file for the

databaseStore method. For more details see section

“gr.uoa.di.DatabaseStore package”, later in this document.

§ SGLogger.propertyFile: The path for the property file of the SGLogger.

The SGA property file must have the following form:

Property file for the SG dispatcher
SGA.SGAServicesConfFile=<configuration file specification>
SGA.SGACommMethConfFile=<configuration file specification >
SGA.SGAIIGConfFile=<configuration file specification >
SGA.AdelantePAQConfFile=<configuration file specification >
SGA.DatabaseStoreConfFile=<configuration file specification >
SGLogger.propertyFile=<property file specification >
For example:

 193

#Property file for SGA
SGA.SGAServicesConfFile=c:\\smartgov\\conf\\sga\\SGAServicesConfFile.xml
SGA.SGACommMethConfFile=c:\\smartgov\\conf\\sga\\SGACommMethConfFile.xml
SGA.SGAIIGConfFile=c:\\smartgov\\conf\\sga\\SGAIIGConfFile.xml
SGA.AdelantePAQConfFile=c:\\smartgov\\conf\\dispatcher\\dispatchCfg.txt
SGA.DatabaseStoreConfFile=c:\\smartgov\\conf\\sga\\DatabaseStoreConfFile.txt
SGLogger.propertyFile=c:\\smartgov\\conf\\SGLogging\\SGLogCfgSGA.txt

5.5.7.2 The SGA Adelante PAQ property file

The Adelante PAQ (SGA-APAQ) property file is provided as a property in the SGA

property file and contains the necessary information for connecting with the

database where the Adelante PAQ is stored. It contains the following five

properties:

§ The user name for connecting with the database where the Adelante PAQ

is stored.

§ The name of the database where the Adelante PAQ is stored.

§ The password for connecting with the database where the Adelante PAQ is

stored.

§ The driver for connecting with the database where the Adelante PAQ is

stored.

§ The connection string for connecting with the database where the Adelante

PAQ is stored.

The property file must have the following form:

SGA.AdelantePAQ.username=<username>
SGA.AdelantePAQ.database=<database name>
SGA.AdelantePAQ.password=<password>
SGA.AdelantePAQ.driver=<driver class name>
SGA.AdelantePAQ.connectString=<connection string>

For example,

Property file for the SGA EntraPAQ
SGA.AdelantePAQ.username=smartgov
SGA.AdelantePAQ.database=smartgov
SGA.AdelantePAQ.password=sg123!
SGA.AdelantePAQ.driver=oracle.jdbc.driver.OracleDriver
SGA.AdelantePAQ.connectString=jdbc:oracle:oci8:@

5.5.8 gr.uoa.di.SGAClient Package

The gr.uoa.di.SGAClient package provides facilities for communicating with IIG

through TCP/IP sockets. This package is used by gr.uoa.di.SGA package, when

the communication with the IIG requires the use of TCP/IP sockets.

 194

In order to use gr.uoa.di.SGAClient, an SGAClientFactory must be created

first and then through the newSGAClient method to create an SGAClient. This

method takes as input parameters:

The address of the IIG Server that listens for connections.

The port number where the IIG Server listens for connections.

Successful creation of the SGAClient signifies that the communication between

SGA and IIG has been established and both sides are ready to exchange

information. Messages from SGA can be sent to IIG Server through the

sendMessage method. This method accepts as input parameter the message that

SGA sends to IIG Server and returns the answer from IIG Server, so the

bidirectional communication is achieved.

A sample of the code required to use in order to communicate with IIG Server (or

any server listening for TCP/IP connections in a specific address and port number)

is shown below:

//create the factory
SGAClientFact = new SGAClientFactory();

//create the client
client = SGAClientFact.newSGAClient(address, port.intValue());

//send the xmlpacket and get the answer
answer = client.sendMessage(XMLPacket);

5.5.8.1 Package gr.uoa.di.SGAClient

5.5.8.1.1 public class gr.uoa.di.SGAClient.SGAClientFactory

Constructors public SGAClientFactory()

Creates a new instance of SGAClientFactory

Methods public gr.uoa.di.SGAClient.SGAClient newSGAClient(

 String address,
 int port)

5.5.8.1.2 public class gr.uoa.di.SGAClient.SGAClientException extends

java.lang.Exception

 195

Constructors public SGAClientException()

Creates a new instance of SGAClientException

public SGAClientException(
 String message)

Constructs a new exception instance with a given error message.

Parameters

 message - The message associated with the exception.

public SGAClientException(

 Throwable nestedException)

Constructs a new exception instance that wraps another exception instance.

Parameters

 The - exception to be wrapped.

5.5.8.1.3 public class gr.uoa.di.SGAClient.SGAClient

Constructors public SGAClient(

 String address,
 int port)

Methods public java.lang.String sendMessage(
 String message)

5.5.9 gr.uoa.di.SSLSGAClient Package

The gr.uoa.di.SSLSGAClient package provides facilities for communicating with

IIG through TCP/IP sockets over SSL. This package is used by gr.uoa.di.SGA

package, when the communication with the IIG requires the use of secure TCP/IP

sockets, in order to guarantee both the privacy and the authenticity of the

exchanged messages.

In order to use gr.uoa.di.SSLSGAClient, an SSLSGAClientFactory must be

created first and then through the newSSLSGAClient method to create an

SSLSGAClient. This method takes as input parameters:

1. The address of the IIG Server that listens for connections over SSL.

2. The port number where the IIG Server listens for connections over

SSL.

Successful creation of the SSLSGAClient indicates that the communication

between SGA and IIG has been established and both sides are ready to exchange

information. Messages from SGA can be sent to IIG Server through the

sendMessage method. This method accepts as input parameters the message

 196

that SGA sends to IIG Server along with information needed for verifying the

client (described in detail later in this chapter) and returns the answer from IIG

Server, completing the bidirectional communication.

A sample of the code required to use in order to communicate with IIG Server (or

any server listening for secure TCP/IP connections in a specific address and port

number) is shown below:

//create the factory
SSLSGAClientFact = new SSLSGAClientFactory();

//create the client
client = SSLSGAClientFact.newSSLSGAClient(address, port.intValue());

//send the xmlpacket and get the answer
answer=client.sendMessage(XMLPacket,keystorePath,keystorePassword,

 keyPassword,keystoreType,KeyManagerAlgorithm,SSLVersion, supportedSuites);

5.5.9.1 Package gr.uoa.di.SSLSGAClient

5.5.9.1.1 public class gr.uoa.di.SSLSGAClient.SSLSGAClientFactory

Constructors public SSLSGAClientFactory()

Creates a new instance of SGAClientFactory

Methods public gr.uoa.di.SSLSGAClient.SSLSGAClient newSSLSGAClient(
 String address,
 int port)

Creates a new SGA client that communicates with the IIG server using the Secure Socket

Layer (SSL). The server should be running on the machine indicated by address and listening

on the port designated by port.

5.5.9.1.2 public class gr.uoa.di.SSLSGAClient.SSLSGAClientException

extends java.lang.Exception

Constructors public SSLSGAClientException()

Creates a new instance of SGAClientException

public SSLSGAClientException(String message)

Constructs a new exception instance with a given error message.

Parameters

 message - The message associated with the exception.

public SSLSGAClientException(Throwable nestedException)

Constructs a new exception instance that wraps another exception instance.

Parameters

 The - exception to be wrapped.

 197

5.5.9.1.3 public class gr.uoa.di.SSLSGAClient.SSLSGAClient

Constructors public SSLSGAClient(String address, int port)

Creates a new SGA client that communicates with the IIG server using the Secure Socket

Layer (SSL). The server should be running on the machine indicated by address and listening

on the port designated by port.

Methods public java.lang.String sendMessage(

 String message,
 String keystorePath,
 String keystorePassword,

 String keyPassword,
 String keystoreType,

 String KeyManagerAlgorithm,
 String SSLVersion,
 String[] supportedSuites)

Sends the XML message specified in message to the IIG server to which the SGA client is

connected. In addition to the XML message, the method accepts a number of parameters

related to the Secure Socket Layer and specify the path to the keystore, the keystore

password, the type of the keystore, the algorithm used by the key manager, the SSL version

and the suite of cryptographic algorithms that may be used for the transfer of this message.

5.5.10 gr.uoa.di.DatabaseStore Package

The gr.uoa.di.DatabaseStore package provides facilities for using a database

as a store in IIG for the data coming from SGoVApp. This package is used by

gr.uoa.di.SGA package, when the communication with the IIG requires data

storage to a local database (store_to_local_data_store method).

In order to use gr.uoa.di.DatabaseStore, SGA has to create first a

DatabaseStoreFactory and then through the newDatabaseStore method to

create a DatabaseStore. This method accepts the following input parameters:

1. property file: the file path to the property file for the DatabaseStore

package. This file contains two properties as shown below:

DatabaseStore.driver=oracle.jdbc.driver.OracleDriver
DatabaseStore.connectString=jdbc:oracle:oci8:@

The first property (DatabaseStore.driver) defines which driver to be

used for the connection with the database. Since in this example an

oracle database has been used, the corresponding driver is defined by

the string oracle.jdbc.driver.OracleDriver. If another database is

used, such as SQL Server, the administrator must set this property to

the appropriate value for the communication to succeed. The second

property (DatabaseStore.connectString) should be also adjusted

accordingly to suite the specific DBMS used.

 198

2. database name: the name of the database where the data will be

stored. The connection is an ODBC connection, so the database name

is the ODBC source name that refers to the desired database.

3. The username: the username to be used during the connection with

the database.

4. The password: the password to be used during the connection with the

database.

A sample of the code required to use in order to communicate with the database

and insert a record is shown below:

//create the factory
databaseStoreFact = new databaseStoreFactory();

//create the databaseStore
databaseStoreInstance=databaseStoreFact.newDatabaseStore(DatabaseStoreConfFile,Ddataba
se,DuserName,Dpassword);

//open the connection
theConn = databaseStoreInstance.openConnectionWithDatabase();

//typeCat long requestId to int requestId
reqIdLong = new Long(requestId);

//insert into database the corresponding record
databaseStoreInstance.insertIntoDatabase(theConn,reqIdLong.intValue(),serviceName,XMLM
essage,realTime,persistent);

//close the connection
databaseStoreInstance.closeConnectionToDatabase(theConn);

The gr.uoa.di.DatabaseStore package provides also facilities for manipulating

the specific database, such as connecting with the database, record insertion,

deletion, conditional and unconditional retrieval, retrieval of specific record fields,

and disconnecting from the database. The database is assumed to have a table

named “databaseTable” and a table named “autokeys”. The structure of these

tables is presented in Appendix A.

In the following paragraphs the methods for manipulating the database are

presented in detail, grouped by class. This API may be used for building custom

applications that manipulate the pending actions queue, e.g. an administrative

application for viewing the queue contents, deleting queue entries that are

considered outdated etc.

1. public class gr.uoa.di.DatabaseStore.databaseStoreFactory

which is the factory for databaseStore objects

 199

Constructors public databaseStoreFactory()

Methods public gr.uoa.di.DatabaseStore.databaseStore newDatabaseStore(String

propertyFile, String database, String username, String

password)

Factory method that acts as a virtual constructor for
databaseStore.
Parameters

 propertyFile – The databaseStore property file

 database – The name of the database

 username – The username to be used during the connection with the

database

 password – The password to be used during the connection with the

database

Returns

 gr.uoa.di.DatabaseStore.databaseStore

 Throws

 databaseStoreException - If the databaseStore creation failed

2. public class gr.uoa.di.DatabaseStore.databaseStore

which is the class for databaseStore objects
Constructors public databaseStore (String propFile,String database,String

username,String password)

Parameters

 propFile – The databaseStore property file

 database – The name of the database

 username – The username to be used during the connection with the

database

 password – The password to be used during the connection with the

database

 200

Methods public Connection openConnectionWithDatabase()

Opens a connection with the database using the property file, the database

name, the username and the password defined in the constructor.

Returns

 Connection – The connection with the database

Throws

 databaseStoreException - If the connection with the database fails

public void closeConnectionToDatabase(Connection conn)

Closes the connection conn with the database.

Parameters

 conn – The opened connection with the database that must be closed

Returns

 Nothing

Throws

 databaseStoreException - If the disconnection with the database fails

public void insertIntoDatabase(Connection conn, int requestId, String

serviceName, String XMLPacket, boolean realTime, boolean

persistent)

Inserts into the database a record with the given values.

Parameters

 conn – The opened connection with the database

 requestId – The id of the request that requires the store in the database

 serviceName – The name of the service that requires the store in the

database

 XMLPacket – The XMLPacket from SGovApp

 realTime – A flag indicating whether the service is synchronous or not

 persistent – A flag indicating whether the service is persistent or not

Returns

 Nothing

Throws

 databaseStoreException - If the insertion into the database fails

public ResultSet retrieveFromDatabase(Connection conn, int

databaseTableId)

Retrieve from the database a record with primary key databaseTableId.

Parameters

 conn – The opened connection with the database

 databaseTableId – The id of the record that must be retrieved

Returns

 ResultSet – The record with primary key databaseTableId

Throws

 databaseStoreException - If the retrieval from the database fails

public ResultSet retrieveAllFromDatabase(Connection conn)

 201

3. public class gr.uoa.di.DatabaseStore.databaseStoreException
extends java.lang.Exception
This class models the exceptions thrown by the databaseStore.

Constructors public databaseStoreException()

Creates a new instance of dispatcherIIGException

public databaseStoreException (String message)

Constructs a new exception instance with a given error message.

Parameters

 message - The message associated with the exception.

public databaseStoreException (Throwable nestedException)

Constructs a new exception instance that wraps another exception

instance.

Parameters

 nestedException The exception to be wrapped.

5.5.11 gr.uoa.di.IIGServer Package

The gr.uoa.di.IIGServer package provides facilities for intercepting and

handling TCP/IP communication, in the form of messages sent by the SGA. The

IIG Sever is an autonomous program that continuously runs on the Information

Interchange Gateway and listens for requests for a specific service. The IIG

Server responds to these requests and, if necessary, forwards the results to the

calling service.

The IIG Server performs the following actions:

1. Listens to a specified port for incoming requests.

2. Upon receiving a request, starts a new thread that forwards the handle of

the request to IIGMyP through the gr.uoa.di.IIGMyP package, that it will

be described in detail later in this chapter.

3. Gets the result of the request from IIGMyP.

4. Sends the result back to the calling service.

The IIG Server is started by executing the class IIGServer, providing as

parameter the port to which the IIG Server will listen and the location of the

IIGMyP property file, described in the following paragraphs.

java gr.uoa.di.IIGServer.IIGServer <port number> <IIGMyP property file>

For example,

java gr.uoa.di.IIGServer.IIGServer 7878 c:\smartgov\conf\iig\iigMyPconfig.txt

 202

The IIG Server creates a server socket, and listens to the given port, for incoming

requests. These requests are received in the form of text messages. Upon

receiving a request, the IIG Server starts a new thread that will serve the request

calling the gr.uoa.di.IIGMyP package. The IIG Server gets the answer from

IIGMyP and sends the answer back to SGA.

The IIG Server uses the SGLogger, which is described in another part of this

document, to log information on the following events:

1. receive a request from SGA

2. failure to start the thread

3. failure while executing the thread

Since IIG Server uses SGLogger facilities, it needs to have access to a property

file with the information necessary for connecting to the SGLogListener. The

location of this property file is specified as a property within the IIGMyP property

file.

5.5.12 gr.uoa.di.SSLIIGServer Package

The gr.uoa.di.SSLIIGServer package provides facilities for intercepting and

handling TCP/IP communication over SSL, in the form of messages sent by the

SGA. The SSLIIG Sever is an autonomous program that continuously runs on the

Information Interchange Gateway and listens for requests for a specific service.

The SSLIIG Server responds to these requests and, if necessary, forwards the

results to the calling service.

The SSLIIG Server performs the following actions:

1. Listens to a specified port for incoming requests.

2. Upon receiving a request, starts a new thread that forwards the handle of

the request to IIGMyP through the gr.uoa.di.IIGMyP package, that it will

be described in detail later in this chapter.

3. Gets the result of the request from IIGMyP.

4. Sends the result back to the calling service.

The SSLIIG Server is started by executing the class SSLIIGServer, providing as

parameter the location of the SSL XML configuration file and the location of the

IIGMyP property file, described in the following paragraphs.

java gr.uoa.di.SSLIIGServer.SSLIIGServer <SSL XML configuration file> <IIGMyP property file>

For example,

java gr.uoa.di.SSLIIGServer.SSLIIGServer c:\SG\SSLPropertyFile.xml c:\SG\IIGMyPPropertyFile.txt

The port number to which the SSLIIG Server will listen for connections is defined

in the SSL XML configuration file. The SSL XML configuration file contains except

 203

from the information about the port, all the other necessary information to obtain

a secure connection over the SSL layer, i.e.:

1. Port: the port number to which the SSLIIG Server will listen for

connections.

2. KeystorePath: the file path for the keystore file.

3. KeystorePassword: the password for the keystore file.

4. KeyPassword: the password for the keys. All keys in the keystore should

have the same password, not necessarily equal to the password of the

keystore.

5. KeystoreType: the type for the keystore.

6. SSLVersion: the version of the SSL protocol supported.

7. SupportedSuites: the supported suites for the SSL communication

The SSL XML configuration file is validated against a DTD document, which must

be located in the same directory with the SSL XML configuration file. The DTD

contents are as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!--DTD describing the SSL XML document for SSLIIGServer-->

<!ELEMENT serverInfo (port, keystorePath, keystorePassword, keyPassword, keystoreType,

KeyManagerAlgorithm, SSLVersion, supportedSuites+)>

<!ELEMENT port (#PCDATA)>

<!ELEMENT keystorePath (#PCDATA)>

<!ELEMENT keystorePassword (#PCDATA)>

<!ELEMENT keyPassword (#PCDATA)>

<!ELEMENT keystoreType (#PCDATA)>

<!ELEMENT KeyManagerAlgorithm (#PCDATA)>

<!ELEMENT SSLVersion (#PCDATA)>

<!ELEMENT supportedSuites (#PCDATA)>

An SSL XML configuration file should contain only the name and not the full path

of the DTD document. As stated above, the DTD document should reside in the

same directory with the document. An example of a SSL XML configuration file is

illustrated bellow:

 204

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE serverInfo SYSTEM "serverInfo.dtd">

<serverInfo>

 <port>5858</port>

 <keystorePath>D:\j2sdk1.4.1_01\bin\user.keystore</keystorePath>

 <keystorePassword>userpass</keystorePassword>

 <keyPassword>userpass</keyPassword>

 <keystoreType>JKS</keystoreType>

 <KeyManagerAlgorithm>SunX509</KeyManagerAlgorithm>

 <SSLVersion>SSLv3</SSLVersion>

 <supportedSuites>SSL_RSA_WITH_RC4_128_MD5</supportedSuites>

 <supportedSuites>SSL_DH_anon_WITH_RC4_128_MD5</supportedSuites>

 <supportedSuites>SSL_DH_anon_WITH_3DES_EDE_CBC_SHA</supportedSuites>

 <supportedSuites>SSL_DH_anon_WITH_DES_CBC_SHA</supportedSuites>

 <supportedSuites>SSL_DH_anon_EXPORT_WITH_RC4_40_MD5</supportedSuites>

 <supportedSuites>SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA</supportedSuites>

</serverInfo>

The SSLIIG Server creates a server socket, and listens to the given port, for

incoming requests. These requests are received in the form of text messages.

Upon receiving a request, the SSLIIG Server starts a new thread that will serve

the request calling the gr.uoa.di.IIGMyP package. The SSLIIG Server gets the

answer from IIGMyP and sends the answer back to SGA. It is important to note

that in order for the SSLIIG Server to understand the end of the message

received from SGA, the message must end with the string “</XMLPacket>” in a

separate line.

The SSLIIG Server uses the SGLogger, which is described in another part of this

document, to log information on the following events:

1. receive a request from SGA

2. failure to start the thread

3. failure while executing the thread

Since SSLIIG Server uses SGLogger facilities, it needs to have access to a

property file with the information necessary for connecting to the SGLogListener.

The location of this property file is specified as a property within the IIGMyP

property file.

5.5.13 Prerequisites for using SSL communication

The SSL communications library can be used to protect the data secrecy, integrity

and the authenticity of peer parties. More specifically, the following features are

provided:

 205

1. data secrecy: even if an eavesdropper captures the data, these are in an

incomprehensible and thus useless form.

2. data integrity: if a malicious party attempts to inject data into the

communication channel or alter the data exchanged, the tampering will be

detected and rejected by the communication layer.

3. peer party authenticity: certain encryption algorithms (or ciphers) are able to

guarantee the identity of the communicating parties. In particular, all ciphers

except the ones whose names include the _none_ literal are able to

guarantee peer party authenticity. This is accomplished by either a prior

exchange of keys and certificates or by relying on a trusted third party to

testify for the peer party identity (a certification authority).

Organisations not willing to use a third party for the purpose of peer

authentication may generate their own keys and certificates and install them. For

the purposes of certificate creation, the command batches mkcerts (for Unix

environments) and mkcerts.bat (for Windows environments) are provided.

System administrators can edit these scripts to modify the appropriate

parameters (in particular, the entity distinguished name should be modified; it is

also recommended –though not mandatory- that the passwords are modified too)

and then execute them. Execution of these command batches will generate two

files, namely cert-keystore and client-keystore. The former file should be

installed on the server running the SSL IIG Server, and the keystore element of

the SSL XML configuration file should be edited to point to the file. The latter

should be installed on the clients that should access the server, and the

keystorePath element of the relevant SSLtcpIpMethod declarations in file SGA

communication methods configuration file should be edited to point to this file.

Finally, both in the SSL XML configuration file and in the SSLtcpIpMethod

declarations in file SGA communication methods configuration file, the encryption

algorithm designation SSL_DHE_DSS_WITH_DES_CBC_SHA should be included in the

supported cipher suites, since the generated keys are suitable only for this cipher.

The generation of suitable keys and certificates for use with other ciphers can be

performed by editing the command batches and adding the appropriate options to

the invocations of the keytool command.

5.5.14 gr.uoa.di.IIGMyP package

The gr.uoa.di.IIGMyP package provides facilities for processing the SGA

requests received from either IIG Server or SSLIIG Server. This package is used

by gr.uoa.di.IIGServer or gr.uoa.di.SSLIIGServer package The IIGMyP

 206

accepts these requests from IIG Server or SSLIIG Server, processes them and

forwards the results to the corresponding IIG Server or SSLIIG Server.

More specific the IIGMyp performs the following actions:

1. Receives a request from IIG Server or SSLIIG Server. The request is

assumed to be in XML format.

2. Parses the XML request and validates it against the XML schema used for

this message exchange.

3. The symbolic service name is checked to verify that this IIGMyP supports

the service specified.

4. The security credentials of SGA are checked to verify that the SGA that

sends the request for the service name is qualified to do so.

5. If the service requested is synchronous, the IIGMyP serves the request.

For this purpose the IIGMyP looks up in the IIG MyP XML communication

file the information concerning the method associated with the request.

The options available for serving a request are:

a. execution of a Java method.

b. execution of an OS-level program.

c. storage of the request to a database

d. storage of the request to an OS file.

6. Attempts to serve the request using the designated methods.

7. Sends the result of the method back to the calling IIG Server or SSLIIG

Server.

8. If the service requested is asynchronous, the IIGMyP stores the request in

EntraPAQIIG and delegates the responsibility of request handling to the

dispatcher. This approach frees the communication channel and offloads

the IIG, facilitating the processing of urgent, i.e. real-time, messages.

Another advantage of this approach is that further processing of messages

in the PAQ can be aligned with local IT system policies.

In order to verify that the originator of the request is valid, IIGMyP looks up in

the IIGSecurityFile the information needed for the verification. The file path for

IIGSecurityFile is defined in IIGMyP property file, via property

IIGMyP.IIGSecurityFile.

The IIGSecurityFile XML file is validated against a DTD document, which must be

located in the same directory with the IIGSecurityFile XML file. The DTD contents

are as follows:

 207

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT IIGSecurity (IIGCredentials*)>

<!ELEMENT IIGCredentials (serviceName, credentialInfo+)>

<!ELEMENT serviceName (#PCDATA)>

<!ELEMENT credentialInfo (IPAddress, credentials)>

<!ELEMENT IPAddress (#PCDATA)>

<!ELEMENT credentials (#PCDATA)>

An IIGSecurityFile XML file should contain only the name and not the full path of

the DTD document. As stated above, the DTD document should reside in the

same directory with the document. An example of a IIGSecurityFile XML file is

illustrated bellow:

 208

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE IIGSecurity SYSTEM "IIGSecurity.dtd">

<IIGSecurity>

 <IIGCredentials>

 <serviceName>getTaxPay</serviceName>

 <credentialInfo>

 <IPAddress>10.10.10.2</IPAddress>

 <credentials>PUBLICKEY:key1</credentials>

 </credentialInfo>

 <credentialInfo>

 <IPAddress>10.10.10.3</IPAddress>

 <credentials>PASSWORD:pass2</credentials>

 </credentialInfo>

 </IIGCredentials>

 <IIGCredentials>

 <serviceName>getContact</serviceName>

 <credentialInfo>

 <IPAddress>10.10.10.4</IPAddress>

 <credentials>PUBLICKEY:key3</credentials>

 </credentialInfo>

 <credentialInfo>

 <IPAddress>10.10.10.5</IPAddress>

 <credentials>PASSWORD:pass4</credentials>

 </credentialInfo>

 </IIGCredentials>

 <IIGCredentials>

 <serviceName>getPersonalInfo</serviceName>

 <credentialInfo>

 <IPAddress>10.10.10.6</IPAddress>

 <credentials>PUBLICKEY:key5</credentials>

 </credentialInfo>

 <credentialInfo>

 <IPAddress>10.10.10.7</IPAddress>

 <credentials>PASSWORD:pass6</credentials>

 </credentialInfo>

 <credentialInfo>

 <IPAddress>10.10.10.8</IPAddress>

 <credentials>PASSWORD:pass7</credentials>

 </credentialInfo>

 </IIGCredentials>

</IIGSecurity>

For each service available through a specific IIG the corresponding IIGSecurityFile

XML file contains the following information:

 209

1. IPAddress: the IP address of the SGA that is allowed to send a request for

the specific service to the specific IIG Server or SSLIIG Server.

2. Credentials: the SGA credentials that verify the authentication of the SGA.

These credentials can have the form either of a password or of a public

key. For the first case the credentials must be defined by the string

“PASSWORD:SGApassword”. It is important to be noted that the keyword

“PASSWORD” and the value of the password must be given in the same

order and separated with “:” from each other. For the verification of the

SGA, a string comparison between the password given in IIGSecurityFile

XML file and the password received from SGA is performed. If both

passwords are identical the verification of SGA is successful. When

authentication is to be performed by means of a public key, the credentials

must be specified using a string of the format “PUBLICKEY:SGApublickey”.

It is important to be noted that the public key specification should follow

the format designated above i.e. the keyword “PUBLICKEY” followed by a

colon and the actual value of the public key, in that order. No algorithm is

currently provided authenticating an SGA by means of a public key;

however, the method checkPublKeyData(String publikKey1, String
publikKey2) within the class gr.uoa.di.IIGMyP.checkPublicKey is

provided as a placeholder. Administrators may provide a suitable

implementation for comparing two public keys, achieving thus the desired

authentication scheme.

For a specific service, it is possible to specify multiple credentials for

authenticating a single IP address. In such a case, it the credentials presented by

the SGA should match at least one of the credentials designated in the

configuration file, for the authentication to be considered successful.

The IIGMyP uses the SGLogger, which is described in another part of this

document, to log information on the following events:

1. receiving of a request, either from an IIG Server or an SSLIIG Server.

2. success or failure of the XML message validation.

3. success or failure of the verification whether the service specified in the

XML message is supported by the IIGMyP.

4. success or failure of the SGA authentication process.

5. success or failure of the execution of the requested service.

6. end of the request processing.

Since IIGMyP uses SGLogger facilities, it needs to have access to a property file

with the information necessary for connecting to the SGLogListener. The location

 210

of this property file is specified as a property within the IIGMyP property file,

described in the next paragraph.

5.5.14.1 The IIGMyP property file

The IIGMyP property file is used by either gr.uoa.di.IIGServer or

gr.uoa.di.SSLIIGServer package when the IIG/SSLIIG Server is started and

contains seven properties, which are the following:

1. IIGMyP.IIGServicesConfFile: The path for the XML file that binds the

service names that IIG can serve, with corresponding a SEP name and a

list of methods to be used for the communication between IIG and SEP.

The IIGServices configuration file is validated against a DTD document,

which must be located in the same directory with the IIGServices

configuration file. The DTD contents are as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!--DTD describing the IIG Services Configuration XML document-->

<!ELEMENT IIGServices (service*)>

<!ELEMENT service (serviceName, SEPName, methodName+)>

<!ELEMENT serviceName (#PCDATA)>

<!ELEMENT SEPName (#PCDATA)>

<!ELEMENT methodName (#PCDATA)>

An IIGServices configuration file should contain only the name and not the

full path of the DTD document. As stated above, the DTD document should

reside in the same directory with the document. An example of an

IIGServices XML configuration file is illustrated bellow:

 211

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE IIGServices SYSTEM "IIGServicesConfFile.dtd">

<IIGServices>

 <service>

 <serviceName>getPersonalInfo</serviceName>

 <SEPName>taxationIIG</SEPName>

 <methodName>localDataStore1</methodName>

 </service>

 <service>

 <serviceName>getPersonalInfo1</serviceName>

 <SEPName>communityIIG</SEPName>

 <methodName>executeJavaProcedure2</methodName>

 <methodName>localFileStore2</methodName>

 <methodName>executeCommand1</methodName>

 <methodName>localFileStore1</methodName>

 <methodName>localDataStore1</methodName>

 <methodName>executeJavaProcedure1</methodName>

 </service>

 <service>

 <serviceName>getPersonalInfo1</serviceName>

 <SEPName>vatIIG</SEPName>

 <methodName>executeCommand3</methodName>

 <methodName>localDataStore3</methodName>

 <methodName>localFileStore3</methodName>

 </service>

 <service>

 <serviceName>getContact</serviceName>

 <SEPName>communityIIG</SEPName>

 <methodName>executeCommand4</methodName>

 </service>

</IIGServices>

2. IIGMyP.IIGCommMethConfFile: The path for the XML file that binds the

symbolic name for each method used to serve requests with all the

physical level information required for implementing the designated

method.

The IIGCommMethConfFile configuration file is validated against a DTD

document, which must be located in the same directory with the

IIGCommMethConfFile configuration file. The DTD contents are as follows:

 212

<?xml version="1.0" encoding="UTF-8"?>

<!--DTD describing the IIGCommunicationMethods XML document-->

<!ELEMENT commMethods (method*)>

<!ELEMENT method (methodName, (javaProcedure | execCommand | localDataStore | localFileStore))>

<!ELEMENT methodName (#PCDATA)>

<!ELEMENT javaProcedure (objectPath, className, procedureName)>

<!ELEMENT execCommand (info)>

<!ELEMENT localDataStore (connectionStr)>

<!ELEMENT localFileStore (fileName)>

<!ELEMENT objectPath (#PCDATA)>

<!ELEMENT className (#PCDATA)>

<!ELEMENT procedureName (#PCDATA)>

<!ELEMENT info (#PCDATA)>

<!ELEMENT connectionStr (#PCDATA)>

<!ELEMENT fileName (#PCDATA)>

An IIGCommunicationMethods configuration file should contain only the

name and not the full path of the DTD document. As stated above, the

DTD document should reside in the same directory with the document. An

example of an IIGCommunicationMethods XML configuration file is

illustrated bellow:

 213

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE commMethods SYSTEM "IIGCommMethConfFile.dtd">

<commMethods>

 <method>

 <methodName>executeJavaProcedure1</methodName>

 <javaProcedure>

 <objectPath>c:\\smartgov\SEPs\tests.jar</objectPath>

 <className>gr.uoa.di.testJavaProcedure</className>

 <procedureName>testingMethod</procedureName>

 </javaProcedure>

 </method>

 <method>

 <methodName>executeCommand1</methodName>

 <execCommand>

 <info>test3</info>

 </execCommand>

 </method>

 <method>

 <methodName>localDataStore1</methodName>

 <localDataStore>

 <connectionStr>smartgov:smartgov:sg123</connectionStr>

 </localDataStore>

 </method>

 <method>

 <methodName>localFileStore1</methodName>

 <localFileStore>

 <fileName>c:\smartgov\filestores\file1.txt</fileName>

 </localFileStore>

 </method>

</commMethods>

There are 4 types of supported methods that IIG may use to serve a

request, which are presented below:

• localFileStore method, where the IIG stores the XML Message in

a file, whose location and filename is specified in the

IIGCommunicationMethods XML configuration file by means of a

localFileStore element, e.g.:

<localFileStore>
 <fileName>c:\smartgov\filestores\file.txt</fileName>
</localFileStore>

• localDataStore method, where the IIG stores the XML Message in

a database. The information for connecting to the database, i.e. the

database name, username and password are defined in the

 214

IIGCommunicationMethods XML configuration file by means of a

localDataStore element e.g.:

<localDataStore>
 <connectionStr>database:username:password</connectionStr >
</localDataStore>

It is important to be noted that the connection string must follow the
format designated above, i.e. list the database name, user name and
password, in that order, separating successive elements using the
colon (:) character.

• execCommand method, where the IIG executes an operating

system-level command. The actual command to be executed is

specified in the info element within the IIGCommunicationMethods

XML configuration file, e.g.:

<execCommand>
 <info>command2</info>
</execCommand>
Service programmers should note that when an external command

is executed, the SGA receives a message indicating SUCCESS, but

it has also the contents of the output and error file created during

the execution. So, if the execution of the command has failed, this

will be reported in the error file. Therefore, the SGA has to check

what the error file contains, in order to check the success of the

execution.

• javaProcedure method, where the IIG executes a Java

procedure. The actual java procedure to be executed is specified by

means of a procedureName element within the

IIGCommunicationMethods XML configuration file, e.g.:

<javaProcedure>
 <objectPath>gr.uoa.di.testJavaProcedure</objectPath>
 <className>gr.uoa.di.testJavaProcedure</className>
 <procedureName>testingMethod</procedureName>
</javaProcedure>

3. IIGMyP.IIGSEPConfFile: The path for the XML file that binds the symbolic

name for the SEP with all physical level information required for initiating

executing the specified SEP.

The IIGSEPG configuration file is validated against a DTD document, which

must be located in the same directory with the IIGSEP configuration file.

The DTD contents are as follows:

 215

<?xml version="1.0" encoding="UTF-8"?>

<!--DTD describing the SG IIG SEP Configuration File-->

<!ELEMENT SEPInfo (SEP*)>

<!ELEMENT SEP (SEPName, commandPath, workingDirectory, parameters, inputFile, outputFile,

errorFile, envVariable*)>

<!ELEMENT SEPName (#PCDATA)>

<!ELEMENT commandPath (#PCDATA)>

<!ELEMENT workingDirectory (#PCDATA)>

<!ELEMENT parameters (#PCDATA)>

<!ELEMENT inputFile (#PCDATA)>

<!ELEMENT outputFile (#PCDATA)>

<!ELEMENT errorFile (#PCDATA)>

<!ELEMENT envVariable (envVariableName, envVariableValue)>

<!ELEMENT envVariableName (#PCDATA)>

<!ELEMENT envVariableValue (#PCDATA)>

An IIGSEP configuration file should contain only the name and not the full

path of the DTD document. As stated above, the DTD document should

reside in the same directory with the document. An example of an IIGSEP

XML configuration file is illustrated bellow:

 216

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE SEPInfo SYSTEM "IIGSEPConfFile.dtd">

<SEPInfo>

 <SEP>

 <SEPName>taxationIIG</SEPName>

 <commandPath>java taxationIIG</commandPath>

 <workingDirectory>Z:\smartgov\wp\wp06\api\sga</workingDirectory>

 <parameters>-cp tax.jar</parameters>

 <inputFile>C:\taxation\input.txt</inputFile>

 <outputFile>C:\taxation\output.txt </outputFile>

 <errorFile> C:\taxation\error.txt</errorFile>

 </SEP>

 <SEP>

 <SEPName>vatIIG</SEPName>

 <commandPath>vatIIG</commandPath>

 <workingDirectory> Z:\smartgov\wp\wp06\api\sga</workingDirectory>

 <parameters> </parameters>

 <inputFile> </inputFile>

 <outputFile> C:\VAT\output.txt </outputFile>

 <errorFile> C:\VAT\error.txt </errorFile>

 <envVariable>

 <envVariableName>EnvVariable1</envVariableName>

 <envVariableValue>EnvVariableValue1</envVariableValue>

 </envVariable>

 <envVariable>

 <envVariableName>EnvVariable2</envVariableName>

 <envVariableValue>EnvVariableValue2</envVariableValue>

 </envVariable>

 </SEP>

</SEPInfo>

4. IIGMyP.IIGSecurityFile: The path for the IIGSecurity XML file that is

used for the SGA verification and has been described in detail above.

5. IIGMyP.EntraPAQConfFile: The path for the configuration file of the IIG-

EPAQ. For more details see the section “gr.uoa.di.dispatcherIIG Package”.

6. IIGMyP.SEPDatabaseStoreConfFile, The path for the configuration file of

the SEP Data Store. For more details see the section

“gr.uoa.di.SEPDatabaseStore Package”.

7. IIGMyP.Logger.propertyFile: The path for the property file of the

SGLogger.

8. IIGMyP.XMLPacketPath: The containing folder for the file XMLPacket.dtd,

specified using the URI notation. If the file is located on the file system,

rather than a web server, the prefix file:/// should be pre-pended to

the folder path; additionally, the forward slash (/) should be always used

 217

as the path component separator, rather than the back slash (\), even in

Windows-based installations.

Thegeneric format for the IIG Server property file is as follows:

#Property file for IIG Server
IIGMyP.IIGServicesConfFile=<configuration file specification>
IIGMyP.IIGCommMethConfFile=<configuration file specification>
IIGMyP.IIGSEPConfFile=<configuration file specification>
IIGMyP.IIGSecurityFile=<configuration file specification>
IIGMyP.EntraPAQConfFile=<configuration file specification>
IIGMyP.SEPDatabaseStoreConfFile==<configuration file specification>
IIGMyP.Logger.propertyFile=<property file specification>
IIGMyP.XMLPacketPath=<containing folder for XMLPacket.dtd in URI notation>
For example:

#Property file for IIG Server
IIGMyP.IIGServicesConfFile=c:\\smartgov\\conf\\IIG\\IIGSrvCfg.xml
IIGMyP.IIGCommMethConfFile=c:\\smartgov\\conf\\IIG\\IIGCommMethCfg.xml
IIGMyP.IIGSEPConfFile=c:\\smartgov\\conf\\IIG\\IIGSEPCfg.xml
IIGMyP.IIGSecurityFile=c:\\smartgov\\conf\\IIG\\IIGSecurity.xml
IIGMyP.EntraPAQConfFile=c:\\smartgov\\cfg\\IIG\\EntraPAQIIGCfg.txt
IIGMyP.SEPDatabaseStoreConfFile=c:\\smartgov\\conf\\IIG\\SEPDbCfg.txt
IIGMyP.Logger.propertyFile=c:\\smartgov\\conf\\IIG\\SGLogCfgIIG.txt
IIGMyP.XMLPacketPath=file:///C:/smartgov/conf/IIG
During the processing of the request, IIGMyP tries to execute all the available

methods that are defined for the specific service in the XML configuration files, as

stated above. The success of only one type of the methods (localFileStore,

localDataStore, execCommand, javaProcedure) is enough for the request

execution to be considered successful. Errors that may occur in each of the

executed methods are being captured and, in the case that all methods fail, the

associated error descriptions are sent back as reply to the calling IIG Server or

SSLIIG Server, which in turn forwards this reply to the requesting SGA. Thus, the

SGA can examine the reply to determine the reason for the failure, and possibly

take appropriate remedial activities. In case that at least one method succeeds,

IIGMyP sends back a success message to the calling IIG Server or SSLIIG Server.

Special care should be taken in the handling of replies when an operating system-

level program is executed. In this case, it is not possible to determine whether

the external program has succeeded or failed, thus the IIGMyP sends back a reply

indicating successful execution, but additionally arranges so that the normal

output and error messages emitted by the program to be bundled within the

message. The calling SGA should examine these contents to determine whether

 218

the external program execution was actually successful, taking into account the

semantics and expected behaviour of the executed program.

5.5.14.2 The IIG Entra PAQ property file

The IIG EntraPAQ (IIG-EPAQ) property file is provided as a property in the IIG-

MyP property file and contains the necessary information for connecting with the

database where the Entra PAQ is stored. It contains the following four properties:

§ The user name for connecting with the database where the Entra PAQ is

stored.

§ The name of the database where the Entra PAQ is stored.

§ The password for connecting with the database where the Entra PAQ is

stored.

§ The driver for connecting with the database where the Entra PAQ is stored.

§ The connection string for connecting with the database where the Entra

PAQ is stored.

The property file must have the following form:

IIG.EntraPAQ.username=<username>
IIG.EntraPAQ.database=<database name>
IIG.EntraPAQ.password=<password>
IIG.EntraPAQ.driver=<driver class name>
IIG.EntraPAQ.connectString=<connection string>

For example

Property file for the SGA EntraPAQ
IIG.EntraPAQ.username=smartgov
IIG.EntraPAQ.database=smartgov
IIG.EntraPAQ.password=sg123
IIG.EntraPAQ.driver=oracle.jdbc.driver.OracleDriver
IIG.EntraPAQ.connectString=jdbc:oracle:oci8:@

5.5.15 gr.uoa.di.SEPDatabaseStore Package

The gr.uoa.di.SEPDatabaseStore package provides facilities for servicing

incoming requests by means of storing the incoming XML packet within a

database. This package is used by gr.uoa.di.IIGMyP package, when the service

method designated for a service is that of storing data to a local database

(store_to_local_data_store method).

In order to use the facilities provided by the gr.uoa.di.SEPDatabaseStore
package, the IIGMyP creates first a SEPDatabaseStoreFactory object and then

 219

employs the newSEPDatabaseStore method to create a SEPDatabaseStore

object. The newSEPDatabaseStore method accepts the following input

parameters:

1. configuration file i.e. file path to the configuration file for the

SEPatabaseStore package. The generic format for this file is as

follows:

SEP.DatabaseStore.driver=<driver class name>
SEP.DatabaseStore.connectString=<connection string>

For example,

Property file for the SEPDatabaseStore
DatabaseStore.driver=oracle.jdbc.driver.OracleDriver
DatabaseStore.connectString=jdbc:oracle:oci8
The first property (SEP.DatabaseStore.driver) defines which driver to be

used for the connection with the database. Since in this example an

Oracle database has been used, the corresponding driver is defined by

the string oracle.jdbc.driver.OracleDriver. If another database is

used, such as SQL Server, the administrator must set this property to

the appropriate value for the communication to succeed. The second

property (SEP.DatabaseStore.connectString) should be also

adjusted accordingly to suite the specific DBMS used.

2. database name, which is the name of the database where the data will

be stored. The connection is an ODBC connection, so the database

name is the ODBC source name that refers to the desired database.

3. The username: the username to be used during the connection with

the database.

4. The password: the password to be used during the connection with the

database.

A sample of the code required to use in order to communicate with the database

and insert a record is shown below:

 220

//create the factory
SEPDbStoreFact = new SEPDatabaseStoreFactory();

//create the databaseStore
SEPDatabaseStoreInstance = SEPDbStoreFact.newSEPDatabaseStore(

SEPDatabaseStoreConfFile, Ddatabase, DuserName, Dpassword);

//open the connection
theConn = SEPDatabaseStoreInstance.openConnectionWithDatabase();
//insert into database the corresponding record
SEPDatabaseStoreInstance.insertIntoDatabase(theConn, serviceName, decodedXMLMessage,

realTime);

//close the connection
SEPDatabaseStoreInstance.closeConnectionToDatabase(theConn);

The gr.uoa.di.SEPDatabaseStore package also provides facilities for

manipulating the specific database, such as connecting to the database, inserting

records, deleting records, retrieving all records, retrieving a specific record,

retrieving specific fields from a record, and finally disconnecting from the

database. The database is assumed to have a table named “SEPDatabaseTable”

and a table named “autokeys”. The structure of these tables is presented in

Appendix A.

The facilities provided by the package may be used to write custom, specialised

tools for managing the entries stored in the database, e.g. for reading the records

and taking the relevant actions. To this end, the API provided by the

gr.uoa.di.SEPDatabaseStore is documented in the following paragraphs.

5.5.15.1 Package gr.uoa.di.SEPDatabaseStore

5.5.15.1.1 public class

gr.uoa.di.SEPDatabaseStore.SEPDatabaseStoreFactory

Constructors public SEPDatabaseStoreFactory()

Creates a new instance of DatabaseStoreFactory

 221

Methods public gr.uoa.di.SEPDatabaseStore.SEPDatabaseStore newSEPDatabaseStore(
 String propFile,

 String database,
 String username,
 String password)

Factory method that acts as a virtual costructor for adelantePAQ.

Parameters

 propFile - The property file containing necessary parameters for adelantePAQ

Throws

 adelantePAQException - If the adelantePAQ creation failed

5.5.15.1.2 public class

gr.uoa.di.SEPDatabaseStore.SEPDatabaseStoreException

extends java.lang.Exception

Constructors public SEPDatabaseStoreException()

Creates a new instance of DatabaseStoreException

public SEPDatabaseStoreException(String message)

Constructs a new exception instance with a given error message.

Parameters

 message - The message associated with the exception.

public SEPDatabaseStoreException(Throwable nestedException)

Constructs a new exception instance that wraps another exception instance.

Parameters

 The - exception to be wrapped.

5.5.15.1.3 public class gr.uoa.di.SEPDatabaseStore.SEPDatabaseStore

Constructors public SEPDatabaseStore(

 String propFile,
 String Ddatabase,
 String Dusername,

 String Dpassword)

Creates a new instance of SEPDatabaseStore.

Methods public java.sql.Connection openConnectionWithDatabase()

Opens a connection to the database specified by the parameters passed to the constructor.

public void insertIntoDatabase(

 Connection conn,
 String serviceName,
 String XMLMessage,

 boolean realTime)

Inserts into the database a new record, mimicking the execution via a

 222

store_to_local_data_store method of a request for “serviceName”, having the XMLMessage

as parameter and its real time flag set to realTime.

public java.sql.ResultSet retrieveFromDatabase(
 Connection conn,

 int SEPdatabaseTableId)

This method retrieves from the database the record whose identifier matches the parameter

SEPdatabaseTableId.

public java.sql.ResultSet retrieveAllFromDatabase(Connection conn)

This method retrieves from the database all the records.

public int getSEPDatabaseTableId(ResultSet resultRecord)

This method returns the SEPDatabaseTableId from a specific result set.

public java.lang.String getServiceName(ResultSet resultRecord)

This method returns the service name from a specific result set.

public java.lang.String getXMLMessage(ResultSet resultRecord)

This method returns the XML message from a specific result set.

public int getRealTime(ResultSet resultRecord)

This method returns the real time flag from a specific result set.

public java.lang.String getTimeStamp(ResultSet resultRecord)

This method returns the timestamp from a specific result set. This is equal to the time that the

record was inserted in the database.

public void deleteFromDatabase(Connection conn, int SEPdatabaseTableId)

This method deletes from the database the record whose identifier matches the parameter

SEPdatabaseTableId.

public void closeConnectionToDatabase(Connection conn)

Closes the connection to the database.

223

5.6 Database objects documentation - IIG and SGA Entra and Adelante PAQ Structure

The SmartGov platform requires the implementation of the IIG and SGA Pending Action Queues (PAQs) in order to function properly.

These are implemented as database tables, the structure of which is presented later in this document. For each PAQ a java package was

developed for its management. The class methods provided in these packages are used by the SmartGov processes, which need to insert,

retrieve and delete entries from the PAQs.

5.6.1 The autokeys table

In order to provide to each database table a unique identifier, which will generate new values for the table primary key, the autokeys

table must be created. It should contain the following fields:

Name Time Descriptions Restrictions

keyName VARCHAR2(32) The name of the key, which must be unique. NOT NULL,

PRIMARY KEY

keyValue NUMBER(38) The current value of the key. It contains the latest

value of the primary key of the respecting database

table.

NOT NULL

It is not necessary to insert initial values for the primary keys of each table when creating the autokeys table. Key records with 0 as

initial value are inserted automatically when a requested key is not found in the table. However, if the need arises to set a key to a

specific initial value, it should be verified that no records exist with the designated key and value greater or equal than the desired key

value. When it has been verified that no such record exists, a new tuple should be inserted in the autokeys table using an insert

statement of the following form:

insert into autoKeys values('APAQ_IIG',0);

224

5.6.2 SGA Entra PAQ

The SGA Entra PAQ is used for the storage of incoming notifications and their associated method descriptions. When the SGA Notification

Interceptor (gr.uoa.di.SGANI package) receives a notification name from the IIG Notification Initiator (gr.uoa.di.IIGNI package), it

retrieves from the SGA-NI configuration file the information of the method associated with this notification. Then it inserts the method

information along with the notification name and a time stamp to the SGA Entra PAQ. The SGA Entra PAQ is periodically scrutinized by

the SGA dispatcher (gr. uoa.di.dispatcher package), which executes the method associated with each notification.

Name Time Descriptions Restrictions

entraPAQId NUMBER(38) Unique identifier that serves to characterize the record

in the SGA Entra PAQ

NOT NULL,

PRIMARY KEY

XMLMethodDescription VARCHAR2(4000) The description in XML format of the method

associated with this notification

NOT NULL

SGtimestamp VARCHAR2(22) The date and time when this record is inserted in the

SGA Adelante PAQ.

NOT NULL

NotificationName VARCHAR2(500) A symbolic name for the notification event. NOT NULL

5.6.3 SGA Adelante PAQ

The SGA Adelante PAQ is used for the storage of requests that the SGA could not send to the appropriate IIG. When the SGA receives a

request in the form of a symbolic service name, it retrieves from the SGA configuration file the information associated with the service. If

the communication methods for the specific service fail, the request message is inserted in the SGA Adelante PAQ, along with the service

name, the real time and persistent indicators and a time stamp. The SGA Adelante PAQ is periodically scrutinized by the SGA dispatcher

(gr. uoa.di.dispatcher package), which attempts to resend the requests.

225

Name Time Description Restrictions

adelantePAQId NUMBER(38) Unique identifier that serves to characterize the record

in the SGA Adelante PAQ

NOT NULL,

PRIMARY KEY

requestId NUMBER(38) A unique request identifier that serves to characterize

this request

NOT NULL

serviceName VARCHAR2(500) A symbolic service name that the message refers to.

The receiving SGA is expected to forward the

encapsulated XMLPacket to the named service

NOT NULL

XMLPacket VARCHAR2(4000) A message that contains all information that the

named serviceName requires. The SGA does not

interpret this message, rather it is passed as is to the

next step

NOT NULL

realTime NUMBER(2) Indicates whether the communication event is

happening in real-time and consequently an

immediate response is expected. When this flag is set,

the SGA does not close the communication channel

with the SgovApp but it immediately forwards the

message to the appropriate IIG and returns the result

to the calling SgoVApp

NOT NULL

persistent NUMBER(2) Indicates whether the message should persist in case of

communication errors or other abruptions and retransmitted later. If

this flag is set, message is stored in the Pending Actions Queue.

NOT NULL

226

Name Time Description Restrictions

SGtimestamp VARCHAR2(22) The date and time when this record is inserted in the

SGA Adelante PAQ.

NOT NULL

5.6.4 IIG Entra PAQ

The IIG Entra PAQ is used for the storage of non real-time messages received from the SGA. When a non real time message is received,

that is a message where the realTime indicator is not set, it is stored in the Entra Pending Actions Queue (PAQ). Storage takes place as

soon as the message reaches the IIG and after the first stage of the IIG-MYP has been completed and therefore it has been identified that

it is not a real-time message. This way, the communication channel is freed as soon as possible and the IIG is free to process urgent, i.e.

real-time, messages. The IIG dispatcher (gr.uoa.di.dispatcherIIG.dispatcherIIG) scrutinizes periodically the IIG Entra PAQ and processes

the messages.

227

Name Time Description Restrictions

entraPAQId NUMBER(38) Unique identifier that serves to characterize the record

in the IIG Entra PAQ

NOT NULL,

PRIMARY KEY

serviceName VARCHAR2(500) A symbolic name referring to a business operation. It

should be the same name used in the initial request

NOT NULL

XMLMessage VARCHAR2(4000) The same as the XMLPacket part of the original

request.

NOT NULL

realTime NUMBER(2) The same meaning and value as in original request.

The SGA expects to receive “immediate” answer from

the IIG. The IIG should process the message as soon

as it receives it and reply accordingly.

NOT NULL

SGtimestamp VARCHAR2(22) The date and time the record was inserted in the IIG

Entra PAQ

NOT NULL

5.6.5 IIG Adelante PAQ

The IIG Adelante PAQ is used for the storage of failed outgoing notifications. When the IIG Notification Initiator (gr.uoa.di.IIGNI package)

attempts to send a notification to the SGA Notification Interceptor (gr.uoa.di.SGANI package, it retrieves from the IIG-NI configuration

file the communication information associated with this notification. If the communication fails, the IIG-NI inserts the notification name

along with a time stamp to the IIG Adelante PAQ. The IIG Adelante PAQ is periodically scrutinized by the IIG dispatcher

(gr.di.uoa.dispatcher package), which executes the method associated with each notification.

228

Name Time Description Restrictions

adelantePAQId NUMBER(38) Unique identifier that serves to characterize the record

in the IIG Adelante PAQ

NOT NULL

PRIMARY KEY

notificationName VARCHAR2(500) A symbolic name for the notification event. NOT NULL

SGtimestamp VARCHAR2(22) The date and time the record was inserted in the IIG

Adelante PAQ

NOT NULL

5.6.6 databaseTable

This table is used as the persistent storage medium for the SGA localDataStore method.

Name Time Description Restrictions

databaseTableId NUMBER(38) Unique identifier that serves to characterize the record

in this table

NOT NULL,

PRIMARY KEY

requestId NUMBER(38) A unique request identifier that serves to characterize

this request

NOT NULL

serviceName VARCHAR2(500) A symbolic service name that the message refers to. NOT NULL

XMLMessage VARCHAR2(4000) A message that contains all information that the

named serviceName requires.

NOT NULL

realTime NUMBER(2) Indicates whether the communication event is

happening in real-time and consequently an

immediate response is expected. When this flag is set,

the SGA does not close the communication channel

with the SGoVApp but it immediately forwards the

NOT NULL

229

Name Time Description Restrictions

message to the appropriate IIG and returns the result

to the calling SGoVApp

persistent NUMBER(2) Indicates whether the message should persist in case

of communication errors or other abruptions and

retransmitted later. If this flag is set, message is

stored in the Pending Actions Queue.

NOT NULL

SGtimestamp VARCHAR2(22) The date and time the record was inserted in the table NOT NULL

5.6.7 SEPdatabaseTable

This table is used as the persistent storage medium for the IIG-myP localDataStoremethod.

Name Time Description Restrictions

SEPdatabaseTableId NUMBER(38) Unique identifier that serves to characterize the record

in this table

NOT NULL,

PRIMARY KEY

serviceName VARCHAR2(500) A symbolic service name that the message refers to. NOT NULL

XMLMessage VARCHAR2(4000) A message that contains all information that the

named serviceName requires.

NOT NULL

230

Name Time Description Restrictions

realTime NUMBER(2) Indicates whether the communication event is happening in real-time

and consequently an immediate response is expected. When this flag

is set, the SGA does not close the communication channel with the

SGoVApp but it immediately forwards the message to the appropriate

IIG and returns the result to the calling SGoVApp

NOT NULL

persistent NUMBER(2) Indicates whether the message should persist in case

of communication errors or other abruptions and

retransmitted later. If this flag is set, message is

stored in the Pending Actions Queue.

NOT NULL

SGtimestamp VARCHAR2(22) The date and time the record was inserted in the table NOT NULL

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 231 of 288

5.6.8 SQL Commands for creating the database tables

In this section the SQL commands for creating the PAQ database are given. The

commands follow the SQL92 specification, including primary keys and referential

constraints. The IT staff may need to adapt certain features to the requirements of the

DBMS used in the installation, e.g. the VARCHAR2 data type should be substituted for

the VARCHAR data type in an ORACLE installation. Other DBMSs pose limitations on

the length of the VARCHAR columns or the overall length of a single row; these

limitations should be sought after.

CREATE TABLE entraPAQ (

 entraPAQId NUMBER(38) NOT NULL,

 XMLMethodDescription VARCHAR2(4000) NOT NULL,

 SGtimestamp VARCHAR2(22) NOT NULL,

 notificationName VARCHAR2(500) NOT NULL,

 PRIMARY KEY (entraPAQId)

);

CREATE TABLE adelantePAQIIG (

 adelantePAQId NUMBER(38) NOT NULL,

 notificationName VARCHAR2(500) NOT NULL,

 SGtimestamp VARCHAR2(22) NOT NULL,

 PRIMARY KEY (adelantePAQId)

);

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 232 of 288

CREATE TABLE adelantePAQ (

 adelantePAQId NUMBER(38) NOT NULL,

 requestId NUMBER(38) NOT NULL,

 serviceName VARCHAR2(500) NOT NULL,

 XMLPacket VARCHAR2(4000) NOT NULL,

 realTime NUMBER(2) NOT NULL,

 persistent NUMBER(2) NOT NULL,

 SGtimestamp VARCHAR2(22) NOT NULL,

 PRIMARY KEY (adelantePAQId)

);

CREATE TABLE entraPAQIIG (

 entraPAQId NUMBER(38) NOT NULL,

 serviceName VARCHAR2(500) NOT NULL,

 XMLMessage VARCHAR2(4000) NOT NULL,

 realTime NUMBER(2) NOT NULL,

 SGtimestamp VARCHAR2(22) NOT NULL,

 PRIMARY KEY (entraPAQId)

);

CREATE TABLE SEPdatabaseTable (

 SEPdatabaseTableId NUMBER(38) NOT NULL,

 serviceName VARCHAR2(500) NOT NULL,

 XMLMessage VARCHAR2(4000) NOT NULL,

 realTime NUMBER(2) NOT NULL,

 SGtimestamp VARCHAR2(22) NOT NULL,

 PRIMARY KEY (SEPdatabaseTableId)

);

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 233 of 288

CREATE TABLE databaseTable (

 databaseTableId NUMBER(38) NOT NULL,

 requestId NUMBER(38) NOT NULL,

 serviceName VARCHAR2(500) NOT NULL,

 XMLMessage VARCHAR2(4000) NOT NULL,

 realTime NUMBER(2) NOT NULL,

 persistent NUMBER(2) NOT NULL,

 SGtimestamp VARCHAR2(22) NOT NULL,

 PRIMARY KEY (databaseTableId)

);

CREATE TABLE autoKeys (

 KeyName VARCHAR2(32) NOT NULL,

 KeyValue NUMBER(38) NOT NULL,

 PRIMARY KEY (keyName)

);

5.7 SmartGov System Services

The SmartGov platform incorporates a number of back-end services that need to be

available for the service delivery platform to operate successfully. These services are:

1. Document storage and retrieval. The document storage service allows for

storing the documents submitted by users of the SmartGov services delivered

through the service delivery platform. The documents are stored in an XML

repository. The document retrieval service allows for retrieving documents that

have been submitted by users of the SmartGov services and stored into the

XML repository. Document retrieval may be used for presenting the documents

to the users, forwarding them to the organisational back-end etc.

2. Login validation. Users of the SmartGov service delivery platform must

authenticate themselves to the system, in order to provide a secure and

personalised environment. Authentication is performed by means of entering a

user name and a password, and the login validation service arranges for

verifying that the presented credentials are valid. For authorised users, the

login validation service returns to the service delivery environment the list of

services that the user is registered to.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 234 of 288

The SmartGov communication services configuration files included in the bundle
include the necessary configuration entries for these services. These entries
should not be removed; changes however should be applied to reflect local
settings (IP addresses and ports, file system paths, passwords etc). In the
following paragraphs, the SmartGov System Services are documented.

5.7.1 Document Storage and Retrieval Services

The document storage service arranges for the persistent storage of the documents

submitted through the Service Delivery Environment. The persistent storage provider

is the SmartGov Project XML repository. Documents that have been persistently stored

may then be retrieved through the document retrieval service for presentation to the

users or further processing. No provision is made at this level for document deletion or

update, facilitating the maintenance of a complete track of submitted documents: in

the case that document deletion is required, the documents should be marked as

deleted (and not physically removed), while for document updating a new version of

the document should be created superseding the existing one. Physical update or

deletion of documents can still be performed by directly accessing the XML repository.

The document storage and retrieval services must be named storeDocument

retrieveDocument, respectively, and must be declared in the relevant configuration

files, both in the service delivery environment and the organisational back-end. Since

the document storage and retrieval services use the XML repository as a persistent

storage provider, they must be able to locate the configuration settings for the XML

repository; these settings should be provided in a property file and the location of this

file should be designated through the property docStore.propertyFile. Documents

stored and retrieved through these services must follow the XML schema presented in

the following figure:

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 235 of 288

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:complexType name="TSE">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="value" type="xs:string" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="RowType">

 <xs:sequence>

 <xs:element name="tseElement" type="TSE" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="groupElement" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="row" type="RowType" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="groupId" type="xs:string"/>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="ServiceResults">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="serviceName" type="xs:string"></xs:element>

 <xs:element name="userName" type="xs:string"/>

 <xs:element name="timestamp" type="xs:string"/>

 <xs:element name="row" type="RowType"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

Figure 77 - XML schema for XML documents managed through the storage and

retrieval services

The document storage service accepts as a parameter the XML document that must be

stored, and places the document into the persistent storage. The document retrieval

service accepts as a parameter an XML document specifying which documents are

requested to be retrieved. The specification is made as follows:

http://www.w3.org/2001/XMLSchema

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 236 of 288

1. If the document contains only a <userName> element, all documents submitted

by the user designated by the element value are retrieved and returned.

2. If the document contains a <userName> element and a <serviceName> element,

then all documents submitted by the user and through the specific service

designated by the element values are retrieved and returned.

3. If the document contains a <userName> element, a <serviceName> element and

a <timestamp> element, then a single document is retrieved, the one submitted

by the specific user and through the particular service at the given timestamp.

4. If the document contains a <userName> element, a <serviceName> element a

<timestamp> element and a <createIfNotFound> element whose value is set

to true, then the following actions are taken:

a. The XML repository is queried to locate a document whose <userName>,
<serviceName> and <timestamp> elements have values equal to the

ones specified in the document supplied as a parameter. If such a

document is found, it is retrieved and returned as in case (3) and the

procedure terminates; otherwise step (b) is performed.

b. A Java class named IIGCreateServiceNameDocument is searched for,

where the ServiceName portion of the class name is set to the actual

name of the service as specified in the <serviceName> element; for

instance, if the value of the service name is TaxReturnForm, then the

name of the class that will be searched for is

IIGCreateTaxReturnFormDocument. The class must implement a

constructor with no parameters and a createDocument method with the

following prototype:

String createDocument(String userName, String serviceName,
String timestamp);

If the class is found and it fulfils the aforementioned requirements, then

the createDocument method is invoked to create the document with the

pre-populated fields, which must be adherent to the XML schema

depicted in Figure 77; the values for the pre-populated fields may be

retrieved from files, from database registries or from any other

appropriate source. If the createDocument method throws an exception

or the class IIGCreateServiceNameDocument is not found or if the class

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 237 of 288

does not implement the required methods, then the returned document

will only contain values for the <userName>, <serviceName> and

<timestamp> elements. The implementation of the

IIGCreateServiceNameDocument class must be provided by the

organisation’s IT staff. The file containing the implementation should be

included in the CLASSPATH of the IIG.

In the first two cases, the results are returned in an XML document compliant to the

XML schema depicted in Figure 78.

<?xml version=”1.0” encoding=”utf-8”?>

<results>

 <xmlDocument>… </xmlDocument>

 <xmlDocument>… </xmlDocument>

 <xmlDocument>… </xmlDocument>

</results>

Figure 78 – XML schema for calls returning multiple documents

In cases (3) and four, the XML document returned is compliant to the XML schema

presented in Figure 77. For case (3) in particular, if no matching document is found

then the empty string is returned.

The storeDocument method, besides storing the document into the XML document

repository, provides facilities for storing to alternate registries, populating relational

databases etc. More specifically, after storing the document into the XML document

repository, the IIG searches for a class named IIGStoreServiceNameDocument, where

the ServiceName portion of the class name is set to the actual name of the service as

specified in the <serviceName> element; for instance, if the value of the service name

is TaxReturnForm, then the name of the class that will be searched for is

IIGStoreTaxReturnFormDocument. The class must implement a constructor with no

parameters and a storeDocument method with the following prototype:

void storeDocument(IIGServiceResults XMLdocument);
If the class is found and it fulfils the aforementioned requirements, then the

storeDocument method is invoked to perform any data storage, registry population

triggering or any other activities pertinent to the submission of documents of the

specific types. If the class IIGStoreServiceNameDocument is not found or if the class

does not implement the required methods, no action is taken. If any exception occurs

within the execution of the storeDocument method, it is possible that side effects will

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 238 of 288

occur, such as partially updated files or incomplete database population; the

implementation of the storeDocument method must include safeguards to provide

resilience against such situations. The IIGServiceResults class is used for storing a

flattened description of the XML document with convenience methods to retrieve

values of specific TSEs, along with facilities to traverse the whole TSE set. The

documentation for the IIGServiceResults class is provided in the following sections.

The implementation of the IIGStoreServiceNameDocument class must be provided by

the organisation’s IT staff. The file containing the implementation should be included in

the CLASSPATH of the IIG.

5.7.1.1 Preparing the Document Storage and Retrieval Service

Before the document storage and retrieval services can be used, the following steps

must be taken:

1. The libraries jaxp1.1.jar, jdbc2.0-stdext.jar, regexp.jar, xalan.jar,

xerces.jar, xmlstoreapi-2.0.0.jar, and xmlstore-2.0.0.jar must be

included in the class path. If Java(tm) SDK 1.4.x is used, then the libraries

jaxp1.1.jar, jdbc2.0-stdext.jar and xerces.jar are optional.

2. A database and the appropriate user must be created in the RDBMS on top of

which the XML repository will operate.

3. The XML store configuration application should be run, by executing the java

com.archetypon.xml.store.impl.XmlStoreManager class. Using the XML

store configuration the following tasks should be performed:

a. A new document type named serviceResults must be created.

b. For the newly created document type, the following indexes must be

defined:

Index name XPath expression Value type

ServResUsername /serviceResults/userName/text() java.lang.String
ServResServiceName /serviceResults/serviceName/text() java.lang.String
ServResTimestamp /serviceResults/timestamp/text() java.lang.String

4. The configuration must be saved. During this step, the details for

communicating with the RDBMS should be entered in the dialog box that will

appear, to correctly reflect underlying DBMS, type, the JDBC driver to be used,

the server name, user name, password and database.

The document storage and retrieval services are now fully prepared to be used.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 239 of 288

5.7.1.2 JavaDoc for the Document Storage and Retrieval Service

The JavaDoc for the storage and retrieval services is presented in Figure 79.

Constructors public DocStore()

Methods public static void storeDocument(String servDesc)

This method stores an XML document submitted through a
SmartGov service in the XML repository. The XML document is
contained in the String servDesc. If the
IIGStoreServiceNameDocument class exists and it implements
the method
void storeDocument(String XMLDocument);
then this method is invoked.
Parameters

 servDesc - The String containing the XML description.

Throws

 DocStoreException - In case of failure to store the XML document

public static java.lang.String retrieveDocument(String docDesc)

This method retrieves the document(s) containing the elements given in the XML

description.

Parameters

 docDesc - The XML document specifying the documents to be retrieved.

The specification is made using one the following four methods:

1. <?xml version=”1.0” encoding=”utf-8”?>

<userName>my user</userName>

2. <?xml version=”1.0” encoding=”utf-8”?>

 <userName>my user</userName>

 <serviceName>my user</serviceName>

3. <?xml version=”1.0” encoding=”utf-8”?>

 <userName>my user</userName>

 <serviceName>my service</serviceName>

 <timestamp>2002/12/31 12:35:32</timestamp>

4. <?xml version=”1.0” encoding=”utf-8”?>

 <userName>my user</userName>

 <serviceName>my service</serviceName>

 <timestamp>2002/12/31 12:35:32</timestamp>

 <createIfNotFound>true</createIfNotFound>

Returns

 A String where the results of the search are located.

If username, serviceName and timestamp are given (case 3), the result is the

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 240 of 288

requested XML document. Case 4 is an extension of case 3, allowing for creation of

initial documents with pre-populated fields, by invoking the method createDocument

of the class IIGCreateServiceNameDocument (ServiceName is equal to the value of

the serviceName element). The createDocument method prototype is as follows:

String createDocument(String userName, String serviceName, String timestamp);

If not all the elements are provided (cases 1 and 2), the result may contain more than

one documents, which are grouped in an XML document of the following type:

<?xml version=”1.0” encoding=”utf-8”?>

<results>

 <xmlDocument>… </xmlDocument>

 <xmlDocument>… </xmlDocument>

 <xmlDocument>… </xmlDocument>

</results>

The value of each xmlDocument element is a URL-encoded XML document.

Throws

 DocStoreException - In case of failure to retrieve the document(s).

Figure 79 - JavaDoc for document storage and retrieval services

5.7.1.3 JavaDoc for the IIGServiceResults

public class gr.uoa.di.IIGServiceResults.IIGServiceResults

The IIGServiceResults class represents a flattened XML service results document for interfacing with legacy

systems. API is provided both for construction and querying

Constructors public IIGServiceResults()

Creates a new instance of IIGServiceResults

Methods public gr.uoa.di.IIGServiceResults.IIGServiceResults setServiceName(
 String serviceName)

This method sets the serviceName element of the flattened representation of the

XML document.

Parameters

 serviceName - the value of the serviceName element of the XML

document

Returns

 the updated flattened representation of the XML document

public gr.uoa.di.IIGServiceResults.IIGServiceResults setUserName(

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 241 of 288

 String userName)

This method sets the userName element of the flattened representation of the XML

document.

Parameters

 userName - the value of the userName element of the XML document

Returns

 the updated flattened representation of the XML document

public gr.uoa.di.IIGServiceResults.IIGServiceResults setTimestamp(
 String timestamp)

This method sets the timestamp element of the flattened representation of the XML

document.

Parameters

 timestamp - the value of the timestamp element of the XML document

Returns

 the updated flattened representation of the XML document

public java.lang.String getUserName()

This method queries the userName element of the respective XML document

Returns

 the value of the userName element

public java.lang.String getServiceName()

This method queries the serviceName element of the respective XML document

Returns

 the value of the serviceName element

public java.lang.String getTimestamp()

This method returns the timestamp element of the respective XML document

Returns

 the value of the timestamp element

public gr.uoa.di.IIGServiceResults.IIGServiceResults addElement(
 Node theTSE)

This method adds a Node element that should represent a TSE not embedded into

a group into the flattened document description.

Parameters

 theTSE - the DOM node element to be inserted

Returns

 the flattened description with the TSE appended to it

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 242 of 288

public gr.uoa.di.IIGServiceResults.IIGServiceResults addElement(
 Node theTSE,

 String groupName,
 int groupRow)

This method adds a Node element that should represent a TSE embedded into a

group into the flattened document description.

Parameters

 theTSE - the DOM node element to be inserted

 groupName - the group to which the TSE belongs

 groupRow - the row within the group that the TSE appears

Returns

 the flattened description with the TSE appended to it

public int size()

Queries the number of TSE values within the flattened description

Returns

 the number of TSE values within the flattened description

public java.lang.String elementNameAt(int index)

Queries the name of the TSE whose value is stored at a specific position

Parameters

 index - the position to be queried

Returns

 the name of the TSE

public int elementValueIndexAt(int index)

Queries the value index of the TSE value stored at a specific position

Parameters

 index - the position to be queried

Returns

 the value index of the TSE value

public java.lang.String elementValueAt(int index)

Queries the value of the TSE value stored at a specific position

Parameters

 index - the position to be queried

Returns

 the TSE value

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 243 of 288

public java.lang.String elementGroupNameAt(int index)

Queries the group name of the TSE value stored at a specific position

Parameters

 index - the position to be queried

Returns

 the group to which the TSE value belongs

public int elementGroupRowAt(int index)

Queries the group row of the TSE value stored at a specific position

Parameters

 index - the position to be queried

Returns

 the group row of the TSE value

public int getElementIndex(String elementName)

Queries the position in which the first value of a TSE with a given name is stored

Parameters

 elementName - the TSE name to search for

Returns

 the index of the first TSE value; if no TSE with the designated name exists,

-1 is returned

public java.lang.String getElementValue(String elementName)

Queries the first value of a TSE with a given name

Parameters

 elementName - the TSE name to search for

Returns

 the first TSE value; if no TSE with the designated name exists, null is

returned

5.7.2 Login Validation Service

The login validation service provides the functionality for authenticating users, before

they are allowed to access the services deployed through the SmartGov platform. User

authentication is performed through a user name-password scheme: users enter their

credentials, and the login validation service verifies that these credentials are correct.

If the credentials are invalid, an appropriate failure indication is returned; if, however

the presented credentials are valid, a success indication is returned, complemented

with the services that the user is registered to use.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 244 of 288

The login validation service must be named loginValidation and must be declared in

the relevant configuration files, both in the service delivery environment and the

organisational back-end. User credentials and service profiles are stored in a DBMS,

thus the login validation service needs to access certain information regarding its

connection with the database (software driver, server address etc). This information

should be stored in a property file and the property LoginValidation.propertyFile

must be set to point to this file. Example contents of the file are depicted in Figure 80:

Property file for the login validation service
LoginValidation.DBusername=smartgov
LoginValidation.DBpassword=smartgov
LoginValidation.DBname=smartgov
LoginValidation.DBdriver=oracle.jdbc.driver.OracleDriver
LoginValidation.DBconnectString=jdbc:oracle:oci8:@

Figure 80 - Property file for login validation service

A request for validating the credentials supplied by the user should be made by

invoking the loginValidation service with an XML document that must adhere to the

following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT validationRequest (userName, password)>

<!ELEMENT userName(#PCDATA)>

<!ELEMENT password (#PCDATA)>
For example:

<?xml version="1.0" encoding="UTF-8"?>

<validationRequest>

 <userName>aUser</userName>

 <password>aPassword</password>

</validationRequest>
This request will check if the credentials (aUser, aPassword) are valid. Normally the

request should be characterised as real-time and non-persistent since the

authentication process must be carried out immediately. The reply returned to such a

request will adhere to the following DTD:

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 245 of 288

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT validationResult (resultType, userID?, fullName?, serviceName*)>

<!ELEMENT resultType(#PCDATA)>

<!ELEMENT userID(#PCDATA)>

<!ELEMENT fullName(#PCDATA)>

<!ELEMENT serviceName(#PCDATA)>
In more detail, if the presented credentials are not valid, the reply will contain only the

<resultType> element and the value of this element will be set to failure, as

illustrated in the following example:

<?xml version="1.0" encoding="UTF-8"?>

<validationResult>

 <resultType>failure</resultType>

</validationResult>

Figure 81 - Reply for a validation request presenting invalid credentials

If, however, the presented credentials are valid, the value of the <resultType>

element will be set to success, and the element will be followed by the <userId> and

<fullName> elements, which will in turn be followed by a list of <serviceName>

elements, one for each service that the user is registered to use. An example of a reply

to successful validation request is illustrated in the following example:

<?xml version="1.0" encoding="UTF-8"?>

<validationResult>

 <resultType>success</resultType>

 <userID>42</userID>

 <fullName>Zaphod Beeblebrox</fullName>

 <serviceName>incomeTaxService</serviceName>

 <serviceName>VATservice</serviceName>

 <serviceName>realEstateTaxService</serviceName>

</validationResult>

5.7.2.1 Preparing the Login Validation Service

Before the document storage and retrieval services can be used, the following steps

must be taken:

1. a database must be created in an RDBMS. A database user with privileges to

create table in this database must also be created.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 246 of 288

2. the tables SGuserData and SGuserServices must be created in the database

using the following SQL commands2:

create table SGuserData (
 userID NUMBER(12) NOT NULL,
 userName VARCHAR(64) NOT NULL UNIQUE,
 password VARCHAR(64) NOT NULL,
 fullName VARCHAR(128) NOT NULL,
 PRIMARY KEY(userID)
);

create table SGuserServices (
 userID NUMBER(12) NOT NULL REFERENCES SGuserData (userId),
 serviceName VARCHAR(128) NOT NULL,
 PRIMARY KEY(userID, serviceName)
);

The population and maintenance of these tables may be performed using any

appropriate tool. For MySQL installations, the phpMyAdmin tool is recommended

(http://sourceforge.net/projects/phpmyadmin/). For Oracle installations, the DBA

studio shipped with Oracle may be used, while in Microsoft SQL Server installations the

SQL Server Enterprise Manager® can be employed to maintain table data.

2 The commands use ANSI SQL 92 syntax. For Oracle databases it is recommended
that the VARCHAR2 data type is substituted for the VARCHAR data type. For MySQL
and MS SQL Server systems, the NUMBER(12) data type must be replaced by the
INTEGER data type.

http://sourceforge.net/projects/phpmyadmin/

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 247 of 288

6 Conclusions

This deliverable presented the user manual of the front-end, result of the final iteration

of the development phase of the SmartGov platform and focused on the components

developed within work package 5 and 6. …

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 248 of 288

7 References

[D31] State-of-the-Art and Current Situation at Public Authorities,

SmartGov Project Deliverable 31, Stelios Gorilas, George Boukis,
Giorgos Lepouras, Kostas Vassilakis, Akrivi Katifori, John Fraser,
Heredia Larios Segundo, Rafael Canadas Martinez, Gerald Weiss,
Kirstin Karasz, Spyros Argyropoulos and Hilary Coyne
(May 31, 2002) available at
http://www.smartgov-project.org/index.php?category=results&langid=eng

[D41] User Requirements, Services and Platform Specifications,
SmartGov Project Deliverable 41, Akrivi Katifori, Anna Charissi,
George Lepouras, Stathis Rouvas, Costas Vassilakis, Nick Adams,
John Fraser, Segundo Heredia Larios, George Boukis, Stelios
Gorilas, Rafael Canadas Martinez and George Laskaridis, available
(July 31, 2002) at
http://www.smartgov-project.org/index.php?category=results&langid=eng

[D51-61] Low-level Specifications of SmartGov Services and Applications
and the Knowledge-Based Core Platform, SmartGov Project
Deliverable 51-61, Stelios Gorilas, Pablo Fernadez Pardo, Tomas
Pariente Lobo, Costas Vassilakis, Akrivi Katifori, Anna Charissi,
George Lepouras, Stathis Rouvas, Nick Adams, John Fraser, Ann
Makynthos (February 28, 2003) available at
http://www.smartgov-project.org/index.php?category=results&langid=eng

[D62] Implementation of SmartGov Services and Applications,
SmartGov Project Deliverable 62, Stelios Gorilas, Pablo Fernadez
Pardo, Tomas Pariente Lobo, Costas Vassilakis, Akrivi Katifori,
Anna Charissi, George Lepouras, Nick Adams, John Fraser, Ann
Makynthos, Vassilis Stoumpos, available (July 31, 2003) at
http://www.smartgov-project.org/index.php?category=results&langid=eng

http://www.smartgov-project.org/index.php?category=results&langid=eng
http://www.smartgov-project.org/index.php?category=results&langid=eng
http://www.smartgov-project.org/index.php?category=results&langid=eng
http://www.smartgov-project.org/index.php?category=results&langid=eng

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 249 of 288

Appendix A. Glossary of elements
Transaction Service Elements (TSEs): Transaction Service Elements (TSEs) are

considered as the basic building block of an e-service. They are used to represent basic

data types used within the organization. TSEs are not to be confused with basic data

types as handled by programming languages. They are not just strings, integers, floats

etc: TSEs are conceptual constructs that map onto the organization's practices. A TSE

represents a real-world entity and its attributes model this entity's characteristics in a

self-contained manner. TSEs are defined in an XML format and could contain the

following properties:

Ø Unique identifier

Ø Machine-oriented data type, e.g. integer, string, float etc.

Ø Data type format rules

Ø Presentational info, possibly according to dissemination channel, e.g. length of

data, number of decimals, colour, etc.

Ø Interface definitions for transforming the TSE values from and to different

formats and for communicating with the SmartGov agent they refer to (for

exchange of data with third-party systems)

Ø Generic name and/or service specific aliases (or handles)

Ø Generic validation constraints/conditions. Service specific constraints and/or

more detailed ones are considered to belong to the Knowledge Repository.

TSEs are “cloned” when the time comes to implement a new service. The properties of

the cloned TSEs can be overridden with service-specific properties. These properties

are expected to be specialized versions of the properties offered by the generic TSE

they clone, suitable for the service they refer to.

TSE group: TSEs can be grouped arbitrarily forming TSE groups. TSE groups like TSEs

are defined in an XML format and could contain the following properties:

Ø Unique identifier

Ø Presentational info, possibly according to dissemination channel

Ø Interface definitions for communicating with the SmartGov agent they refer to

(for exchange of data with third-party systems)

Ø Generic name and/or service specific aliases (or handles)

Ø Generic validation constraints/conditions

Ø Active code to be executed when they are instantiated

A TSE group cannot be used as an element to form another TSE group.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 250 of 288

TSE Repository: A repository containing all available TSEs and TSE groups. A TSE

repository is needed to coordinate access and to ensure overall consistency, e.g. that

referenced items are not deleted in a later stage.

Integrator: The integrator produces code to be executed in the environment of the

deployment server. It gathers the respective information from the various repositories

and combines them accordingly.

Transaction Service: A set of forms that implement a specific service. It contains

TSEs, validation constraints, pre- and post-conditions and the layout to be used.

Transaction Service Repository: A repository containing all available Transaction

Services.

Layout: Contains static attributes of presentation of a Transaction Service. These

static attributes will include colour schemes, font families and sizes, border

designations etc. A layout may also contain guidelines to the designer about style of

placement of elements on the form, pieces of advice regarding form size, or even

automated checks that scan for guideline violations.

Layout Repository: A repository containing all available Layouts.

Interaction Templates: A template that includes the basic interaction between the

delivered service and the end user. The interaction template may specify:

Style of navigation between forms in multi-form services (back-next-finish, index form

with references to individual forms etc.)

Use of confirmation screens (every form, once before final submittal, never)

Style of error presentations (separate window, within the form etc)

Interaction Templates Repository: A repository containing all available Interaction

Templates.

Process Management Information: Information about flow control, data

control/integrity constraints, user profiles/roles and preconditions/postconditions.

Knowledge Repository:

The knowledge repository will contain all the knowledge items (examples, best

practices, legislation, guidelines) along with structures facilitating access to it, such as

knowledge maps. Items within the knowledge repository may reference or be

referenced from items in other repositories; e.g. an example on filling in a TSE may

reference the specific TSE and/or be referenced from it.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 251 of 288

Appendix B. Validation Rules User’s Guide and
Reference

There are two kinds of rules: compact rules and full rules. Although compact rules

cannot describe any possible full rule, they serve as shortcuts for the most common

rules. All rules are attached to the element they refer to. For example a rule that

checks the validity of a “total income” element is attached to that element. Rules are

also allowed to reference objects “contained” in the element they are attached to; thus

1. rules attached to TSE groups may reference the TSEs within the group

2. rules attached to forms may reference TSEs and TSE groups contained within

the form

3. rules attached to the service may reference any TSE or TSE group within the

service.

B.1 Attaching validation rules to SmartGov entities

For SmartGov platform entities that validation rules may be associated with

(transaction services, forms, TSE groups and TSEs), the user should navigate to the

relevant editing page and open the Validation Rules section. An example for validation

rules attached to forms is illustrated in Figure 82:

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 252 of 288

Figure 82 – The Validation Rules section in a form

The validation rules section enables the user to add new validation rules or modify

existing validation rules. In order to add a validation rule, the user should click on the

Add a new rule hyperlink, whereas for modifying an existing validation rule the user

should click on the bullet appearing at the left of the rule name in the “name of the

rule” list.

B.2 Working with validation rules

Once the “add a new rule” has been selected or a rule name has been clicked on, the

rule-editing page appears. If a new rule is being added, the page fields will be blank,

otherwise they will be pre-populated with the current rule details. In the rule-editing

page (shown in Figure 83), the following information should be filled in:

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 253 of 288

Figure 83 - Rule editing page

1. the identity of the new rule (id field)

2. the specification whether the rule should be validated at the back-end only or at

the front-end and the back-end (there is no option to validate the rule only at

the front-end)

3. the statistics to be collected for rule execution. Two pre-defined statistics are

supported, namely the total number of failures for the rule and the rule

execution time. For either statistic the user can enable or disable statistics

collections.

4. Finally, the actual content of the validation rule can be specified. For new rules,

the “new method” hyperlink should be clicked on, whereas for existing rules the

description in the “validation rule configuration” section should be clicked on.

Validation rule method configuration is described in the following section.

B.3 Validation rule method configuration

The main editing page for validation rule methods is depicted in Figure 84. The user

first enters the description of the rule; this is a multilingual resource and may be

provided in multiple languages. After entering the rule description, the user should

select the type of the code implementing the validation check. This may be code in

some native language (Java or Javascript), or code in the SmartGovLang validation

language; the latter is subdivided in two categories, namely SmartGov full rules and

SmartGov compact rules. Details for each method category are provided in the

following paragraphs.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 254 of 288

Figure 84 – Validation rule main editing page

B.3.1 Native language validation checks

For a validation check implemented in some native language, the coding language can

be entered (Java and Javascript are the available options), an indication on whether

the code can implement checks for the front-end, back-end or both and the actual

code fragment implementing the validation, either by directly typing it in a relevant

area or by uploading a file with the code. Note that the Integrator does not take into

account validation checks coded in any native language; the IT staff (which will write

the code) should cater for the integration of code into the produced services by

uncompressing the produced war file and modifying the files therein.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 255 of 288

Figure 85 - Entering validation methods in native language

B.3.2 SmartGov language compact rules

Compact rule methods can be used to express simple validation checks in a user-

friendly and intuitive manner. Besides the “description” part, which is common for all

rule method types, each compact rule has the following elements:

Ø a severity designation, which classifies the validation check either as an error or as

a warning. Errors must be corrected before the user continues to the next stage of

the e-service, while a warning is an advisory message to the user. Experience

however has shown that users tend to ignore warning messages so it strongly

recommended that only validation checks with error severity designations are

used.

Ø a validation message which is the message that will be displayed to the user of the

electronic service, in the case that the validation check fails. This is a multilingual

resource and should be provided in the languages that the e-service target group

uses.

Ø the type of the compact rule. Six pre-defined compact rule types are provided:

• field between values of two fields, illustrated in Figure 86. In this case the

developer selects the TSE to be checked from a drop down list, and enters the

lower and upper bound in the two adjacent input areas. The e-service user

should provide for the selected TSE a value between the designated limits.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 256 of 288

Figure 86 – Compact SmartGovLang validation method editing

• field requires other field, illustrated in Figure 87. In this case the developer

selects two TSEs from respective drop-down lists. If the e-service user provides

a value for the TSE selected in the first drop-down list, then she must provide a

value for the TSE selected in the second drop-down as well.

Figure 87 – Compact SmartGovLang validation method editing

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 257 of 288

• field precludes other field, illustrated in Figure 88. In this case the developer

selects two TSEs from respective drop-down lists. If the e-service user provides

a value for the TSE selected in the first drop-down list, then she must not

provide a value for the TSE selected in the second drop-down.

Figure 88 – Compact SmartGovLang validation method editing

• field requires other fields, illustrated in Figure 89. In this case the developer

selects one TSEs from a drop-down lists and one or more TSEs from a second

list. If the e-service user provides a value for the TSE selected in the first drop-

down list, then she must provide a value for at least one of the TSEs chosen in

the second list.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 258 of 288

Figure 89 – Compact SmartGovLang validation method editing

• several fields required at the same time, illustrated in Figure 90. In this case

the developer selects a list of TSEs. The e-service user should either provide a

value for all of the selected TSEs or for none of them. In other words, it is not

allowed for the e-service user to provide values for some of the TSEs and not

provide values for the remaining ones.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 259 of 288

Figure 90 – Compact SmartGovLang validation method editing

• a condition holds for a field, illustrated in Figure 91. In this case the developer

selects a TSE tse1 from a drop-down list, a relational operator rop (=, ≠, >, >=,

<, <=) then a second field tse2 and finally enters a factor fact. The values

entered by the e-service user for the referenced TSEs must satisfy the condition

tse1 rop tse2 * fact; for instance a tax payer’s net income may not be less than

the 80% of her salaries, which can be expressed by NET_INCOME_TSE >=

SALARY_TSE * 0.8.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 260 of 288

Figure 91 – Compact SmartGovLang validation method editing

B.3.3 Full Rules

Full rules are a more powerful means of coding validation checks, allowing for a

plethora of tests to be made over the data values and providing facilities for active

behaviour such as automatic value calculation. Full rules have a condition part and an

action part, which may be entered in the respective areas of the validation rule editing

form, when the method type has been set to Full SmartGov rule (see Figure 92). For a

full compact rule, the SmartGov platform evaluates the condition part and then

inspects the result: if this is true then the actions specified in the action part are

taken; if the condition evaluates to false, then no action is taken. In the following, a

rule having a condition part condition and an action part action will be denoted as

condition à action

The condition and action parts of a SmartGovlang full rule are discussed in the

following paragraphs, and examples are given.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 261 of 288

Figure 92 – Full SmartGovLang rule editing

B.3.3.1 Condition Part – Data types

Any expression that can evaluate to true or false can be used as a condition. So the

literal:

true

Could be used as a condition that would always lead to the execution of the associated

actions. For the majority of cases though we need to access user input on order to

determine if action needs to be taken. To access the user input, we merely use the

corresponding element name. For example, assuming an element “married” the

expression:

married

evaluates to true or false, depending on user input. All user input elements are of type

number, text or boolean, depending on how each user input element is designed. The

married element in the last example must be of type boolean for the condition to be

valid.

Assuming non-boolean elements, valid conditions are relational expressions among

them. Operators can be the ones listed in Table 2 and an example is:

total_income < total_expenses

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 262 of 288

which leads to the execution of the action part if the specified total income is less than

the total expenses, for the appropriate “total_income” and “total_expenses” numeric

elements. Another example is:

employment_status = “unemployed”

where the actions are executed if the “employment_status” element (could be a combo

box of 4 values) has the value “unemployed”. Finally, boolean expressions can be

combined to form more complex expressions, as the following one:

married AND (total_income < total_expenses)

which uses the previous expressions to form a new one that evaluates to true only if

both sub-expressions evaluate to true. The full list of boolean operators is presented in

Table 3.

Note the use of parenthesis that specifies that the numeric comparison is the left-

hand-side expression. Omitting the parenthesis would lead to “total_income” being

mistakenly used as a boolean element and form the left-hand-side expression on its

own.

B.3.3.2 Condition Part – Functions

To form even more complex conditions and process user input functions are provided

in SmartgovLang. We can logically divide functions in four types: arithmetic, string,

date and aggregate. Arithmetic functions are listed in

Table 4. An example condition that checks for integer user input is:

fractional(numof_children) != 0.0

where the action part is triggered if the user specified a non-integer number of

children.

One of the most common functions used are string functions that operate on text

elements.

Table 5 shows a list of al available string functions. A typical example checks for no-

user input in a text field:

length(last_name) = 0

which if true means the user entered no last name.

Almost all functions can be written by means of the matches functions. This function

uses a regular expression to test for certain string format. Describing regular

expressions is beyond the scope of this document. Regular expressions are described

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 263 of 288

in [Sun]3. Instead of directly using regular expressions, naive users should resort to

using the rest of the functions:

isAlpha(last_name) AND

(startsWith(title, “Dr.”) OR startsWith(title, “Doctor”))

This condition will evaluate to true if the user specified last name consists of only

letters and the user title either starts with “Dr.” or “Doctor”, capturing the case of the

user being a doctor.

Another common input check has to do with date manipulation, especially validation.

The condition

NOT isValidDate(birth_date)

will trigger the execution of rules if the specified birth date is illegal. The complete list

for date and time functions is given in

Table 6. Note that date and time are always expected to be of the form “yyyy/mm/dd”

and “hh:mm:ss” respectively. A more complex scheme can be employed if

isValidDate(yyyy, dd, ss) and isValidTime(hh, mm, ss) are used instead of the single

argument ones.

Finally, aggregate functions (

Table 7) like min, max, count and sum can be used to compute the aggregate over all

elements in a given form.

B.3.3.3 Action List

An action list is a sequence of actions, with each action being terminated by a semi-

colon (;). An action can either be a message action or a field action. We will visit

available actions them in this order.

The most common action to be taken is to present an error message to the user upon

invalid input. The message can be an error message, a warning message or an

information message, so actions in

Table 8 are used to distinguish between the cases. Different types of messages lead to

different system behavior. For example, an error message will not allow the form to be

submitted, while an information message will.

3 Note that the interpretation of regular expression depends on the execution engine,
which is Java for the back-end and Javascript for the front-end, thus some
incompatibilities in execution may arise. Consult [Sun] and [Javascript] for a thorough
coverage of the interpretations.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 264 of 288

An important aspect of the message actions is the use of a multilingual message. A

multilingual message contains the same message in different languages. For example,

suppose message “sample message” is rewritten in languages “lang1”, “lang2” and

“lang4” as “sample message 1”, “sample message 2” and “sample message 4”.

Producing the corresponding warning message is done by:

warningMessage(((“lang1”, “sample message 1”)

(“lang2”, “sample message 2”) (“lang3”, “sample message 3”)))

Notice that all messages are enclosed in parenthesis and every language-dependent

entry is also enclosed in parenthesis. Every entry contains the language identifier and

the translated message separated by commas. Thus, an error message that could be

triggered by the “length(last_name) = 0” condition seen before is:

errorMessage(((“EN”, “Last name must be specified.”)

(“EL”, “Πρέπει να δοθεί επίθετο.”))) ;

The second type of actions is field actions. A field can be enabled or disabled (typically

due to some value in another field), take a new value or take the user input focus. All

these actions are presented in Table 9. Recalling the simple example condition

“married”, it could be necessary that field “spouse_last_name” is enabled or disabled.

Thus, both rules should be added to the enclosing form:

married à enableField(spouse_last_name)

setField(spouse_last_name, “”) setFocus(spouse_last_name) ;

and

NOT married à disableField(spouse_last_name) ;

In this manner we enable or disable the “spouse_last_name” dependent on the user

specifying him as single or married. Notice that when the user is married, the

“spouse_last_name” field is enabled, cleared with the empty string and has the user

input focus.

B.4 Reference Tables

Table 2 - Operators and their meaning for operands of type number and text.

Operator Example Number Operands Text Operands

= E1 = E2 True for E1 equal to E2,

otherwise false.

True for E1 same as E2,

otherwise false.

!= E1 != E2 False for E1 equal to E2,

otherwise true.

False for E1 same as E2,

otherwise true.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 265 of 288

Operator Example Number Operands Text Operands

> E1 > E2 True for E1 greater than

E2, otherwise false.

True for E1

lexicographically after E2,

otherwise false.

>= E1 >= E2 True for E1 greater or

equal to E2, otherwise

false.

True for E1

lexicographically after or

same as E2, otherwise

false.

< E1 < E2 True for E1 less than

E2, otherwise false.

True for E1

lexicographically before E2,

otherwise false.

<= E1 <= E2 True for E1 less or equal

to E2, otherwise false.

True for E1

lexicographically before or

same as E2, otherwise

false.

Table 3 Boolean operators.

Operator Example Evaluation

AND E1 AND E2 True for both E1 and E2 are true,

otherwise false.

OR E1 OR E2 True if at least on of E1 and E2 is

true, otherwise false.

NOT E1 NOT E2 True only if E1 is false, otherwise

false.

Table 4 Arithmetic functions.

Function Evaluation

int(x) The integral part of value x. The

expected data type is numeric.

fractional(x) The fractional part of value x. The

expected data type is numeric.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 266 of 288

Table 5 String functions.

Function Evaluation

length(string) The number of characters in string.

index(string, token) Returns the position, in characters, numbering

from 1, in string where token first occurs, or

zero if it does not occur at all.

substr(string, offset, n) Returns the at most n-character substring of

string that begins at position offset, numbering

from 1.

concatenate(string1, string2) Returns a string whose value is string1, followed

by string2.

hasAlphabet(string, alphabet) Returns true if the string contains only

characters listed in alphabet, or false, otherwise

matches(string, expression) Returns true if string matches the regular

expression pattern specified in pattern or false

otherwise. [reg exp specs]

isAlphaNumeric(string) Returns true if string consists of only letters,

spaces, numbers and underscores (“_”),

otherwise false.

IsAlpha(string) Returns true if string consists of only letters,

spaces and underscores (“_”), otherwise false.

isNumeric(string) Returns true if string consists of only numbers,

otherwise false.

startsWith(string, prefix) Equivalent to the following expression:

(substr(string, 1, length(prefix)) = prefix)

endsWith(string, postfix) Equivalent to the following expression:

(substr(string, length(s)-length(postfix),

length(prefix)) = postfix)

Table 6 Date functions.

Function Evaluation

date() Returns the current system date in a string

of the form “yyyy/mm/dd”.

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 267 of 288

Function Evaluation

isValidDate(yyyy, mm,

dd)

Returns true if the given date is valid,

otherwise false.

isValidDate(string) Returns true if the given date is of the form

“yyyy/mm/dd” and valid, otherwise false.

year() Returns the current system year.

month() Returns the current system month.

day() Returns the current system day in the

month.

weekDay() Returns the current system week day (1 for

Sunday, 2 for Monday, …, 7 for Saturday).

time() Returns the current system time in a string

of the form “hh:mm:ss”.

isValidTime(hh, mm, ss) Returns true if the given time is valid,

otherwise false.

isValidTime(string) Returns true if the given time is of the form

“hh:mm:ss” and valid, otherwise false.

hour() Returns the current system hour.

minute() Returns the current system minute.

second() Returns the current system second.

Table 7 Aggregate functions.

Function Comments

count(group,

element)

Returns the number of rows in a

repeating group (table) html table?

Server side checking?

sum(group, element) Returns the sum of the values in the

designated column.

max(group, element) Returns the maximum of the values in

the designated column.

min(group, element) Returns the minimum of the values in

the designated column

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 268 of 288

Table 8 Message actions.

Action Behaviour

errorMessage(multilingual messsage) Uses the current locale to produce

the appropriate error message. The

operation halts.

warningMessage(multilingual messsage) Uses the current locale to produce

the appropriate warning message.

The user is asked whether the

operation should continue.

informationMessage(multilingual

messsage)

Uses the current locale to produce

the appropriate error message. The

operation continues normally.

Table 9 Field actions.

Action Behavior

DisableField(field) Disallows the user to enter values to the

designated form field.

EnableField(field) Allows the user to enter values to the

designated field.

setField(field, value) Sets the designated field to the specified

value.

SetFocus(field,

value)

Moves the input focus to the designated field.

B.5 References

[Sun] Sun Microsystems, JavaDoc for the Pattern class,

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

[Javascript] Netscape Corporation, Javascript Reference (versions 1.3, 1.4 and 1.5),

http://devedge.netscape.com/central/javascript/

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
http://devedge.netscape.com/central/javascript/

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 269 of 288

Appendix C. Front-end databases scripts

User-roles database

MS SQL Server
IF EXISTS (SELECT name FROM master.dbo.sysdatabases WHERE name = N'sgUsers')
 DROP DATABASE [sgUsers]
GO

CREATE DATABASE [sgUsers]
GO

use [sgUsers]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[group_users]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)
drop table [dbo].[group_users]
GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[groups]')
and OBJECTPROPERTY(id, N'IsUserTable') = 1)
drop table [dbo].[groups]
GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[roles]')
and OBJECTPROPERTY(id, N'IsUserTable') = 1)
drop table [dbo].[roles]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[rolescopes]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)
drop table [dbo].[rolescopes]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[user_roles]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)
drop table [dbo].[user_roles]
GO

if exists (select * from dbo.sysobjects where id = object_id(N'[dbo].[users]')
and OBJECTPROPERTY(id, N'IsUserTable') = 1)
drop table [dbo].[users]
GO

if not exists (select * from master.dbo.syslogins where loginname = N'db_user')
BEGIN
 declare @logindb nvarchar(132), @loginlang nvarchar(132) select @logindb =
N'outUsers', @loginlang = N'us_english'
 if @logindb is null or not exists (select * from master.dbo.sysdatabases
where name = @logindb)
 select @logindb = N'master'
 if @loginlang is null or (not exists (select * from master.dbo.syslanguages
where name = @loginlang) and @loginlang <> N'us_english')
 select @loginlang = @@language
 exec sp_addlogin N'db_user', null, @logindb, @loginlang
END

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 270 of 288

GO

if not exists (select * from dbo.sysusers where name = N'db_user' and uid <
16382)
 EXEC sp_grantdbaccess N'db_user', N'db_user'
GO

exec sp_addrolemember N'db_datareader', N'db_user'
GO

exec sp_addrolemember N'db_datawriter', N'db_user'
GO

CREATE TABLE [dbo].[group_users] (
 [group_id] [varchar] (15) NOT NULL ,
 [smartgov_user_id] [varchar] (15) NOT NULL
)
GO

CREATE TABLE [dbo].[groups] (
 [group_id] [varchar] (15) NOT NULL ,
 [type] [varchar] (8) NOT NULL ,
 [outer_user_system] [varchar] (15) NULL ,
 [group_name] [varchar] (25) NOT NULL
)
GO

CREATE TABLE [dbo].[roles] (
 [rolescope_id] [varchar] (15) NOT NULL ,
 [role_id] [varchar] (15) NOT NULL ,
 [role_name] [varchar] (50) NOT NULL
)
GO

CREATE TABLE [dbo].[rolescopes] (
 [rolescope_id] [varchar] (15) NOT NULL ,
 [rolescope_name] [varchar] (50) NOT NULL
)
GO

CREATE TABLE [dbo].[user_roles] (
 [group_id] [varchar] (15) NOT NULL ,
 [smartgov_user_id] [varchar] (15) NOT NULL ,
 [role_scope_id] [varchar] (15) NOT NULL ,
 [role_id] [varchar] (15) NOT NULL
)
GO

CREATE TABLE [dbo].[users] (
 [smartgov_user_id] [varchar] (15) NOT NULL ,
 [smartgov_user_password] [varchar] (15) NOT NULL ,
 [outer_user_id] [varchar] (15) NOT NULL
)
GO

ALTER TABLE [dbo].[group_users] WITH NOCHECK ADD
 CONSTRAINT [PK_group_users] PRIMARY KEY CLUSTERED
 (
 [group_id],
 [smartgov_user_id]
)
GO

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 271 of 288

ALTER TABLE [dbo].[groups] WITH NOCHECK ADD
 CONSTRAINT [PK_groups] PRIMARY KEY CLUSTERED
 (
 [group_id]
)
GO

ALTER TABLE [dbo].[roles] WITH NOCHECK ADD
 CONSTRAINT [PK_roles] PRIMARY KEY CLUSTERED
 (
 [rolescope_id],
 [role_id]
)
GO

ALTER TABLE [dbo].[rolescopes] WITH NOCHECK ADD
 CONSTRAINT [PK_rolescopes] PRIMARY KEY CLUSTERED
 (
 [rolescope_id]
)
GO

ALTER TABLE [dbo].[user_roles] WITH NOCHECK ADD
 CONSTRAINT [PK_user_roles] PRIMARY KEY CLUSTERED
 (
 [group_id],
 [smartgov_user_id],
 [role_scope_id],
 [role_id]
)
GO

ALTER TABLE [dbo].[users] WITH NOCHECK ADD
 CONSTRAINT [PK_users] PRIMARY KEY CLUSTERED
 (
 [smartgov_user_id]
)
GO

/*
 * Dumping data for table 'roles'
 */
INSERT INTO roles VALUES('smartgov','admin','Administrator');
INSERT INTO roles VALUES('smartgov','manager','Manager');
INSERT INTO roles VALUES('smartgov','expert','Domain Expert');
INSERT INTO roles VALUES('smartgov','staff','IT Staff');
INSERT INTO roles VALUES('smartgov','worker','Service Worker');
INSERT INTO roles VALUES('wf_ku','editor','Editor');
INSERT INTO roles VALUES('wf_ku','reviewer','Reviewer');
INSERT INTO roles VALUES('wf_ku','approver','Approver');
INSERT INTO roles VALUES('wf_ts','editor','Editor');
INSERT INTO roles VALUES('wf_ts','approver','Approver');

/*
* Dumping data for table 'rolescopes'
*/
INSERT INTO rolescopes VALUES('smartgov','SmartGov System');
INSERT INTO rolescopes VALUES('wf_ts','Workflow of TS');
INSERT INTO rolescopes VALUES('wf_ku','Workflow of KU');

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 272 of 288

/*
* Dumping data for table 'users'
*/
INSERT INTO users VALUES('administrator','administrator','SmartGov');
INSERT INTO users VALUES('user_expert','user_expert','SmartGov');
INSERT INTO users VALUES('user_manager','user_manager','SmartGov');
INSERT INTO users VALUES('user_staff','user_staff','SmartGov');

/*
* Dumping data for table 'user_roles'
*/
INSERT INTO user_roles VALUES('test','administrator','wf_ts','editor');
INSERT INTO user_roles VALUES('test','user_expert','wf_ku','editor');
INSERT INTO user_roles VALUES('test','user_expert','wf_ts','editor');
INSERT INTO user_roles VALUES('test','user_manager','wf_ku','editor');
INSERT INTO user_roles VALUES('test','user_manager','wf_ts','editor');
INSERT INTO user_roles VALUES('test','user_staff','wf_ku','editor');
INSERT INTO user_roles VALUES('test','user_staff','wf_ts','editor');
INSERT INTO user_roles VALUES('user_system','administrator','smartgov','admin');
INSERT INTO user_roles VALUES('user_system','user_expert','smartgov','expert');
INSERT INTO user_roles VALUES('user_system','user_manager','smartgov','manager');
INSERT INTO user_roles VALUES('user_system','user_staff','smartgov','staff');

/*
* Dumping data for table 'groups'
*/
INSERT INTO groups VALUES('user_system','us','smartgov_outer','User System');
INSERT INTO groups VALUES('test','wg','','Testing Group');

/*
* Dumping data for table 'group_users'
*/
INSERT INTO group_users VALUES('test','administrator');
INSERT INTO group_users VALUES('test','user_expert');
INSERT INTO group_users VALUES('test','user_manager');
INSERT INTO group_users VALUES('test','user_staff');
INSERT INTO group_users VALUES('user_system','administrator');
INSERT INTO group_users VALUES('user_system','user_expert');
INSERT INTO group_users VALUES('user_system','user_manager');
INSERT INTO group_users VALUES('user_system','user_staff');

MySQL
CREATE DATABASE smartgov_user_system;

USE smartgov_user_system;

GRANT ALL PRIVILEGES ON *.* TO db_user@"%" IDENTIFIED BY 'egov' WITH GRANT
OPTION;

Table structure for table 'group_users'

DROP TABLE IF EXISTS group_users;
CREATE TABLE `group_users` (
 `group_id` varchar(15) NOT NULL default '',
 `smartgov_user_id` varchar(15) NOT NULL default '',

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 273 of 288

 PRIMARY KEY (`group_id`,`smartgov_user_id`)
) TYPE=MyISAM;

Table structure for table 'groups'

DROP TABLE IF EXISTS groups;
CREATE TABLE `groups` (
 `group_id` varchar(15) NOT NULL default '',
 `type` varchar(8) NOT NULL default '',
 `outer_user_system` varchar(15) default '',
 `group_name` varchar(25) NOT NULL default '',
 PRIMARY KEY (`group_id`)
) TYPE=MyISAM;

Table structure for table 'roles'

DROP TABLE IF EXISTS roles;
CREATE TABLE `roles` (
 `rolescope_id` varchar(15) NOT NULL default '',
 `role_id` varchar(15) NOT NULL default '',
 `role_name` varchar(50) NOT NULL default '',
 PRIMARY KEY (`rolescope_id`,`role_id`)
) TYPE=MyISAM;

Table structure for table 'rolescopes'

DROP TABLE IF EXISTS rolescopes;
CREATE TABLE `rolescopes` (
 `rolescope_id` varchar(15) NOT NULL default '',
 `rolescope_name` varchar(50) NOT NULL default '',
 PRIMARY KEY (`rolescope_id`)
) TYPE=MyISAM;

Table structure for table 'user_roles'

DROP TABLE IF EXISTS user_roles;
CREATE TABLE `user_roles` (
 `group_id` varchar(15) NOT NULL default '',
 `smartgov_user_id` varchar(15) NOT NULL default '',
 `role_scope_id` varchar(15) NOT NULL default '',
 `role_id` varchar(15) NOT NULL default '',
 PRIMARY KEY (`group_id`,`smartgov_user_id`,`role_scope_id`,`role_id`)
) TYPE=MyISAM;

Table structure for table 'users'

DROP TABLE IF EXISTS users;
CREATE TABLE `users` (
 `smartgov_user_id` varchar(15) NOT NULL default '',

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 274 of 288

 `smartgov_user_password` varchar(15) NOT NULL default '',
 `outer_user_id` varchar(15) NOT NULL default '',
 PRIMARY KEY (`smartgov_user_id`)
) TYPE=MyISAM;

Dumping data for table 'roles'

INSERT INTO roles VALUES("smartgov","admin","Administrator");
INSERT INTO roles VALUES("smartgov","manager","Manager");
INSERT INTO roles VALUES("smartgov","expert","Domain Expert");
INSERT INTO roles VALUES("smartgov","staff","IT Staff");
INSERT INTO roles VALUES("smartgov","worker","Service Worker");
INSERT INTO roles VALUES("wf_ku","editor","Editor");
INSERT INTO roles VALUES("wf_ku","reviewer","Reviewer");
INSERT INTO roles VALUES("wf_ku","approver","Approver");
INSERT INTO roles VALUES("wf_ts","editor","Editor");
INSERT INTO roles VALUES("wf_ts","approver","Approver");

Dumping data for table 'rolescopes'

INSERT INTO rolescopes VALUES("smartgov","SmartGov System");
INSERT INTO rolescopes VALUES("wf_ts","Workflow of TS");
INSERT INTO rolescopes VALUES("wf_ku","Workflow of KU");

Dumping data for table 'users'

INSERT INTO users VALUES("administrator","administrator","SmartGov");
INSERT INTO users VALUES("user_expert","user_expert","SmartGov");
INSERT INTO users VALUES("user_manager","user_manager","SmartGov");
INSERT INTO users VALUES("user_staff","user_staff","SmartGov");

Dumping data for table 'user_roles'

INSERT INTO user_roles VALUES("test","administrator","wf_ts","editor");
INSERT INTO user_roles VALUES("test","user_expert","wf_ku","editor");
INSERT INTO user_roles VALUES("test","user_expert","wf_ts","editor");
INSERT INTO user_roles VALUES("test","user_manager","wf_ku","editor");
INSERT INTO user_roles VALUES("test","user_manager","wf_ts","editor");
INSERT INTO user_roles VALUES("test","user_staff","wf_ku","editor");
INSERT INTO user_roles VALUES("test","user_staff","wf_ts","editor");
INSERT INTO user_roles VALUES("user_system","administrator","smartgov","admin");
INSERT INTO user_roles VALUES("user_system","user_expert","smartgov","expert");
INSERT INTO user_roles VALUES("user_system","user_manager","smartgov","manager");
INSERT INTO user_roles VALUES("user_system","user_staff","smartgov","staff");

Dumping data for table 'groups'

INSERT INTO groups VALUES("user_system","us","smartgov_outer","User System");
INSERT INTO groups VALUES("test","wg","","Testing Group");

Dumping data for table 'group_users'

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 275 of 288

INSERT INTO group_users VALUES("test","administrator");
INSERT INTO group_users VALUES("test","user_expert");
INSERT INTO group_users VALUES("test","user_manager");
INSERT INTO group_users VALUES("test","user_staff");
INSERT INTO group_users VALUES("user_system","administrator");
INSERT INTO group_users VALUES("user_system","user_expert");
INSERT INTO group_users VALUES("user_system","user_manager");
INSERT INTO group_users VALUES("user_system","user_staff");

Outer users database

MS SQL Server
IF EXISTS (SELECT name FROM master.dbo.sysdatabases WHERE name = N'outUsers')
 DROP DATABASE [outUsers]
GO

CREATE DATABASE [outUsers]
GO

use [outUsers]
GO

if exists (select * from dbo.sysobjects where id =
object_id(N'[dbo].[outer_users]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)
drop table [dbo].[outer_users]
GO

if not exists (select * from master.dbo.syslogins where loginname = N'db_user')
BEGIN
 declare @logindb nvarchar(132), @loginlang nvarchar(132) select @logindb =
N'outUsers', @loginlang = N'us_english'
 if @logindb is null or not exists (select * from master.dbo.sysdatabases
where name = @logindb)
 select @logindb = N'master'
 if @loginlang is null or (not exists (select * from master.dbo.syslanguages
where name = @loginlang) and @loginlang <> N'us_english')
 select @loginlang = @@language
 exec sp_addlogin N'db_user', null, @logindb, @loginlang
END
GO

if not exists (select * from dbo.sysusers where name = N'db_user' and uid <
16382)
 EXEC sp_grantdbaccess N'db_user', N'db_user'
GO

exec sp_addrolemember N'db_datareader', N'db_user'
GO

exec sp_addrolemember N'db_datawriter', N'db_user'
GO

CREATE TABLE [dbo].[outer_users] (
 [outer_user_id] [varchar] (15) NOT NULL ,
 [outer_user_first_name] [varchar] (50) NOT NULL ,
 [outer_user_last_name] [varchar] (50) NOT NULL ,
 [outer_user_e_mail] [varchar] (80) NOT NULL

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 276 of 288

)
GO

ALTER TABLE [dbo].[outer_users] WITH NOCHECK ADD
 CONSTRAINT [PK_outer_users] PRIMARY KEY CLUSTERED
 (
 [outer_user_id]
)
GO

INSERT INTO outer_users
VALUES('administrator','SmartGov','Administrator','admin@smartgov.com')
INSERT INTO outer_users
VALUES('user_staff','test','staff','user_staff@smartgov.com')
INSERT INTO outer_users
VALUES('user_manager','test','manager','user_manager@smartgov.com')
INSERT INTO outer_users
VALUES('user_expert','expert','expert','expert@smartgov.com')

MySQL
CREATE DATABASE smartgov_outer_users;

USE smartgov_outer_users;

Table structure for table 'outer_users'

DROP TABLE IF EXISTS outer_users;
CREATE TABLE `outer_users` (
 `outer_user_id` varchar(15) NOT NULL default '',
 `outer_user_first_name` varchar(50) NOT NULL default '',
 `outer_user_last_name` varchar(50) NOT NULL default '',
 `outer_user_e_mail` varchar(80) NOT NULL default '',
 PRIMARY KEY (`outer_user_id`)
) TYPE=MyISAM;

Dumping data for table 'outer_users'

INSERT INTO outer_users
VALUES("administrator","SmartGov","Administrator","admin@smartgov.com");
INSERT INTO outer_users
VALUES("user_staff","test","staff","user_staff@smartgov.com");
INSERT INTO outer_users
VALUES("user_manager","test","manager","user_manager@smartgov.com");
INSERT INTO outer_users
VALUES("user_expert","expert","expert","expert@smartgov.com");

XML Repository database

MS SQL Server
IF EXISTS (SELECT name FROM master.dbo.sysdatabases WHERE name = N'xmlStore')
 DROP DATABASE [xmlStore]

mailto:admin@smartgov.com
mailto:user_staff@smartgov.com
mailto:user_manager@smartgov.com
mailto:expert@smartgov.com
mailto:admin@smartgov.com
mailto:user_staff@smartgov.com
mailto:user_manager@smartgov.com
mailto:expert@smartgov.com

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 277 of 288

GO

CREATE DATABASE [xmlStore]
GO

use [xmlStore]
GO

if not exists (select * from master.dbo.syslogins where loginname =
N'xmlstore_user')
BEGIN
 declare @logindb nvarchar(132), @loginlang nvarchar(132) select @logindb =
N'xmlStore', @loginlang = N'us_english'
 if @logindb is null or not exists (select * from master.dbo.sysdatabases
where name = @logindb)
 select @logindb = N'master'
 if @loginlang is null or (not exists (select * from master.dbo.syslanguages
where name = @loginlang) and @loginlang <> N'us_english')
 select @loginlang = @@language
 exec sp_addlogin N'xmlstore_user', null, @logindb, @loginlang
END
GO

if not exists (select * from dbo.sysusers where name = N'xmlstore_user' and uid <
16382)
 EXEC sp_grantdbaccess N'xmlstore_user', N'xmlstore_user'
GO

exec sp_addrolemember N'db_datareader', N'xmlstore_user'
GO

exec sp_addrolemember N'db_datawriter', N'xmlstore_user'
GO

exec sp_addrolemember N'db_owner', N'xmlstore_user'
GO

MySQL
CREATE DATABASE xmlstore;

GRANT ALL PRIVILEGES ON *.* TO xmlstore_user@"%" IDENTIFIED BY 'egov' WITH GRANT
OPTION;
GRANT ALL PRIVILEGES ON *.* TO xmlstore_user@locahost IDENTIFIED BY 'egov' WITH
GRANT OPTION;

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 278 of 288

Appendix D. IIG / SGA DBs creation script4

MS SQL Server

drop table entraPAQ;
drop table adelantePAQIIG;
drop table adelantePAQ;
drop table entraPAQIIG;
drop table SEPdatabaseTable;
drop table databaseTable;
drop table autoKeys;

CREATE TABLE entraPAQ (
 entraPAQId INTEGER NOT NULL,
 XMLMethodDescription VARCHAR(4000) NOT NULL,
 SGtimestamp VARCHAR(22) NOT NULL,
 notificationName VARCHAR(500) NOT NULL,
 PRIMARY KEY (entraPAQId)
);

CREATE TABLE adelantePAQIIG (
 adelantePAQId INTEGER NOT NULL,
 notificationName VARCHAR(500) NOT NULL,
 SGtimestamp VARCHAR(22) NOT NULL,
 PRIMARY KEY (adelantePAQId));

CREATE TABLE adelantePAQ (
 adelantePAQId INTEGER NOT NULL,
 requestId INTEGER NOT NULL,
 serviceName VARCHAR(500) NOT NULL,
 XMLPacket VARCHAR(4000) NOT NULL,
 realTime INTEGER NOT NULL,
 persistent INTEGER NOT NULL,
 SGtimestamp VARCHAR(22) NOT NULL,
 PRIMARY KEY (adelantePAQId));

4 Oracle script has not been tested

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 279 of 288

CREATE TABLE entraPAQIIG (
 entraPAQId INTEGER NOT NULL,
 serviceName VARCHAR(500) NOT NULL,
 XMLMessage VARCHAR(4000) NOT NULL,
 realTime INTEGER NOT NULL,
 SGtimestamp VARCHAR(22) NOT NULL,
 PRIMARY KEY (entraPAQId));

CREATE TABLE SEPdatabaseTable (
 SEPdatabaseTableId INTEGER NOT NULL,
 serviceName VARCHAR(500) NOT NULL,
 XMLMessage VARCHAR(4000) NOT NULL,
 realTime INTEGER NOT NULL,
 SGtimestamp VARCHAR(22) NOT NULL,
 PRIMARY KEY (SEPdatabaseTableId));

CREATE TABLE databaseTable (
 databaseTableId INTEGER NOT NULL,
 requestId INTEGER NOT NULL,
 serviceName VARCHAR(500) NOT NULL,
 XMLMessage VARCHAR(4000) NOT NULL,
 realTime INTEGER NOT NULL,
 persistent INTEGER NOT NULL,
 SGtimestamp VARCHAR(22) NOT NULL,
 PRIMARY KEY (databaseTableId));

CREATE TABLE autoKeys (
 KeyName VARCHAR(32) NOT NULL,
 KeyValue INTEGER NOT NULL,
 PRIMARY KEY (keyName));

MySQL

drop table entraPAQ;
drop table adelantePAQIIG;
drop table adelantePAQ;
drop table entraPAQIIG;

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 280 of 288

drop table SEPdatabaseTable;
drop table databaseTable;
drop table autoKeys;

CREATE TABLE entraPAQ (
 entraPAQId INTEGER NOT NULL,
 XMLMethodDescription BLOB NOT NULL,
 SGtimestamp VARCHAR(22) NOT NULL,
 notificationName BLOB NOT NULL,
 PRIMARY KEY (entraPAQId));

CREATE TABLE adelantePAQIIG (
 adelantePAQId INTEGER NOT NULL,
 notificationName BLOB NOT NULL,
 SGtimestamp VARCHAR(22) NOT NULL,
 PRIMARY KEY (adelantePAQId));

CREATE TABLE adelantePAQ (
 adelantePAQId INTEGER NOT NULL,
 serviceName BLOB NOT NULL,
 XMLPacket BLOB NOT NULL,
 realTime INTEGER NOT NULL,
 persistent INTEGER NOT NULL,
 SGtimestamp VARCHAR(22) NOT NULL,
 PRIMARY KEY (adelantePAQId));

CREATE TABLE entraPAQIIG (
 entraPAQId INTEGER NOT NULL,
 serviceName BLOB NOT NULL,
 XMLMessage BLOB NOT NULL,
 realTime INTEGER NOT NULL,
 SGtimestamp VARCHAR(22) NOT NULL,
 PRIMARY KEY (entraPAQId));

CREATE TABLE SEPdatabaseTable (
 SEPdatabaseTableId INTEGER NOT NULL,
 serviceName BLOB NOT NULL,

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 281 of 288

 XMLMessage BLOB NOT NULL,
 realTime INTEGER NOT NULL,
 SGtimeStamp VARCHAR(22) NOT NULL,
 PRIMARY KEY (SEPdatabaseTableId));

CREATE TABLE databaseTable (
 databaseTableId INTEGER NOT NULL,
 requestId INTEGER NOT NULL,
 serviceName BLOB NOT NULL,
 XMLMessage BLOB NOT NULL,
 realTime INTEGER NOT NULL,
 persistent INTEGER NOT NULL,
 SGtimestamp VARCHAR(22) NOT NULL,
 PRIMARY KEY (databaseTableId));

CREATE TABLE autoKeys (
 KeyName VARCHAR(32) NOT NULL,
 KeyValue INTEGER NOT NULL,
 PRIMARY KEY (keyName));

Oracle

drop table entraPAQ;
drop table adelantePAQIIG;
drop table adelantePAQ;
drop table entraPAQIIG;
drop table SEPdatabaseTable;
drop table databaseTable;
drop table autoKeys;

CREATE TABLE entraPAQ (
 entraPAQId NUMBER(38) NOT NULL,
 XMLMethodDescription VARCHAR2(4000) NOT NULL,
 SGtimestamp VARCHAR2(22) NOT NULL,
 notificationName VARCHAR2(500) NOT NULL,
 PRIMARY KEY (entraPAQId)
);

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 282 of 288

CREATE TABLE adelantePAQIIG (
 adelantePAQId NUMBER(38) NOT NULL,
 notificationName VARCHAR2(500) NOT NULL,
 SGtimestamp VARCHAR2(22) NOT NULL,
 PRIMARY KEY (adelantePAQId));

CREATE TABLE adelantePAQ (
 adelantePAQId NUMBER(38) NOT NULL,
 requestId NUMBER(38) NOT NULL,
 serviceName VARCHAR2(500) NOT NULL,
 XMLPacket VARCHAR2(4000) NOT NULL,
 realTime NUMBER(2) NOT NULL,
 persistent NUMBER(2) NOT NULL,
 SGtimestamp VARCHAR2(22) NOT NULL,
 PRIMARY KEY (adelantePAQId));

CREATE TABLE entraPAQIIG (
 entraPAQId NUMBER(38) NOT NULL,
 serviceName VARCHAR2(500) NOT NULL,
 XMLMessage VARCHAR2(4000) NOT NULL,
 realTime NUMBER(2) NOT NULL,
 SGtimestamp VARCHAR2(22) NOT NULL,
 PRIMARY KEY (entraPAQId));

CREATE TABLE SEPdatabaseTable (
 SEPdatabaseTableId NUMBER(38) NOT NULL,
 serviceName VARCHAR2(500) NOT NULL,
 XMLMessage VARCHAR2(4000) NOT NULL,
 realTime NUMBER(2) NOT NULL,
 SGtimestamp VARCHAR2(22) NOT NULL,
 PRIMARY KEY (SEPdatabaseTableId));

CREATE TABLE databaseTable (
 databaseTableId NUMBER(38) NOT NULL,
 requestId NUMBER(38) NOT NULL,
 serviceName VARCHAR2(500) NOT NULL,
 XMLMessage VARCHAR2(4000) NOT NULL,

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 283 of 288

 realTime NUMBER(2) NOT NULL,
 persistent NUMBER(2) NOT NULL,
 SGtimestamp VARCHAR2(22) NOT NULL,
 PRIMARY KEY (databaseTableId));

CREATE TABLE autoKeys (
 KeyName VARCHAR2(32) NOT NULL,
 KeyValue NUMBER(38) NOT NULL,
 PRIMARY KEY (keyName));

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 284 of 288

Appendix E. Login DB creation script5

MS SQL Server

CREATE TABLE SGuserData (
 userID INTEGER NOT NULL,
 userName NVARCHAR(64) NOT NULL UNIQUE,
 password NVARCHAR(64) NOT NULL,
 fullName NVARCHAR(128) NOT NULL,
 PRIMARY KEY(userID)
);

CREATE TABLE SGuserServices (
 userID INTEGER NOT NULL REFERENCES SGuserData (userId),
 serviceName VARCHAR(128) NOT NULL,
 PRIMARY KEY(userID, serviceName))

MySQL

CREATE TABLE SGuserData (
 userID INTEGER NOT NULL,
 userName VARCHAR(64) NOT NULL UNIQUE,
 password VARCHAR(64) NOT NULL,
 fullName VARCHAR(128) NOT NULL,
 PRIMARY KEY(userID)
);

CREATE TABLE SGuserServices (
 userID INTEGER NOT NULL REFERENCES SGuserData (userId),
 serviceName VARCHAR(128) NOT NULL,
 PRIMARY KEY(userID, serviceName))

5 Oracle script has not been tested

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 285 of 288

Oracle

CREATE TABLE SGuserData (
 userID NUMBER(12) NOT NULL,
 userName VARCHAR(64) NOT NULL UNIQUE,
 password VARCHAR(64) NOT NULL,
 fullName VARCHAR(128) NOT NULL,
 PRIMARY KEY(userID)
);

CREATE TABLE SGuserServices (
 userID NUMBER(12) NOT NULL REFERENCES SGuserData (userId),
 serviceName VARCHAR(128) NOT NULL,
 PRIMARY KEY(userID, serviceName)

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 286 of 288

Appendix F. Sample XML document for eVies
personal details

<?xml version="1.0" encoding="UTF-8"?>

<ServiceResults>

 <serviceName>EVAT_AQ</serviceName>

 <userName>XXX</userName>

 <timestamp>XXX</timestamp>

 <row>

 <tseElement>

 <name>TSE_EVAT_IS_CORRECTIVE</name>

 <value>true</value>

 </tseElement>

 <tseElement>

 <name>TSE_EVAT_CURRENCY</name>

 <value>Euro</value>

 </tseElement>

 <tseElement>

 <name>TSE_EVAT_DCL_NO</name>

 <value>XXX</value>

 </tseElement>

 <tseElement>

 <name>TSE_EVAT_YEAR</name>

 <value>XXX</value>

 </tseElement>

 <tseElement>

 <name>TSE_EVAT_TAX_OFFICE</name>

 <value>XXX</value>

 </tseElement>

 <tseElement>

 <name>TSE_EVAT_SUBM_DATE</name>

 <value>XXX</value>

 </tseElement>

 <tseElement>

 <name>TSE_EVAT_TRIMESTER</name>

 <value>XXX</value>

 </tseElement>

 <tseElement>

 <name>TSE_EVAT_RECEIVING_TAX_OFFICE</name>

 <value>XXX</value>

 </tseElement>

 <tseElement>

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 287 of 288

 <name>TSE_EVAT_RECEPTION_DATE</name>

 <value>XXX</value>

 </tseElement>

 <groupElement groupId="TSEG_EVAT_PERIOD">

 <row>

 <tseElement>

 <name>TSE_EVAT_PERIOD_END</name>

 <value>XXX</value>

 </tseElement>

 <tseElement>

 <name>TSE_EVAT_PERIOD_BEGIN</name>

 <value>XXX</value>

 </tseElement>

 </row>

 </groupElement>

 <groupElement groupId="TSEG_EVAT_CONTACT">

 <row>

 <tseElement>

 <name>TSE_EVAT_FILE_NO</name>

 <value>XXX</value>

 </tseElement>

 <tseElement>

 <name>TSE_EVAT_REG_AFM</name>

 <value>XXX</value>

 </tseElement>

 <tseElement>

 <name>TSE_EVAT_REG_ADDRESS</name>

 <value>XXX</value>

 </tseElement>

 <tseElement>

 <name>TSE_EVAT_REG_COMPANY_TITLE</name>

 <value>XXX</value>

 </tseElement>

 <tseElement>

 <name>TSE_EVAT_REG_FAX</name>

 <value>XXX</value>

 </tseElement>

 <tseElement>

 <name>TSE_EVAT_REG_PHONE</name>

 <value>XXX</value>

 </tseElement>

 <tseElement>

 <name>TSE_EVAT_REG_AREA</name>

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

 SMARTGOV Consortium Page 288 of 288

 <value>XXX</value>

 </tseElement>

 <tseElement>

 <name>TSE_EVAT_REG_TK</name>

 <value>XXX</value>

 </tseElement>

 </row>

 </groupElement>

 </row>

</ServiceResults>

