IST PROJECT 2001-35399

] W

& #

. “Smart
- Gov

A Governmental Knowledge-based Platform for Public

Sector Online Services

Project Number: IST-2001-35399

Project Title: A Governmental Knowledge-based Platform for Public
Sector Online Services

Deliverable Type: Public

Deliverable Number: D82

Contractual Date of 31-8-2003

Delivery:

Actual Date of Delivery: 17-10-2003

Title of Deliverable: User’s guide

WP contributing to the WP8

Deliverable:

Nature of the Deliverable: Report

Editor(s): Tomas Pariente Lobo, Pablo Fernandez Pardo

Author(s): Tomas Pariente Lobo, Pablo Fernadez Pardo, Stelios

Gorilas, Costas Vassilakis, Akrivi Katifori, Anna Charissi,
George Lepouras, Nick Adams, John Fraser, Ann
Mackintosh, Vassilis Stoumpos, Pavlos Kattoulas

Abstract: This deliverable constitutes the user’s guide of the tool developed in WP5 and
WP6. It presents how to use the SmartGov Front-End developing environment and the
way to deliver and maintaining services.

Project funded by the European Community under the “Information
Society Technologies” Programme (1998-2002)
© Copyright by the SmartGov Consortium.

The SmartGov Consortium consists of:

Partner’'s Name Acronym Role Country
University of Athens UoA Project Coordinator Greece
T-Systems Nova TNB Partner Germany
Indra Sistemas S.A. Indra Partner Spain
Archetypon S.A. ARC Partner Greece
Napier University NU Partner UK
General Secretariat for Information Systems GSIS Partner Greece
City of Edinburgh Council CEC Partner UK

Table of Contents

1
2

INErOUCEION e e 13
L@ Y] Y 14
2.1 INErOdUCEION e s 14
2.2 Platform client requirementsccooiii i 14
2.2.1 HardWare ... 14
2.2.2 SO WA e 14
2.3 SMArtGOV groUPS Of USEIS. . ittt it i e i i e 14
2.4 The Transaction Service LifeCcyCle....ooviiiiiiiiiiii i 17
The SmartGov front-end tool ..o 20
3.1 INErOdUCEION .o 20
3.2 INstallation ProCESS . vt 22
3.2.1 [=To U =T 0 4 1= | o= 22
3.2.1.1 HardWare ..o 22
3.2.1.2 SOfEWANE e 22
3.2.2 ENVIironment SetUpD ..oovviiiii i e 22
3.2.2.1 Installing and configuring the data components.................. 22
3.2.2.2 Installing the front-end ... 23
3.2.2.3 Configuring and populating the XML Repository 26
3.2.2.4 Pre-created users Structure..........oovviiiiiiiiiiiiiii e 27
3.3 Structure of the front-end ..o 28
3.3.1 CommMON FEAtUNES .o 28
3.3.1.1 Using a Web applicationc.coiiiiiiiii e 28
3.3.1.2 Managing SECHIONS ..uvviiiii i 28
3.3.1.3 Managing multi-lingual tables...........ccoooiiii 30
3.3.1.4 Managing other tables........cociiiiiiiii 31
3.3.1.5 Paginationc.ovuiiiiii 32
3.3.1.6 Actions applied to a SmartGov object........c.ccoviiiiiiiiin. 32
3.3.1.7 Associate knowledge units to the SmartGov elements.......... 33
3.3.1.8 Categorization of the SmartGov elements using taxonomy
nodes 34
3.3.1.9 Uploading files ..cuviiiiiii i 35
3.3.2 oo | g T =T [S 36
3.3.3 SMartGoV Portalccouiiei i 37
3.4 User-Roles Management. . oo i i i e e as 39
3.4.1 User-roles Portalccoiiiiiiiii 39
3.4.2 USEr EdifOr . e e 40

3.4.3 Group Editor....oovviiiiiii 41

3.5 Managing KNOWIEdge.iouiiiiiiiiii i e 43
3.5.1 The KU lfe-CyCle .o e e e 43
3.5.2 L=] o1 U1 o] o N 14O £ 44

3.5.2.1 (U 0 T o] PP 44
3.5.3 Retrieving KNowledgecoiiiiiiiii i 51
3.5.3.1 Taxonomy Editing tool......c.oooiiiiiiiii 51
3.5.3.2 Taxonomy Retrieving tool ... 56

3.6 Managing Service elementso e 58

3.6.1 The TS lfe-CYCle .o e 58
3.6.1.1 Designing the Service ... i 58
3.6.1.2 Integrating componentsccooviiiiiiiiiii 59
3.6.1.3 REOPENING SEIVICES vttt 61

3.6.2 Introduction and common task.........coiiiiiiiiii 61
3.6.2.1 INErodUCEiON ..o 61
3.6.2.2 Working with Validation Rules ... 61
3.6.2.3 MEENOAS + et 62

3.6.3 Service POrtal ...ovii i 63
3.6.3.1 TS POMEal e 63
3.6.3.2 FOrm Portal.....cooii i 63
3.6.3.3 TSE POrtal e 64
3.6.3.4 TSE Group Portal ..o e 64

3.6.4 Development of Transaction Service Components...........cocevennee. 65
3.6.4.1 INtroductionc i 65
3.6.4.2 Transaction Service (TS) Edition page.......ccoovvvviiiiiiininnnn. 66
3.6.4.3 OIS L 69
3.6.4.4 Transaction Service Elements (TSES) c.ovvvvviiiiiiiiiiiiiiiinnnnnns 73
3.6.4.5 Instantiated Transaction Service Elements (ITSEs) 76
3.6.4.6 Group of Transaction Service Elements (TSE groups) 78
3.6.4.7 Instantiated Group of Transaction Service Elements............ 82

3.7 Establishing links between the form visual elements and SmartGov

SeMAaNtiC EleMENTS ... s 85
3.7.1 Preparing the HTML fOrms ..o 86
3.7.2 Data export and file installation...........c.ooiiiii i 90
3.7.3 Link establishment ... 93

3.7.3.1 Inserting form-level tagscooiiiiiiii s 94
3.7.3.2 Inserting TSE group-level tagscovvviiiiiiiiiiiineas 98
3.7.3.3 Inserting TSE-level tags ...ccooviiiiiiiiiii e 104

3.7.3.4 Inserting KU-level tags.....cciviiiiiiiiiiiiiii i i 108
3.7.4 Final form appearanCecuviiiiiiii i e e 109
The SmartGov Integrator tool (ARC) c.iiiiiiiiiiii i i 110

4.1 INErOdUCEION .o 110
4.1.1 111121 0111 V2 110
4.1.2 Purpose, Scope and AUdIiENCEviviiiiiii i i i 110
4.1.3 Typesetting ConventionSoovviiiiiiiii e 110

4.2 ReQUINEMENES cu it 110

4.3 Environment Setup ... 111
4.3.1 Setup actions roadmapcooviiiiiii 111
4.3.2 Install Integrator. ..o v 113

4.3.2.1 Splash screen ..o 113

4.3.2.2 Installation type ...ooeiiiii 114

4.3.2.3 Installation direCtoryocviieiiiiiii e 115

4.3.2.4 ShOFECUL GroUP .o e 116

4.3.2.5 Tomcat server configuration.........c.cooiiiiiiiiiiii s 117

4.3.2.6 XML Repository configurationc.coviiiiiiiciiiiieene 118

4.3.2.7 Input / output directoriescovvviiiiiiii e 119

4.3.2.8 SGA configuration file......cooiiiiii i 120

4.3.2.9 SUMIMANY ettt e et e e e et e e e e e e e e enanenens 121
4.3.3 SGA/IIG DBS . .eiiiiieieie e 121
4.3.4 Populate IIG [0gin DB ..ot 122
4.3.5 Create IIG XML RepOSIitOry .iiviiiiiiiii i i i i nennee e 123
4.3.6 =) o= | TP 126

4.3.6.1 SPlash SCrEEN .. 126

4.3.6.2 Installation folderooviiiiiii 127

4.3.6.3 Shortcut foldero 128

4.3.6.4 | o o o =P 129

4.3.6.5 IIG ENEraPAQ . oeeie e 130

4.3.6.6 IIG AdelantePAQ ..cuveiiiie e 131

4.3.6.7 IIG XML REPOSITOINY cuviiiiiiiiiiii i ae e e 132

4.3.6.8 | (C N o Te 1 o I] = 2 133

4.3.6.9 LOg lISEENEIS v 134

4.3.6.10 SGA ENtraPAQiiiiiiiii e 135

4.3.6.11 SGA AdelantePAQ ..o e 136

4.3.6.12 Target IIG ..o 137

4.3.6.13 SGA NIttt 138

G TN S I S Y ¥ 1o o o =1 139

4.3.7 Use / Fine-tune installed IIG.....ccciiiiiiiiiiiiiiiiiie e e e 139

4.3.8 Set up document pre-population ..o 140
4.3.9 Create Integrator XML RepoSitory....c.cvviviiiiiiiiiiiiiie i nineeeas 141
4.3.10 Populate Integrator XML RepoSitory.....cccovviiiiiiiiiiiiiiiii i ineans 144
4.3.11 Configure the deployment Servercciviiiiiiiiii i 147
4.4 LU or Yo [T 1 1 Lo [148
Communication services: SmartGov Agents. Installation, configuration and
U= T 151
5.1 PrereqUISIEES .vvie i 151
5.2 Bundle contents and installation ..o 151
5.3 Configuration, Property And DTD fil€S......ceiiiiiiiiiiiii e 154
5.3.1 Property files ..o e 154
5.3.2 Configuration files ..o 158
5.3.3 DTD fllES criiiiii i 161
5.4 Database SetUp ...ooviiiiii i 164
5.5 Package Documentation.......covieiiiiiiiii i 165
5.5.1 gr.uoa.di.SGLogging Package.........c.coviiiiiiiiiiiiiii e 165
5.5.1.1 Using the logging facilitiesccooviiiiiii e 166
5.5.1.2 EX AP o e 167
5.5.2 gr.uoa.di.SGLogListener Packagecooeiiiiiiiiiiiiii i 168
5.5.3 gr.uoa.di.SGANI Packageccciiiiiiiiiiiii i e 169
5.5.3.1 The SGANI configuration fileccoiiiiiiiiii 170
5.5.3.2 The SGANI property file.. oo 172
5.5.3.3 The Entra PAQ property file...coooiiiiiiiiiiic i 173
5.5.3.4 Extending the SGA-NIcoiiiiiiiiii e 174
5.5.4 gr.uoa.di.IIGNI PacKkageivviiiii i i i e i e ceeas 174
5.5.4.1 Using the IIG Notification Initiatorooovviiiiiiiiin, 174
5.5.4.2 The IIG-NI configuration file ... 176
5.5.4.3 Extending the IIG-NIL........ccoiiiii e eeees 178
5.5.4.4 General format of the IIG-NI configuration file 179
5.5.4.5 The SGA Adelante PAQ property file.....cooovieiiiiiiiiiens 181
5.5.5 gr.uoa.di.dispatcherlIG Package........ccoiiiiiiiiiiiiiii e 181
5.5.5.1 The dispatcher property file ... 182
5.5.6 gr.uoa.di.dispatcher Packageccoviiiiiiiiiiiiii e 183
5.5.7 gr.uoa.di.SGA Package.......ccoviiiiiiii i 184
5.5.7.1 The SGA property file. ..o 186
5.5.7.2 The SGA Adelante PAQ property file.....coooiiiiiiiiiiiens 193
5.5.8 gr.uoa.di.SGAClient Package.........ccoiiiiiiiiiiii e 193

5.5.8.1 Package gr.uoa.di.SGACIlient.......cooviiiiiiiiiiiiiic i 194

5.5.9 gr.uoa.di.SSLSGACIlient Packageccoiviiiiiiiiiiiiiii i 195
5.5.9.1 Package gr.uoa.di.SSLSGACIient......cccviiiiiiiiiiiiiiiciiee 196

5.5.10 gr.uoa.di.DatabaseStore Package........ccoviiiiiiiiiiiiiiiiiiic i 197
5.5.11 gr.uoa.di.lIGServer Package........ccooiiiiiiiiiiiiiiii i 201
5.5.12 gr.uoa.di.SSLIIGServer Packagec.ccoviiiiiiiiiiiiiiic i 202
5.5.13 Prerequisites for using SSL communication..............ccoeviiiennnn. 204
5.5.14 gr.uoa.di.IIGMyP packageccoiiiiiiiiiiiiiiiiiii e 205
5.5.14.1 The IIGMyP property file....c.cooiiiiiii e 210
5.5.14.2 The IIG Entra PAQ property fileccoeeiiiiiiiiens 218

5.5.15 gr.uoa.di.SEPDatabaseStore Package............ccooviiiiiiiiiiiiiinnnnnn 218
5.5.15.1 Package gr.uoa.di.SEPDatabaseStore..............covviiviiinnnnnn. 220

5.6 Database objects documentation - IIG and SGA Entra and Adelante PAQ
1o o Lo o =P 223
5.6.1 The autokeys table ... 223
5.6.2 SGA ENtra PAQ vttt s e 224
5.6.3 SGA Adelante PAQ .. ciiiri it 224
5.6.4 | R o o = AN L 226
5.6.5 IIG Adelante PAQ ... 227
5.6.6 databaseTable ... 228
5.6.7 SEPdatabaseTable ..o 229
5.6.8 SQL Commands for creating the database tables...................... 231

5.7 SMartGoVv SYStem SerVIiCaS ..uviiiiii i i i e 233
5.7.1 Document Storage and Retrieval Servicescoovvivviiiiiiiiinns 234
5.7.1.1 Preparing the Document Storage and Retrieval Service 238
5.7.1.2 JavaDoc for the Document Storage and Retrieval Service ...239
5.7.1.3 JavaDoc for the IIGServiceResultscoovvviiiiiiiiiiinnnne. 240

5.7.2 Login Validation Serviceccviviiiiiii i i 243
5.7.2.1 Preparing the Login Validation Service..........cooviiiiiiiinnns 245

LS I @ o [1 =1 o] o = PP 247
A = =1 '~ [0l PP 248
Appendix A. Glossary of elements ..o 249
Appendix B. Validation Rules User’s Guide and Referencec.ccoeueee. 251
B.1 Attaching validation rules to SmartGov entities............ccoeviiiiinnnn. 251
B.2 Working with validation rules.........coooiiiiii 252
B.3 Validation rule method configuration ... 253
B.3.1 Native language validation checks ... 254
B.3.2 SmartGov language compact rulescooeviiiiiii 255

B.3.3 FUIl RUIES Lvii e 260

B.3.3.1 Condition Part — Data typescciviiiiiiiiiiii i 261
B.3.3.2 Condition Part = FUNCLIONS ..o 262
B.3.3.3 ACEION LIS e e 263

B.4 Reference Tables ... 264
B.5 R EIENCES .. 268
Appendix C. Front-end databases scriptscoooviiiiiiiii 269
User-roles databaseooviiiiiiiii 269
IS @ Y =T V= ol 269
1171 ©] PSP PT 272
Outer users databaseooiieiiiii 275
IS @ Y =T V7 ol P 275
1171 @] PSP TT 276
XML Repository database ..o 276
IS @ Y =T V= ol 276
12T 0 T 277
Appendix D. IIG / SGA DBs creation scriptoooviiiiiiiiiiiiii e 278
IS @ Y =T V= ol PP 278
Y@ PP 279

(@] =T o = PP 281
Appendix E. Login DB creation SCript....cc.ooiiiiiiiiiiiii i 284
SRS O IS <Y oY T PP 284
Y@ PP 284

1@] =T = PP 285
Appendix F. Sample XML document for eVies personal details 286

Table of Figures

Figure 1 — SmartGov user groups and their main taskscccooviiiiiinnns 15
Figure 2 — SmartGov service life-cycle phases road mapcocoveviiiieiiinnnennn. 18
Figure 3 — Front-End road map ..coooiiiiiiiii i 21
Figure 4 - Sections in a Front-end page (Header, Life-cycle..)..cccooviiiiiiiiiiinnnnn, 29

Figure 5 - Sections in an editable page (Header and Knowledge Unit Statistics are

expanded, the other sections are collapsed).......cccooiiiiiiiiiiiiiiiic i 30
Figure 6 — Multilingual table (the selected area)cocoevviiiiiiiiiiiii i 31
Figure 7 — Multiple values table (the selected area)cccovvviiiiiiiiiiiiinn, 31
Figure 8 — List with pagination ..o 32
Figure 9 — Action bar [0Cationccciiiiiii i 32
Figure 10 — Action bar @XamPle. .o e 32
Figure 11 — List of linked KUS ..ottt i i i e 33
Figure 12 — SeleCt KUS Page oo ittt iiie i i s et e 34
Figure 13 — Linked taxonomy nodes listcciiiiiiiiiiiii e 34
Figure 14 — Select taxonomy NOAES PAgE ...oviiiiiiiiiiiiiiiiii e 35
Figure 15 — Upload file pageociiiniii e 35
[o[U T T N o e | [N o =Y =N 36
Figure 17 - SmartGov Portal pagecoiviiiiiiii i 37
Figure 18 - User Portal pagecouviiiiiiii e 39
Figure 19 - Groups Portal pageccoiuiiiiiiiiiii i e e 40
Figure 20 - User EditOr page ... ccooviiiiiiiiiiii i e e 41
Figure 21 - Group EditOr Page.....coiiiiiiiiiiiiii i 41
Figure 22 - Group EditOr PAge.....coiiiiiiiiiiiiii i e 42
Figure 23 — Linking @ user t0 @ group Pageccoceiiiiiiiiiiiiiiiiiiie e iiesiaaseseaness 42
Figure 24 - Knowledge life-cycle figure.......cooviiiiiiiiii e 44
Figure 25 — KU Portal page.....ooviiiiiiiiiii s e a e 45
Figure 26 - KU Edition Page..c.ciiiiiiii i i i ettt e 46
Figure 27 - KU Section edition page.....ccviiiiiiiiiiiiiii i 48
Figure 28 - KU read-0only Pageoiiiiiiiiiiiii it 50
Figure 29 - KU read-only reduced pageccciiiiiiiiiiiii i i i 51
Figure 30 - Taxonomy portal......coviiiiiiiiii i i e 51
Figure 31 - Edit TaXONOmMY Pag ..ttt e it sae e eae e aaee s 52
Figure 32 - Edit Taxonomy NOAE PAgE ...cuiiiiiiiiiiiii i i e 53
Figure 33 - Select nodes by TaXonNOmMy Page...ccuiiiiiiiiiiiiiii i i eneeeaaeas 55
Figure 34 - Select nodes by Node Id page (after searching ‘Node60%°)............ 56

Figure 35 - Taxonomy Retrieval tree view page.......c.ccoviiiiiiiiiiiiiiiiciiic i, 57

Figure 36 - Taxonomy node related objects pagecovviiiiiiiiiiiiiiiiin i, 57
Figure 37 — TS life-Cycle figure.. .o i 58
Figure 38 - Validation CheCKciiuiiiiiiiii i e i 62
Figure 39 - SmartGov TS Portal ..o 63
Figure 40 - SmartGov Form Portalcccoviiiiiiiii i 64
Figure 41 - SmartGov TSE Portal.......ccviiiiiiiiiii e 64
Figure 42 - SmartGov TSE Group Portalcooiiiiiiiiii e 65
Figure 43 - TS Edition Page ...cociiiiiiiiiiiii s aes 66
Figure 44 — Form set definitionooeiiiiii e 68
Figure 45 - TS read-0nly PAgecoiiiiiiiiiiiiiiii i s re e 69
Figure 46 - FOorm Edition page......ccvviiiiiiiiiiii i 71
Figure 47 — Select ITSE to include in @ formcooiiiiii i 72
Figure 48 - Form Read-Only page......cciiiiiiiiiiiiii e e e 73
Figure 49 - TSE Edition Pageoooviiiiiiiiiiii it a s e 74
Figure 50 - TSE Read-Only PAge ...cciieiiiiiiiiii it re e sae e eas 75
Figure 51 — Instantiated TSE Edition pageccooiiiiiiiiiiiii e 77
Figure 52 - ITSE Read-Only Pagecceiiiiiiiiiiiiiii i e s s e e 78
Figure 53 - TSE Group Edition Page ..c.cciiiiiiiiiiiii i e aea 80
Figure 54 - TSE Read-Only pPage ..c.oviiiiiiiiiii i i eees 81
Figure 55 — Instantiated TSE Group Edition page........cccovviiiiiiiiiiiiic i 82
Figure 56 - ITSE Group Read-Only Page....coiiiiiiiiiiiiii i it it naee s 84
Figure 57 - A SmartGov form designed in the DreamWeaver MX environment 88
Figure 58 — The SmartGov form rendered in a browserccocoeiviiiiiiiiiienn, 88
Figure 59 — Graphical front-end for the export procedureccccoeviiiiiinnnnn. 91
Figure 60 - Enabling the use of SmartGov tagsccciviiiiiiiiiiiiii e 92
Figure 61 — Code format preferences dialog.......cccoviiiiiiiiiiiiiiiiiiic e, 93
Figure 62 — Enriched “Insert tag” DreamWeaver MX dialog............ccccivviiiinnnnn. 94
Figure 63 — Inserting the “form begin” tagcccoviiiiiiiiiiii i 95
Figure 64 — Deleting the short form title......ccooiiiiiii i, 96
Figure 65 — Deleting the form validation error placeholder text 97
Figure 66 — Selecting the first row hosting TSE group elements 99
Figure 67 - Selecting the proper row when inserting the SGGROUP_groupId_END tag........ 100
Figure 68 — Deleting the short group descriptionc.cooiiiiiiiiiiiiiiiiiieee 101
Figure 69 — Deleting the “add row” control placeholderc.cooiiiiiiinnn. 102
Figure 70 — Deleting the “add row"” error messages placeholder 104
Figure 71 — Deleting the TSE placeholder ... 105
Figure 72 — Included TSEs subfolder........cooeiiiiiii e 106

Figure 73 — Deleting the short TSE description.......cccooviiiiiiiiiiiiiiiiic e 107

Figure 74 — Removing the TSE error messages placeholdercocovvviinnnns 108
Figure 75 — Deleting the help anchor placeholderc.cooviiiiiiiiiiiiiiiiiiien, 109
Figure 76 — Form design view after link establishment..............oooiiiin, 109

Figure 77 - XML schema for XML documents managed through the storage and

FEErEVAl SEIVICES ... 235
Figure 78 — XML schema for calls returning multiple documents..................... 237
Figure 79 - JavaDoc for document storage and retrieval services.................... 240
Figure 80 - Property file for login validation servicec.ccoviiiiiiiiiiiiinnne. 244
Figure 81 - Reply for a validation request presenting invalid credentials........... 245
Figure 82 — The Validation Rules section in @ form..........cocoiviiiiiiiiiin, 252
Figure 83 - Rule editing page.....cciiiiiiiiiii e 253
Figure 84 — Validation rule main editing pagecccooviiiiiiiiiii e 254
Figure 85 - Entering validation methods in native languagecocoieeinins 255
Figure 86 — Compact SmartGovLang validation method editing...................... 256
Figure 87 — Compact SmartGovLang validation method editing...................... 256
Figure 88 — Compact SmartGovLang validation method editing...................... 257
Figure 89 — Compact SmartGovLang validation method editing...................... 258
Figure 90 — Compact SmartGovLang validation method editing...................... 259
Figure 91 — Compact SmartGovLang validation method editing...................... 260
Figure 92 — Full SmartGovLang rule editingcccoiiiiiiiiiiiii e 261

List of Acronyms

Acronym Explanation

API Application Programming Interface
BEAN Java Bean

DSN Data source name

JDBC Java Database Connectivity

JSP Java Server Page

KU Knowledge unit

LDAP Lightweight Directory Access Protocol
MVC Model-View-Controller

PA Public Authorities

RDBMS Relational Database Management System
RUP Rational Unified Process

SGA SmartGov agent

TS Transaction service

TSE Transaction service element

TSE Group Group of transaction service element
UML Unified Modeling Language

WAP Wireless Application Protocol

WML Wireless Markup Language

XHTML eXtensible Hypertext Markup Language
XML Extensible Markup Language

XSLT Extensible Style sheet Language Template

1 Introduction

The aim of the SmartGov User’s Guide is to provide a reference help about how to
use the SmartGov platform to desing and deliver e-forms based services. The
implementation details and the platform overview are available in the deliverables
D51-61 [D51-61], D52 [D52] and D62 [D62].

The document firstly provides an overview about what the users will be able to
perform with the SmartGov tool and then introduces the different tools included

for the platform.

2 Overview

2.1 Introduction

Some of the parts included in this section also exist within the previous
deliverables (mostly in D41 and D51-D61), but are also included here for

completeness purposes.

2.2 Platform client requirements

The SmartGov platform requires several client requirements related with

hardware and software.

2.21 Hardware

No special requirements of hardware are required. A common winows-based PC is
enough to run the SmartGov client-side. As an example, the minimum
requirements could be:

» PC Pentium 3, 1 GHs or higher

> HDD 2GB or higher

» RAM 64MB or higher

2.2.2 Software

» Browser: Microsoft Internet Explorer 5.5 or superior (recommended)

» Configuration: In Tools/Internet options/General/Configuration, for option
“Check if there are new versions of the saved pages” check “Every time
the page is visited”.

NOTE: Important. If the Configuration of the browser is not set, the Front-end
tool could present problems with the cache of the pages, resulting in problems

with the data consistency.

2.3 SmartGov groups of users

Five user groups or roles have been identified. These groups are: Managers,
Domain Experts, Information Technology Staff (IT Staff), Administrators and End
Users.

The roles regarding the Transaction Service Lifecycle are shown in the Figure 1.

£ Knowledge (KU)

| oy
- ()@ Pieces (TSE, TS, Forms)

Work Group
{Admin., Manager,

o
:l> rﬁ“ Service Development

Designing Form Layout

Integration & Deployment

s
o
% Tn

A" Enabling comm. services

:ﬁéﬁ Service Operation

Figure 1 — SmartGov user groups and their main tasks

» Managers: The managers are responsible for organising and supervising

public services. They make decisions about the implementation of new
services or the alteration of existing ones. In order to accomplish this task,
they need to have a strategic view of the provision of services. Managers
are able to decide about future changes in the service or the creation of a
new one. Usually, there is more than one manager in the same Public
Authority, who wishes to have access to the same data and statistics.

Domain Experts: The domain experts possess the necessary background
knowledge for the design and the implementation of a public service. This
knowledge includes the legislation that a service is based on, that is laws,
processes, directives, prerequisites and so on. Domain experts play a
consultative role to the managers for the design, evaluation and possible
alterations of public services. To this end, they need to define and obtain
statistics and metrics. They design the interface of the service and the
structure of the form, which is what service users will fill in. They attach
their knowledge about legislation, supporting procedures or required
documents to the form elements. They define validation checks, which are
not limited to data type constraints, but also include inter-element

relations that should be satisfied within the form or even relations that

>

should hold between different forms. Finally, domain experts provide end
users with accompanying manuals, instructions and sets of examples, to
help them use the service. It is possible that more than one domain expert
works for the implementation of the same service, while each domain
expert may participate in the lifecycle of more than one service, when
his/her expertise is needed.

During the development of an e-service, the domain experts may have to
collaborate with the IT staff to communicate to them their domain
knowledge. Collaboration has to take place when the tasks to be
performed require higher technical skills than the domain experts possess,
and when the links to the installed IT systems or third party systems have
to be established.

IT Staff: The IT Staff possess the necessary technological knowledge for
the development of an electronic public service. They design the system
from scratch, defining system architecture, database schema, user
interface and functionality. They also provide the necessary interfaces for
data exchange between the electronic service platform and the back-end
systems. During the life cycle of the service they have to collaborate with
the domain experts to integrate the domain knowledge, which is of vital
importance, to the application. At the same time they play a consultative
role to the managers and the domain experts with respect to the
technological aspects of the e-service. In addition, they need to define and
obtain technical level statistics and metrics to acquire valuable insight
about the efficiency of the system. Furthermore, they are responsible of
the maintenance of the e-service. They have to handle omissions and
problems that may occur in the electronic services, which could be for
example programming errors, alterations caused by changes of the
supporting legislation, modifications suggested by the managers or the
domain experts.

Administrators: The administrators support the platform users, which are
mainly Public Administrators (managers, domain experts and IT staff) and
indirectly the end users. They help them to familiarize themselves with the
environment of the e-service and cope with possible problems that may
occur. This support is offered via e-mail or telephone and may produce
helpful feedback to the IT staff about the usability of the e-service. They
are also responsible for the management of user accounts, the integrity of
the data (back up functions etc.) and the security of the system. One of

their tasks is also the specification of log files, which contribute not only to

2.4

the accountability and non-repudiation but also to the observation of the
system performance and the production of qualitative measurements such
as system usability, identification of common errors made by the users
etc.

End User: The end users are the citizens or enterprises that make use of
the service. These are not users of the SmartGov tool in the proper sense,
because they are only going to use the result of the platform and not the

SmartGov platform itself.

The Transaction Service Lifecycle

Within the lifecycle of a transaction service (i.e. a service that includes filling and

submission of forms, whose data are then processed by an organisational back-

end system), the following phases may be identified:

1.
2.

The manager decides to implement a new service
The manager creates a working group, consisting of domain experts, IT

staff, managers and service workers.

3. The group produces the service requirements

The group derives the service specifications (process model)

5. The group develops the transaction service elements

a. Forms (domain experts and possibly IT staff)

b. KUs: Knowledge Units (mainly domain experts)

TSEs: Transaction Service Elements (domain experts and IT staff)
Validation checks (Domain experts and IT staff)

Links to back-end systems (mainly administrators)

o a0

Managerial statistics (Managers)
g. IT-related statistics (IT staff, domain experts).
IT staff and administrators integrate elements
IT staff and administrators test the new service
The group evaluates the new service

The service is deployed

. Service operation and maintenance
. Collection of feedback
.Service improvement

. Discontinuation of a service

. Integration Enabling
Defining i & e Communication
Deployment Services

the Service

Maintenance

Figure 2 — SmartGov service life-cycle phases road map

Not all of these phases are supported by the SmartGov platform. In particular,
phases 1-2 involve managerial actions, such as feasibility studies and human
resource management. Phase 2 is partially covered Within phases 3 and 4 the
initial definitions and documentation (KUs) are collected and entered in the
SmartGov platform. The SmartGov platform comes into full play during phases 5
and 6, where the various transaction service components are developed and
integrated. After the integration step in phase 6, the electronic service is
instantiated and installed on an internally accessible server for testing and
evaluation. These phases may trigger further actions within phase 5, producing
new versions of the electronic service, which are again tested and evaluated
internally in phases 7 and 8 respectively. The SmartGov platform will not provide
tools for service testing and evaluation, but is responsible for generating the
instantiated service version.

When the service has reached a satisfactory state, it is deployed on a publicly
accessible server (phase 9) so that it can be delivered to the end-users. Service
deployment is similar to installing the service on the test environment of phases 7
and 8, with the only difference being the accessibility (and possibly the scale) of
the server.

Once deployed a service enters the operation and maintenance phase (10),
during which end users access the service. Throughout the operation and
maintenance phase, feedback is collected both by end users and via the statistics
collection mechanisms of the SmartGov platform (phase 11), which will be
exploited for service improvement (phase 12). In these phases, the SmartGov
platform offers support for statistics collection, user account management and
database backup and recovery.

Finally, if a service becomes obsolete (for example, due to changes in legislation,
an expiration deadline, or even because it has not been proven to be popular

enough to justify its delivery and maintenance costs), it can be discontinued. In

such cases, delivery of the service through the dissemination platform should
cease and, depending on (a) the possibility that the service will go live again and
(b) organisational policy, it might be required that the SmartGov platform objects

created specifically for this service will be purged.

3 The SmartGov front-end tool

3.1 Introduction

The SmartGov front-end is responsible for providing a development environment
for managing knowledge, developing and populating the design of the elements
that formulate the different transaction services. The repository populated using
the SmartGov front end will be the entry point to the Integrator. This
development environment is available to the actors directly involved in the
lifecycle of electronic transaction services, namely domain experts, IT staff and
managers. The actors employ the SmartGov front end to populate, query and
modify the knowledge and transaction services repositories.

Firstly this chapter explains the process to install and configure the Front-end,
and later it gives an explanation about how the front-end works. The front-end is
a web-based application with a portal-like appearance that allows actors to easily
define and query the services. In this section, some common features and the
navigation methods are explained.

Once introduced the basic functionality, the different areas of the tool will be
described: users management, knowledge management and Service elements
management.

The figure 3 shows a quick view of the main functionality covered by the

SmartGov Front-End tool.

User Management: user system for
SmartGov platform. Each user could be
referenced by 0..n Roles. Scope means
where the referenced role is applicable
to the user (SmartGov platform, specific
Service or specific Work Group).

il
\

‘\
N

A

Taxonomy Editor

Taxonomy Content

SmartGov User Mgmt

User Attributes

Modes Scope Rales
x Task List Viewer: Through
Taxonomy Editor: Taxonomy the Task List users have KU Life-Cyel
structure will be defined here. New access and perform actions ie-A-yele
Nodes can be added, and already to KUs and TSs that they are Current State
existing nodes can be deleted, able to work with according Lt
modified or moved. to their orofile e
| Srounsl Portal /“'
.| Work Group Selector: Work m | Tasklist "' S il pEng
" Group can be selected. After ¢ 1
changing, the Services list wil Wl I Taxonomies 1
show the TSs that has been 4 : TS Life-Cycle
created from this Waork Group. [Sanvicas ™ 1 Current State
Work Group Management: allows y 1
the management of Work Groups, # - KU data
links users, and manages their /
files within th :
e e e ok Service List: e
A 4 Allow access
Work Group Mgmt to services i
WG Content :::tsbe?:c?gg o ‘
- n TS Editor
Isars Prafiles Work Group. >
B TS Content
TS List
Taxonomy Form List KL List
ol = lg:;';erggn:f —’ Life-Cycle | Routing
o o Objects Val Checks
Objects List: From a e =
taxonomy nodes all Stabistics | Taxononry

SmartGov objects can be

accessed through a list

I

vy

Yy

Yy

by

-

Figure 3 - Front-End road map

Form Editor TSE Group Editor TSE Editor KU Editor
Form Content TSE Group Content TSE Content KU Content
TSE G List} KU List Definition KU List Cefinition KU List Sections
TSEList | Layou TSELISt hya Checs Wil [hecie Links | KU List
Val Checks) Statistics |Taxonomy Statistics | Taxanomy Life-Cycle
Statistics | Taxonomy Statistics | Taxonomy

3.2

3.2.1

3.211

3.2.1.2

3.2.2

3.2.21

Installation process

Requirements

Hardware

CPU: Pentium III, 600 MHz
RAM: > 384 Mb
HDD: > 100Mb free space (depends on the number of hosted services)

Software

0OS: Windows 2000, Service Pack 3+

Servlet engine: Tomcat 4.1+

JDK: Java2 SE 1.4.2+

RDBMS: Microsoft SQL Server 2000 or Windows MySql 4.x

Environment setup

Installing and configuring the data components

The first required step to setup the Front-end involves creating the databases and
the XML Repository.

The Front-end requires three databases:

The user-roles database, which keep all the data related with the
workgroups defined in the tool, the users that belong to these groups and
the role or roles of these users.

The outer user database, which keep the basic data of users. This
database only contains a table, which may be created in previous
database. However, the script for this table is isolated from the other ones
because the platform is designed to use outer user systems -LDAP,
database system...- (always requiring an extra time to develop the
corresponding connectors) already existing in the organization where the
platform is installed, and, in that case, this table is not required.

The Xml store database, which will be shared with the integrator and that

will be the way to interoperate between both components.

To create these databases, the script contained in the Appendix C. must be

executed. The corresponding to the two first databases create all the structure,

but the last one only creates the database and grants access to users, whereas

the whole table structure and prepopulation of data will be made later, as

described in paragraph 3.2.2.3.

3.2.2.2 Installing the front-end

Once the required databases have been created, the web application will be
installed in the Servlet container. Therefore, the last version of the SmartGov.zip
file must be unzipped in the tomcat/webapps folder. Once this process has
finished, a folder called SmartGov must appear in the webapps folder.

After installing the web application, the next step is changing the configuration
files (smartgov.properties), to fit the characteristics of the environment where the
platform is being installed. This are the relevant properties defined in this

configuration file:

Property name

smartgov.databaseType
smartgov.bdUsers.user
smartgov.bdUsers.password

smartgov.bdUsers.driverClass

smartgov.bdUsers.url

smartgov.bdOuterUsers.user
smartgov.bdOuterUsers.password

smartgov.bdOuterUsers.driverClass

smartgov.bdOuterUsers.url

smartgov.bdXmlRepository.user
smartgov.bdXmlIRepository.password

smartgov.bdXmIRepository.driverClass

smartgov.bdXmlIRepository.url

smartgov.xmlRepository.serverName

smartgov.xmIRepository.portNumber

Most used values
e MySql
e MsSqlServer

Description
RDBMS used.

User with granted access to user
and roles database.

Password of the user specified in
the previous property.

JDBC Driver to access the user and
roles database.

db_user

egov

org.gjt.mm.mysql.Driver
com.microsoft.jdbc.sqlserver.SQLServerDriver
jdbc:mysql://<db_host_name>/<db_name>
jdbc:microsoft:sqlserver://<db_host_name>;DatabaseName=<db
_name>;selectMethod=cursor

Connection string to user and roles
database

User with granted access to outer
user database.

Password of the user specified in
the previous property.

JDBC Driver to access the outer
user database.

db_user

egov

org.gjt.mm.mysql.Driver
com.microsoft.jdbc.sqlserver.SQLServerDriver
jdbc:mysql://<db_host_name>/<db_name>
jdbc:microsoft:sqlserver://<db_host_name>;DatabaseName=<db
_name>;selectMethod=cursor

Connection string to outer user
database

User with granted access to XML
Repository database.

Password of the user specified in
the previous property.

JDBC Diriver to access the XML
Repository database.

xmlstore_user

egov

org.gjt.mm.mysql.Driver
com.microsoft.jdbc.sqlserver.SQLServerDriver

e jdbc:mysql://<db_host_name>/<db_name>

e jdbc:microsoft:sqlserver://<db_host_name>;DatabaseName=<db
_name>;selectMethod=cursor

Connection string to XML
Repository database.

Name of the server where the XML
Repository database is hosted.
Port to access the XML Repository
database.

madarrgesdoc03

e 3306 (for MySQL)
e 1433 (for Ms Sql Server)

Property name

smartgov.xmIRepository.databaseName

smartgov.xmIRepository.user

smartgov.xmlRepository.password

smartgov.xmIRepository.URL

smartgov.xmlIRepository.selectMethod

smartgov.xmIRepository.com.archetypon.xml.
store.datasource.provider

smartgov.xmIRepository.com.archetypon.xml.
store.dbms

smartgov.xmIRepository.com.archetypon.xml.
store.datasource.classpath

smartgov.availableLocales

Most used values Description

Name of the XML Repository
xmistore

database.

User with all the privileges granted

on XML Repository database

egov Password of this user

e jdbc:mysql://<db_host_name>/<db_name>

e jdbc:microsoft:sqlserver://<db_host_name>;DatabaseName=<db
_name>;selectMethod=cursor

xmlstore_user

Connection string to the XML
Repository database.

(Only required if Ms. SqlServer is

cursor used)
e com.mysql.jdbc.jdbc2.optional.MysqglDataSource Datasource class to access the
e com.microsoft.jdbcx.sqlserver.SQLServerDataSource XML Repository database.

°* MySQL 4x RDBMS type

Microsoft SQL Server 2000
.\webapps\\SmartGov\\WEB-INF\\lib\\mysql-connector-java-3.0.7-
stable-bin. jar

Datasource class path

Available locales for the Front-end
es,en,el users. The order is important,
because the first one is the default.

There are two pre-created configuration files, distributed with the installation in
the SmartGov/WEB-INF folder: smartgov.properties.mysql and
smartgov.properties.sqlserver.
The corresponding file to the RDBMS used for the platform must be renamed to
smartgov.properties file, and then it must be modified, according to the following:
e Changing the name of the server hosting the database in the following
properties:
- smartgov.bdUsers.url
- smartgov.bdOuterUsers.url
- smartgov.bdXmiRepository.url
- smartgov.xmlRepository.serverName
- smartgov.xmlRepository.URL
e Changing the value of the property
smartgov.xmiIRepository.com.archetypon.xml.store.datasource.cla
sspath to the absolute path where the JBDC driver is located (jar file or a

directory where the driver is unzipped).

Also some changes are required to configure and populate the Xml Store with the
initial elements that are included in the platform. To configure access to the
repository is required an update in the integrator.X.properties (where X is the
RDBMS type), located in the webapps/SmartGov/scripts folder. This file must be
updated to reflect the name of the server where the database is hosted, as
described in the Integrator guide, in section 4.3.2.6. If the Integrator has been

already installed, the integrator.properties file can be reused.

3.223 Configuring and populating the XML Repository

The “user and roles” and “outer users” databases are prepopulated with a set of
users in the scripts used to create them. However the Front-end uses a more
sophisticated way to create all its structure and to load elements in the platform.

Firstly, to create the Xml Repository, with the required structure, there is a file in
the folder “webapps/SmartGov/scripts” called “createXmlRepository.BAT"”. This
.bat file uses an XML file ("exampleOfRepositoryConf.xml” in the same folder) to
create the repository and all the indexes required by the Front-end and the
Integrator. Therefore, once executed this file, it's not necessary to follow the
steps described in paragraph 4.3.9, because the XML Repository for the
Integrator will be already created. Once this program has been executed, it can

be checked in the XML Repository database, which was empty, that some tables

have been created and populated. Therefore, the XML Repository is ready to be
used.

Please note that this program uses the smartgov.properties file previously
described, so this file must be appropriately modified before proceeding to
configure the repository.

Although with the previous step the platform is ready to be used, it is better, in
order to take advantage of all the capabilities of the SmartGov Front-end and to
make easier its use to the users, to load some pre-created elements in the
repository. The usual elements to load are pre-created Taxonomies and KUs,
which enrich the Front-end, providing support and knowledge to users. Also some
already created services may be loaded, in order to provide examples of the use
of the different elements.

To load the selected elements, it would be used the Document Crawler, which can
be launched executing “Document Crawler.BAT” in the folder
“webapps/SmartGov/scripts”. The usage of this utility is described in paragraph
4.3.10. Please note that, as properties file, can be selected the already configured
for the integrator if it has been already installed, or the file modified in the
previous paragraph (“integrator.X.properties”) which is located in the same folder
that the .bat file.

With the Document crawler can be loaded in the system the taxonomy and the
KUs available in the distribution of the Front-end, and also any pre-created

service, that may act as example for future developments.

3.2.24 Pre-created users structure

The DB scripts included in Appendix C. to create users databases create a set of

users, all belonging to group “Test”, with the following characteristics:

User Id Password Role Roles in group Test
user_expert user_expert Expert TS editor
user_manager | user_manager | Manager KU editor, TS editor
user_staff user_staff IT Staff KU editor, TS editor
administrator |administrator |Administrator|KU editor, TS editor

3.3 Structure of the front-end

3.31 Common Features

3.3.11 Using a Web application
Some very basic concepts that a user must remember when using a web
application:

> URLs

When a user works with a web application -filling fields, navigating pages,
opening links- the URL shown in the Address bar of the web browser is
changing almost with every action. It is not recommended to “bookmark”
a different URL from the URL defined to access the logon page, because
the use of these “temporal” URLs may cause errors and unexpected
behaviour.
» Wait until the page is loaded
When a button or a link is clicked, the user must wait till the page is
completely loaded, because if not, the loaded page could not work
correctly.
» Using the Tab
The tab key can be used to move the “focus” (where the cursor is located)
from one field to other, or to links or other elements defined in a page.
This is very useful when filling a form.
» Using the Mouse
The mouse can be used in several ways when navigating a web page:
- To move to other page: left-clicking once in a link.
- To set the focus in one field: left-clicking once on the field.
- To move around the page: Using the bars at right and below the

page, as in any other “Windows” application.

3.3.1.2 Managing sections

Many of the pages in the Front-end application are divided in sections. These
sections have a double purpose: organize the data, and make easier viewing this

data in screen.

T Knowdedge Unit Viswing - Micresolt Internet Dapleres

| #mve - & - @[@ Detegeds SiFwordos Prtimeds |54 S G E WY

. PERSORAL_THCOME_FORM_KLI Type Bagt Practics
e Abstract

=] Halp on parsonal incorma form T session v lagsl Plesss chack sguin tha incoma you hevs declams,

& :u.uu.u u'lnrrqbpuu Edusang " wh 5 nomkS. M 2 § ima 12 B 0%
Amthar: Bt Eruation Date: 13/0872 547
Fhake] Last aspidates PRI]
Saevicn Expiey: Tar Expiry Dats: 13/ 08 LBLT

S R MR EEes

A e e e ‘Ssclion Kasna: | e}

Auldressad to1 Ml Fiolug it It i sddraprad to svaryons
e erption
Harne omtent
@ Eutra I you naad exira halp. plaaie conts® tha admreiirstar
[R, Bév penslacms sndbov fofBua, Ao yare n o & avh Tou ylpou
Linkz
arna WHL
B sdminicration @ htalixeeasminissansEmin
Limke 1

a Becrgnipenn a ot e i ol

Thars ir nz KU linkad.

Thare i no Tawanamy node Anked

5 Ufecychs log
Date Prerfomes State Cammsnts
AL i it S i
' B 5|

=i : I T

Figure 4 - Sections in a Front-end page (Header, Life-cycle...)

In edition pages (see Figure 5), the user can interact with these sections,
collapsing or expanding them, clicking in the triangular icon located in the left of

the title bar of the section.

X knowdedge Unit Cdition - Micesoft Internet Puplores

|| deatrts = & - D [F] A Dieosouds SFwortes (rmeds JQ'JEJ&E_

g St o e S O OO

C

Actionst [J Spprose

1 I Tyne [ee &1
e Abstract
[sparicn 51 | El

Type of knonledge: & innovstive 1 Adesrcs T Cors Complexity F pagdium High 1 Low

Relewance = padiven T Hagh T Lo Bichnass & madium © High © Low
Enabilu delbeory ereesesent sl

Lavt Accmas: ™ trstibed Cicablad Humbss of invocatiens Enabled ¥ Diesbiad

Alinw wnd-wser comentay ™ Erabled ™ Dezabled Aillows end - er eating) Enablad ™ Digsbiad
Actions: () sppro
T 1

Figure 5 - Sections in an editable page (Header and Knowledge Unit

Statistics are expanded, the other sections are collapsed)

3.31.3 Managing multi-lingual tables

The SmartGov platform is multi-lingual, not only allowing the user in which
language they want to see the pages, but also allowing, in many fields in the
different objects, to specify different values for different locations.

To manage these multilingual fields, it has been defined and structure (shown in
Figure), which has the following elements:

e Row to add new values: at the bottom of the table, there is a row with a
list to select the language to define (from those already undefined), and
one or more fields to define the values. Once the fields have been filled,
their values are added to the table clicking in the Add button on the right
side.

e Already inserted values: they are listed beside a flag representing the
language to which they belong. In the example figure, "Ku Name” and “Ku
abstract” are the values for English, and “"Nombre de la Ku” and “Abstract
de la Ku” the values for Spanish.

e Actions to modify or delete already inserted values: in the right side of the
Multilingual table there are two icons: a yellow ball (edition) and a trash
(deletion).

- Edit: if the Edition icon is clicked, the current values for the
corresponding language are moved to the text fields below, so that
they can be modified. Once modified, the values are updated to the
table click in the Add icon, on the right side.

- Delete: If the deletion icon is clicked, the values corresponding to
the selected row are deleted.

Figure 6 — Multilingual table (the selected area)

The available locales are defined in the properties file smartgov.properties,
described in the section 3.2.2.2 of this document.

3.314 Managing other tables

When the application requires the management of a list of values, the table used
to this is very similar to the multilingual table:

e Row to add new values: at the bottom of the table, there is a row with a
one or more fields to define the values. Once the fields have been filled,
their values are added to the table clicking in the Add button on the right
side.

e Already inserted values: they are listed in the table.

e Actions to modify or delete already inserted values: in the right side of the
table there are two icons: a yellow ball (edition) and a trash (deletion).

- Edit: if the Edition icon is clicked, the values in the corresponding
row are moved to the text fields below, so that they can be
modified. Once modified, the values are updated to the table click
in the Add icon, on the right side.

- Delete: If the deletion icon is clicked, the values corresponding to
the clicked row are deleted.

Sax, Length l_
Data Type | -
Imd i] I:-BI
.whm. r Fl ']
‘Waduw Liak |.Gr|-lr| - | @ IS:'I
Rie i~] [¥']
— 1« 1

Figure 7 — Multiple values table (the selected area)

3.3.1.5 Pagination

There are several list of elements in the Front-end application. These lists include
pagination functionality when is considered necessary, so that the user can
navigate through a list too long to be fully shown in a screen.

When a list contains more than the number of elements that can be shown in one
list (defined in configuration, usually 5 elements), then pagination links are added
at the bottom of the page, so that the user can move to the next or the previous

part of the list.

Td. g Data e crip o
o 4 Supplier's WAT e . . = e
T AT AlL AT uPrrL':b::r 1302003 Supplisr's VAT number TSHE
TSE EVAT DCL HO Daclaration oy yronga Daelaration Mumbar TSE
R T T AT T A Humber
TSE FUVAT CUREENCY E-WAT currency 13710/ 2803 E-VAT currancy TEE
TEE EVAT DETAIL COUNTEY BPREF[Y Country prefix 13/10/2003 Country prefiz TSE

IEE EVAT DETAIL SUPFLIES Bupplies TEE 13/10/2003 Eupplias TEE

Pray 95

Figure 8 - List with pagination

3.3.1.6 Actions applied to a SmartGov object

» Action bar:
The action bar is an element located at the top and at the bottom of each
element (see Figure 9). All the available actions to perform over this

object are situated in the bar: save, delete...

notiones (3 L] appeons Beien

Actions: 1)] Sporos Haded

Figure 9 — Action bar location

Actons: ':B D Approve Rejedc

Figure 10 - Action bar example

» Save object (floppy disk icon):
This element enables the user to update the changes made in the element

currently in edition. When the element currently in edition is an auxiliary

32

element (Ku Section, Method, Validation Rule) this icon don’t save the
changes to the XML Repository, but it updates the changes in the main
element to which the auxiliary element belongs (Ku, TS, TSE..). The
changes are only saved to the repository when the main element is saved.

> Delete object (trash icon):
This item deletes the current element. If the item that we are editing is an
auxiliary one, this deletion is not definitive unless the main object is
saved.

» Approve object (life-cycle of TS and KU):
This action causes the current element to be saved an changes its current
status. Please refer to life-cycle of Ku and TS (3.5.1 and 3.6.1) for further
details.

» Reject object (life-cycle of TS and KU):
This action causes the current element to be saved an changes its current
status. Please refer to life-cycle of Ku and TS (3.5.1 and 3.6.1) for further
details.

» Reopen object (life-cycle of TS and KU):
This action causes the current element to be saved an changes its current
status. Please refer to life-cycle of Ku and TS (3.5.1 and 3.6.1) for further

details.

3.31.7 Associate knowledge units to the SmartGov elements

Almost every SmartGov element (TSs, Forms, Instantiated TSE and TSE Groups,
Generic TSEs and TSE Groups, and even other KU) can be linked to a KU. Thus,
the knowledge related with the element can be linked to it.

The part of the application to manage these links is always the same (see figure
11). There is a list with the already linked KUs (that can be unlinked clicking in
the trash icon), and below a link to add an already existing KU to the list. It is

important to notice that it is necessary to create the KU before linking it.

KU e
¥ pep links

(¥ szcial accastance
Ammgcinis sn sxivbog Eu

Figure 11 - List of linked KUs

When the link to add new KUs to the list is clicked, the page to select KUs is
shown (see figure 12). This page enables user to select KUs using the list with the

last modified KUs, searching through exiting taxonomies, and even searching

through the Ku Id. In this field it’s allowed the use of wildcards (The “%"” matches

any number of occurrences of any character).

j'E-rI--Ir knsowledge units (k) - Moroeolt Enbernel Explorer

= - @[E 3 Dosonds [airevios Groomeds F|he S H H B ¥

f [
sttt s o O o O W - |

‘.' .'_._
brgre| &

List ol Existing Taxonomses

H

smarch by 1d | ~2
.
Elemant Dats Fuathor LETS

r g 14/10/3003 Firing i t cnigEi i

r E=amgle 14010/ 300 Strmvg Halp & gddgy

r Beask Fractics 14710/ 7003 Biring Baip on Car Datals Fiskdy

r Bask Practice 14/ 104/ 0005 Etrg Halp on Houss Detels Haldy

r Bait Fractics 347 104 7003 Ftng B on filing forme

r Halp 140104 3003 Sirrv Hale o Objuchve Cribarie

r ralp 1af10fa003 Eting Help on gther income form

r Halp 1471043003 Bt Halo on Barional Datais

- Best Fractics 14710/ 7003 Ftring rl in]

r Halp 18710/ 3003 Blreg Hulg on joousy's fein

r Fenmpls 11/07/ 3003 Adrnir bransparsncy indre

r Enampla 11070 Adrran ciik dufinitign

Link sglscked Hug
Figure 12 - Select KUs page

3.31.8 Categorization of the SmartGov elements using taxonomy

nodes

As the KUs, almost every element of the SmartGov platform can be linked to a
taxonomy node. Thus, the user is able to categorize and organize these elements,
making easier their retrieval and future search.

In each element there is a section when the user can view the taxonomy nodes
the element is already related to (see figure 13) and can detach these nodes and
select others. Later this element may be retrieved navigating through the

taxonomies and selecting one of the linked nodes.

Figure 13 - Linked taxonomy nodes list

To select a node to link, a new page is shown (see figure 14), with a list of all the
taxonomy in the top and the selected taxonomy below. The user can select the
taxonomy that the nodes belong to, and then navigate through the taxonomy,

selecting the nodes to link.

T Link with a tavononny node - Microsoft Intermet Euplorer

| dmese - o - @[3 OF Dioosqudn FFwoctes Frneda o | 5y b @ W

-5

O

E e LA pErt =1 5
et Tazonamy Metriewesl + | | |
Ve Whark groups bt B0 E B

List ot Buicting Tavononkes
S arGoe Tasanamy

I
= 04 admin
M bgmpormibil ity

| ataff

e

marsagaEr

Imarvror

I parfosmance measure
Jstatistics
lautherity
) o

Jahiliry

& T structure
I et =
& T 2Services

¥ 2 wcteeral ervironmant

ainiaf ainlefuly]

Aprociste calected nodar

Figure 14 - Select taxonomy nodes page

3.3.1.9 Uploading files

The SmartGov Front-end includes a very simple document manager, which
enables user to upload files. These files are uploaded to the web server where the
application is hosted, so they can be used later.
Files can be uploaded in different parts of the Front-end:

- Layout XHTML files in forms

- KU attachments

- Native code methods
The mechanism to upload the file is always more or less the same: an auxiliary
windows is opened (see figure 15) where the user can select a file and then the
file is uploaded and its data included in the element that the user was editing.

This process will be analysed in detail for each case during this manual.

43 Choose Form - Microsoft Internet Explorer m i =]
J dmptrds ~ = - (£} tat | {ChBisqueda [Favorites FPMulimedia ¢4 | 22
L]
Choose file Exarninar. . I
Add
[
|@ Listo l_l_l_ {of Inkranet local v

Figure 15 - Upload file page

3.3.2 Login page

To enter to SmartGov Front-end tool, the following URL should be entered:

Login page: http://<host name>:<port>/SmartGov/logon.jsp

Where <host_name> is the name of the host that should be provided by the
SmartGov administrator in every SmartGov Front-end installation.

Once the correct URL is entered, the SmartGov login page is shown.

3 SmartGov Login Page - Miciozoft Intemnet Explones

| o - = - @) | Qbieawds (aiFavomos FHinosdl |G- AW H 0 ¥ | % |
L

JEE o
.] pasemard [
= Gslo“:rt [Submit || Reset
A Knowledge-based Platform
for Public Sector Online Services angusges: O F S

@7 Listo [T (¥ Intranet local

o

Figure 16 - Login page

Figure 16 shows the SmartGov login page, in which the following fields and
actions may be identified:
Fields:
» User: The Id of a user of the SmartGov designing environment of services.
This user Id should be provided by the SmartGov administrator.
» Password: The password corresponding to the previous user Id. Firstly
provided by the administrator.

Actions:

> Submit: By pressing this action the data introduced is sent to the server
and processed. If all validations are OK, the SmartGov main portal page is
called.
» Reset: Erases the data entered.
> Flags: Change the language during the duration of the current session.
Validations:
» Mandatory fields: User and Password
» The combination of User and Password should exist in the SmartGov user
security system.
Other issues:
» If the user is not able to enter to the system should contact with the

administrator.

3.3.3 SmartGov Portal

T Portal Tithe - Miciozolt Internet Explorer
| Achwo Edoién Ver Favoios Hemamentss Apds || Dieccitn [2] o /ocabost BIED/SmartGoviogan do = en |
r : P I / T = 1
| s - = - D) A | DBisgueds [ajFavortos FHioid |G- - Sl 00 0w | Vineudos ™!
L] D
KL Edfitar List of Existing Taxonomies Hame State
KM Statisti SmariGoy Tazenormy EmartGov Halp L Editing
seyees o letTaske(kug)
ISE Editer Elernent Crarte Author Manme
T i I K-Example 05/0%/2003 Admin r gy in
; KU-Example 11/0772003 Admin EER links
e Lty KU-Example 11/07/2003 Admin sk definition
I Editor KU-Example 11/07/2003 Admin focigl peceptance
Cecurity Ku-Example 11/07/2003 Admin daks protection
KU-Example 10/07/2003 Admin rporation
Groyp Editos KU-Help 10/07/2003 Admin brand
Kll-Best Practice 10/07 2003 fdmin AFEIQN DUIDOES
KU-Halp A0SOT 00T Admin aive
KU-Help 10/07/2003 Admin choose
FU-Best Practios 10/07/ 2003 Admin trust quidelines
EU-Best Practice 10§07/ 2003 Admin process strateqgy
KLl-Legsons
Lasmad 10407 2003 Admin releg rules co-op
KU-Halp 10/07/2003 Admin IRIGUICE Drocess
EU-Best Practice 10/07/2003 Admin EBrOCRss oVErviay
Hext
Harnae Date Description
Ta1 0509/ 2003 Sarvice 1
el [(1 ranet local

Figure 17 - SmartGov Portal page

Figure 17 shows the SmartGov portal page. This page is shown once the user is
successfully logged in the system. The following elements and actions may be
identified in it:

Title bar: Shows the user logged-on and the default work group (if any) to which

the user belongs.

>

User: Shows the user Id as a link to the page where the user logged-on is
able to change their password.

Work Group: show a selectable combo-box where the user is able to
switch among the different work groups to which he/she belongs. A
change in the work groups causes the reloading of the portal page with the
new selected group with a different Task List and List of Services inside
the Work Group objects.

Logout: next to the user id is located the logout icon, that can be used to
exit the Front-end and cancel current session. The user will be redirected
to the login page (see 3.3.2) and then it is possible to log into de
application as other user or as the same user, or to go on using the web

browser.

Contextual Menu: Shows the options available to the user, depending on the

role that plays in SmartGov. Clicking on one of the options leads to a concrete

editor or portal-page. Several options are common to all roles, but others are

available just for concrete roles, as it can be seen in the following table:

Administrator| Manager | Service | Expert | IT Staff
Worker

KM

KU Editor

%
<

Taxonomy
Editor

Services

TSE Editor

TSE Group
Editor

Form Editor

SRR
SRR R
SRR

management

TS Editor

User

Group Editor

RRRS RS R

mgnt.

User Editor

Taxonomy Retrieval: Shows the links to the available taxonomies to perform a

taxonomy-based search. Every taxonomy link loads a taxonomy tree-like page

with its existing taxonomy nodes as it can be shown in 3.5.3.2.

Last Tasks (KUs): Shows a list with some information and the links to the last
modified KUs. It helps to know which KUs have been modified recently and the
author of the update, and it is a quick shortcut to enter directly to the most

recently acquired knowledge.

List of Services Inside the Workgroup: Shows a list with all the TSs that have
been created under the umbrella of the currently selected work group.

Task List: Shows a list with all the objects (TSs and KUs) that needs the
approval of the role to which the current user belongs. Entering to these objects
is the way to approve or reject the tasks. See sections 3.5.1 and 3.6.1 for more
details about KU and TS life-cycle.

3.4 User-Roles management

3.41 User-roles Portal

The security part of the application is divided in two main parts: user
management and group management.
When a user clicks in User Editor option, the User Portal page (see figure 18) is

loaded. This portal enables the user to create new users, and to access the

already existing users to modify their characteristics.

N smeartiGoy Design Enviconment Portal - Micresoft Internet Euplorer .llﬂil
[- - @ [2 3] Detnds Gitwtos Bntieds FEr ST HBE

| Enrmgebin [@] Fire Sikecairost: 090 nart GovfirdesSenscsE dkor . do7lament=US =] @
|k @iebwrdnes @lGosgs @ikt | [Smatovwebae | JBoa [Decorcs | [evatovis] Javabucs @ 0uamertum ncks Gasdoe o

TaiEdiar

TEE sy Edibae 1d. Smusrthow Rol

e sdminigk gty Adminiakater

d B gt Camsn fupast

L& figr SESr_MNMREAT Marisgsr
i wdur ghatl [T statt

Wrss Edfinr

drings Edn Thars 5 0o T cwated by the cument group.

Figure 18 - User Portal page

The structure is very similar to the SmartGov Portal (see 3.3.3) The only
differences are the Users list (in the middle of the screen), and the Task List,
which is not present in this page.

In the Users list, all the existing users are listed and their attributes can be
modified making click over them, or a new user can be added to the system (see

section 3.4.2 for more details about the User editor).

The other available option, related with security management, in the contextual
menu, is the Groups Portal Page (see figure 19). As in the User Portal, the
structure is very similar to the SmartGov main portal, replacing the list of last
KUs by a list of the groups the current user belongs to, and eliminating the Task
List.

T smartGoy Design nwvronment Portal - Mcrosoft Intermet Enplorer

2l
| wenirds » = -) [3] O} DiBdsueds SiFavortos SfMutmeda o | S b] H B W -
L

-
- L
w a1

st Tackting roup
EpmoEdker oA Uraunety of Athans
I Edibee
Smcurity
e Thess It no T crestad By the curank group,
Arous: Edbes

Figure 19 - Groups Portal page

The Groups List will show all the groups the user belongs to. From these list the
current user can access to these groups to modify their members or their roles in
the group, or can create a new group and add to it user with their corresponding

roles (see section 3.4.3 for more details about the Group Editor page).

3.4.2 User Editor

The figure 20 shows the User edition page. This page is shown once the user
selects an already existing user or tries to create a new one (in this case the
fields will be empty).
Actions:

» Save

» Delete
Fields:

» Id: The Id of the User. If the user is new, this field is updateable. This will
be used later by the user to log on the Front-end.

» Password: The password that the user will use to log on the Front-end. It
can be changed by the user once logged on the Front-end, as described in
section 3.3.3, in the description of the Title bar).

» SmartGov Role: the role of this user in the Front-end. The possible values
are: Administrator, Domain Expert, Manager, IT Staff and Service Worker.

» E-mail: Electronic mail address of the user.

» Name and surname: personal data of the user.

Validations:

» Mandatory fields: all the fields should be introduced.

» The user id must not previously exist.

B 1ssers - Microsolt Internet Eaplorer 5 -llﬂ ﬁl
e - - @) B Dewsania SlFwwics Grkosts 3| e S B ¥ [+]
+.-""1 ni == |_J
o uad e B v o= = B - |
L e
. unar_supart Faswnord [

Senartoy Rol Crormmin Eopark] fuspart@ermurbgma. com

Sumams (e Huma fepere

Achieess (7 [

Figure 20 - User Editor page

3.4.3 Group Editor

The figure 21 shows the page to create a new Group. This page is shown once the
user clicks in the New Group link, in the Groups portal page. Once the Group Id

an Group Name are filled, the Group can be saved and then it is possible to add

users to this group.

2} Groups Edition - Microsoft Internet Explorer EE
J LA A | 7 | QiBisqueda [Favorkos EhMukimedia (% | B-S= 20 i
L]
Ao e L -
- aov
Actions: []

Group Id [Group name [

First, create the new Group. After, add the users

Actions: [o]

Figure 21 - Group Editor page

The figure 22 shows the edition of an already existing group (it is similar to the
page shown when creating a new group, but contains more data).
The following fields and actions may be identified:

Actions in action bar:

» Save
> Delete
Fields:

> Group Id: The Id of the Group. Only can be modified when creating the
group.
» Group Name: The name of the group.
» User in the group: a list with the users in the group and their roles.
Actions in links:
> Edit user roles in the group: Clicking in the user id, the roles of the user in
the group can be modified. If no role is specified for the user, it will be
deleted from the group.
» Add new User: This allows to select a user and his roles in the group.
Validations:

» Mandatory fields: Group Id and Name.

» The Group id must not previously exists.

T} Groups Cdtion - Mecrosedt Intemet Enplorer .-J.'IIH
| =onie - % - Q[F 3 Desgwds SiFwads (hdmeds B0 S H DB -
N =
AL AR Users sdministrator] 3T,
& i_‘-!"‘_‘:,"” Groups Editmn bt S e ! -1 B
Actienss GF [
o tant Group name [rasting froun
Farne Smartiow Aol [Hnie
girminighrghar Adrnintiraton |uf_t% wditar
|l _hu approear
A wf_ku aditar
NG S :“"F'"' ey wf_ku ravisEEr
2= Juits At
uf_ku aditor
e TN LT TTT-T T3 _J"ln-uir uf tr arior
- ke i
Al new usar

Aot 3

Figure 22 - Group Editor page

When the current user wants to add a user to the group, a new page is accessed

(see figure 23), where can be selected the user to add and the roles of this user.

3"’-'!”‘"“"“;‘ Colitinn - =hcrosodft Intemet Cuplorer -llﬂil
| #mei - = - @ A Doeds SiFwocks Geiads 3| B S5 HEW -
% -
oo Ut sdministratos U
£ S b B s ok O @ B
S ol ddready s b the e i oo

Balke faope Al
S reescstegeed o e e hiswedgmes.
U i [Tpry vl
Fals Scope 1 Fiale
wf_ku wditnr
wf_ku Flrainsar

wf_ku apErovar

wf_ts wdtor

m |

wf_ts Appro e

Figure 23 - Linking a user to a group page

The following fields and actions may be identified:
Actions in links:
» Save changes: add the user to the group with the selected roles.
Fields:
» User: The user to be added. This field shows a list with all the user in the
system not in the group.
» List of roles of the user in the group: the page shows a list with all the
roles that can be assigned to the user in the group, and besides each role

there is a check box to select it. The roles are shown as follows:

Role Scope Role Explanation
wf_ku editor KUs editor
wf_ku reviewer KUs reviewer
wf_ku approver KUs approver
wf_ts editor TS editor
wf_ts approver TS approver

See sections 3.5.1(KUs) and 0 (TSs) for a deeper explanation about the
TSs and KUs life-cycle.
Validations:
» A user must be selected.
> At least one role must be selected. If not, the user will not be added to the

group.

3.5 Managing Knowledge

The Knowledge is key part of the SmartGov platform, especially for the Front-
end. Knowledge Units (KUs) and Taxonomies have been included in the system to
allow the user to enrich the process of service development, allowing the users to
search in the already existing knowledge to solve their doubts or improve their
way of working, and also collaborate adding their own knowledge, related with

the tool or with the whole process of offering electronic services to citizens.

The Front-end allows the user to create and modify these Knowledge elements.
Concerning the KUs, it also allows the user to apply a life-cycle over them, in

order to assure the quality and correctness of these elements before using them.

3.5.1 The KU life-cycle

In the figure 24 is shown the KU life cycle. The diagram shows the four possible

states for a KU, the available actions in each state and the required role to

43

perform this tasks. Thus, all the knowledge created can be validated in the

context of the workgroup.

[EDITOR] [REVIEWER] [APPROVER]
pprove Appro f-\pprove
Rewewmg . Approwng Approved
Re]ect Reject
[[REVIEWER] [APPROVER]
Reopen
[APPROVER]

ROLE Action
o @) g

Figure 24 - Knowledge life-cycle figure

When a user logs on the Front-end application, the SmartGov Portal will show on
the right side the task list. This list will show all the KUs in a state in which the
user has the right role to perform an action, save the approved KUs, that will not

be shown in the task list.

3.5.2 Capturing KUs

3.5.2.1 KU Editor

3.5.2.1.1KU Portal

; Portal Titlhe - Microsolt Inlernel Exploner

| &rchvo Edcién Ver Favolos Henameniss Ajpds | | Dieccion [2] ocahost B090/SmanGov/inded ME dios do7element=Kl) 7] o*li
| Sans - o - D [| Qbicaeds [Gjfavotor JHinoid |- - Sl A1 | Vineudos !
Tazgnarmy Editer EmanGoy Taxonomy EmanGoy Halp
TESE Editer Elermant Date Author M
TSE Grouns Bditer KU-Exarnpla 05/09/2003 Adrnin tranIparency ntrs
EL-Exarnpla 11/07/2003 Adrnin ppp links
Foren Editor KL-Example 1170742003 Adrmin risk dafinition
T35 Editor EL-Exarmple 11707/ 2003 Admin gocisl scoaptance
KLI-Exarriple 11072003 Adrnin dats protaction
EU-Exarmple 10/07/ 2003 Adrmin sorporation
Kib-Halp 10/07/2003 Admin prand
KLl-Bast Prackice 10/07/ 2003 Admin BEHGH DUDGEE
Ku-Halp 10072003 Adrnin aive
EL-Halp 1007720032 Adrmin choose
KEll-Bast Practics 10707/ 2002 Admin trugt quidslings
KuU-Bast Practice 10072003 Admin Brogess stratagy
KEU-Lagsens Leamed 10007/2003 Adrnin roles rules co-op
FL-Halp 10/0%/ 2002 Adrmin RECURTE PIOCRET
El-Bast Practice 10707/ 2003 Adrmin RIS ES QyEIVigw
Hgxt
Mg Drata Drmscrip ton
I51 o809 2003 Sarvice 1
&7 Lete [[nmanetioesl

Figure 25 - KU Portal page

Figure 25 shows the KU Editor portal page. This page is shown once the user
selects the KU Editor option in the Menu. The structure is similar to the SmartGov
portal (see 3.3.3) plus the possibility to add new KUs if the user has the required
role to do that (all roles except Administrator). Clicking in the name of one of the

KUs the user can access all its data.

3.5.2.1.2KU Edition page

';] Enowledge Unat Edition - Microzoft Intemet Explones

Id. LAl cel 13 Typa EEsumpIo vl

e Abstract
@ traniparancy inkeo Intreduction to dabate on transparancy and trust. - G

ESpanuh_ﬂ I E

Author: Adrmin Creation Date: 11/07/ 2003
State: Approvad Last update: 05/059/2003
Service Expiry: C rrue F Falea Expiry Date:
Addressed to: All Foles Commnmants:
Description
e Content
a ?;:::pjunw Introdudtion to debate on transparency and trust,
Links
v URL
Link 1 a Tech Note @ Sansparance ik gxw

|‘

Taxononmy Neds name

@ ErafEparansy

Assoclate nodes .
_ Life -cyehe log _
Drata Parformer State Connmmants
1105 2603 Adimmin approvad... null
05 0% 2003 uFer_expert Editing...
Matrics
Typa of knowledge: C Innovative T Advsnce @ Core Comploxity & Medium © High © Low
Relevance: & madium C High © Low Richness: & medium © High © Low
Last Accmss: " Enabled * Disabled Humber of invocations © Enabled Disabled
:lonnd-!:m C Enablad % oirabiad Allow end-userrating: pnablad ™ pisabled
Actions: 3 []
=]
87 Lo [9% intranet local P

Figure 26 - KU Edition page

Figure 26 shows the KU Edition page. This page is shown once the user selects a
KU and he/she has the rights to update the KU. The Figure shows the sections
unfolded for clearness purposes. The following fields and actions may be
identified:
Actions:

» Save

>
>
>

Delete
Approve (Depending of the role of the user and the state of the KU)
Reject (Depending of the role of the user and the state of the KU)

Fields:

vV V VYV VYV V

Header Section
Id: The Id of the KU. If the KU is new, this field is updateable. The user
should provide a KU identifier without spaces and special characters, as
hyphens, slashes, and so on. Notice that this Id should be human readable
in order to easily search and locate the KUs afterwards.
Type:

o Help

o Lessons Learned

o Just-In-Time training

o Best Practices

o Troubleshooting

o Storytelling

o Example
Description Table (Name and Abstract) - See Multi-lingual tables
(3.3.1.3).
Life-cycle Section
Author: The initiator of the KU.
Creation date
State: current state of the Ku.
Last update: the last time that this KU was saved.
Service Expiry: This flags enables to activate if a KU lost its validity when
the service that is linked to expires.
Expiry Date: Sets when this KU lost its validity.
Ku-Sections Section: This section is the core of the KU. Here the KU
content, links and attachments are loaded. The fields are shown as non-
updateable fields. To update or create new sections, the action “New
Section” or the links to previous existing sections should be selected. Later
on (3.5.2.1.3) the way to add or modify sections and the fields involved
will be discussed.
Associate knowledge units: A KU can be associated to other KUs in
order to see structure knowledge. The way of attaching KUs is explained in
3.3.1.7.
Categorization: The way of linking a KU or other SmartGov elements to

Taxonomy Nodes is explained in 3.3.1.8.

Knowledge Unit Statistics: The definition of the desired delivery
environment statistics of the KU, and some information about the life-cycle
and usability of the KU in the design environment is shown is this section.

> Life-cycle log: Contains a table that shows the most important steps and
updates in the KU life-cycle: Date of modification, Performer or author of
the update, State to what the KU was driven by the update, and
Comments (if any) of the performer.

» Metrics: Categorization of the type of knowledge given by the experts.

» Enable delivery environment statistics: The definition of the desired
delivery environment statistics of the KU. If the different types of desired
statistics are set to “"Enabled”, then the Integrator will proceed to generate

the required code if the KU is driven to the delivery environment.

Validations:
» Mandatory fields: KU Id, and at least one description (name and abstract)
and one KU Section.

» The KU id must not previously exists.

3.5.2.1.3KU Sections page

; Editing a section - Miciozoft Internet Explones

| =om - = - @D [2) Y| Dbiequeds [aiFavoitor BHsoiad |-l H0O T -
e g O
:, S Editing a section
GO tast
Section Name: New Section 2 2
Section visibility
L]
:::d"“'d % Al rolar T Rola list Commients: D
Description
Tithe: Content
) New Saction 2 oContant... s | @
L Conbent.. (=]
Iin.;!- ek _—J IHeu Sackion 2 i
Files
iplesd Fil
Links
& raw link

Figure 27 - KU Section edition page

The KU Section is the core of the KU. When a new section is created, the figure
27 is shown with the following fields and actions:
Actions:

> Save: save in session the KU Section. Remember that this saving action
does not mean a real storing in the database until the whole KU will be
saved (“"Save” action in the KU) later on.

» Delete: delete from session the KU Section. As in the previous action, it
does not mean a real deletion until the KU will be saved (“"Save” action in
the KU).

Fields:

» Addressed to: The KU content of this section is addressed to the roles
selected in this field (“All roles”, “Manager”, “"Domain Expert”, “IT Staff”,
“Service Worker” or “End user”).

» Comments: comments that explain the “addressed to” field allocation (if
necessary).

» Description: title and content of the section (core content). The title field
will be the name of the section. See Multi-lingual tables (3.3.1.3).

» Links: available links (web pages and files). The links should be entered in
pairs of name and URL:

o Name: Name or textual description of the link. A name in the
desired languages should be provided to the link. See Multi-lingual
tables (3.3.1.3).

o URL: URL of the link in web format. It means that the URL should
be entered in a format understandable by the web, for instance
“http://www.xxx.com” instead of "www.xxx.com". See Multi-lingual
tables (3.3.1.3).

Instead of referring to an existing URL, a file may be uploaded to

the server and a reference to that file would be inserted in the
section. When the action “Upload file” is selected, a new window to
upload a file is presented (see 3.3.1.9). The uploaded file is treated
as a new link.
There is also a shortcut to create a link directly uploading a file. If the
action “Upload file” located under the “Files” title is selected, a new link
will be created with the uploaded file, using as name of the link the name
of the file.
Validations:
» Mandatory fields: at least one description (title and content) should be

provided.

http://www.xxx.com
http://www.xxx.com

Other issues:
» When a new section is added, the page presents a default name (“New
Section n”, where n is the number of the section in the current KU), and a
Title (“New Section n”) and Content (“...Content..”) for the default
language. These fields should be modified in order to set the correct text
of the section.

3.5.2.1.4 KU read-only page

0 Krwewsbedne Urst Vicwing - Morosoll Intermet Enplorer

: prushas_2
14, FIA06S Type Exarnple
Hane Abatract
m ATRPERAMENCY Bk Irvgdudtion bo dabasty on trenspasency snd tngrt.

Author Aaferiiny Cration Date 1LA0TF 00T
Stmtmy Appraved Luat updats: 1107/ 2003
Servics Expiry: L] Expiry Date:

Conmeants:

Addressed o All Rolan
Evaasir v B
Hanm Content
B INIDINCE g duction te debate on transparercy and trutt
Linkew:
S uRL
[T E‘ Ttk Hota a Pl bt R ey B

Thara is res KL Bekad

Tamawepaniyy b naime
Eranad drang

Bif e b
Drabe Parinmes Shats Conenents
LTAFGTF 003 Adeniin Approvad. . null
Mutrics
Typ=e of knowledge: Corm Lonaplexity Madium
L] Ha i Richnessi Madium
Enabile delvery soviraesnant statistios
Last facessn Depablad e e Digakfad
Ao warvd ~ussr comavien b Cupsblad Allgwr mnd user rabng: Crinablad

L
5
i

T P kvt ksl
Figure 28 - KU read-only page

This page shows the KU in read-only mode. This page is shown when selecting
from the different portals and elements with related KUs in the following cases:

1. The user has not rights to modify the KU.

2. The KU is in a state that not allows updates.
Actions:

> Reopen (only if the user belongs to the group where the Ku was created

and has the Approver role).

3.5.2.1.5KU reduced read-only page

7§ transpatency intio - Miciozolt Internet Explorer

o= @0 Q) Obisans airmion JHivwis |- I A0 D (& |
-.l-.l‘ E
:‘"’5';_,_,3,; Knowledge Unit Viewing D
g o

Introduction to debate on wansparency and st

Introduction to debate on ransparancy and trusk.

Links
Hane WRL

Tach Hote B sansoaency KU ge

Figure 29 - KU read-only reduced page

This page shows a reduced view of the KU in read-only mode. This page is shown
when selecting the KU from the list of elements related with a taxonomy node. It
simplify the view of the KU to its core (name, abstract, description section, links
and associated KUs), what means a user friendly view of the most important
knowledge contained in the KU, avoiding all the data related with the creation and

management process.
3.5.3 Retrieving Knowledge

3.5.31 Taxonomy Editing tool

3.5.3.1.1 Taxonomy Editing portal

T smeartGoy Design Drvicrment Portal - FMicrosolt Intermet Enplorer] =]

[sai-s OB 3 Bumes Greon Juin 9 B ST B E

| P @] hitelocabhast: Boenmart G enie EVEher dofekenentaTRE i
|Vincdos @ jebmrdons @lGosgle B]inEaeeb] Smaritoy Wb apn | |Bokas Dicaonenos | Jlvaltock ' Jlavafecs @] Decurmnbu Ivda Gebos -
O

-

. U aar wxped |

turt
i,g_‘:’,_'.;. e i
EH S TessemgBesea

ELl Editar List of Fuistiog Tanonsenies
La_zazrzldsy Songrtges Tamonaire

i o umeefCambegTemoneesdes
TEEEdan Al s Tanunseny
TEE drougy Editer 1. Hame]
Egures - BncenrTxgrem iy Srmmrtdav Taxcramy Taxonamy v ouabed by ETS: Mupiar Univeraity, for tha SmaedSor Froject

E

Thera i3 na TE crestad by the owmant group,

Figure 30 - Taxonomy portal

Figure 30 shows the Taxonomy portal page. This page is shown once the user

selects the Taxonomy Editor option in the Menu. The structure is similar to the

SmartGov portal (see 3.3.3) plus the possibility to add new Taxonomies if the

user has the required role to do that (Administrator or Expert).

3.5.3.1.2 Edit Taxonomy

Figure 31 shows the Taxonomy Edition page. This page is shown once the user

selects a Taxonomy from the Taxonomy portal.

TR Tasnnoeny Dditor - Microsoft Intermet Euplorer =2l x
| o= oo @ [H] B Deisqueds SiFwedto (Pedineds F DY = S EH Y -
= O
e e i = e O OO
Mclens Ganaits Sils o |

4. HapiarTamonamydi

e Ahsteact

5] Smartdor Taxonomrg Taxonomy crested by ITC, Mepisr Univaraity, for the SmartGos Brojact l @
O Tanenairis Exte &5 una taxonomis & .:;.

Hedeinogg P sdrran I

Hoded 2000 Ba stracturs Hav

Hodesangg Clarag Har

Hedmedoos Smrvicen Faw

HodggB000 Extamal snwesnma -

Erngln e Hesdy

Relonsy dgnarsta sl 0 (D

Figure 31 - Edit Taxonomy page

The following fields and actions may be identified:
Actions:
» Save
» Delete
> Generate file: updates the current state of the Taxonomy to the tree view
that is displayed when clicking in the Taxonomy Retrieval section included
in all the portal pages.
Fields:
Header Section
» Id: The Id of the Taxonomy. If the Taxonomy is new, this field is
updateable. The user should provide a Taxonomy identifier without spaces
and special characters, as hyphens, slashes, and so on.
» Description Table (Name and Abstract) - See Multi-lingual tables
(3.3.1.3).

First Level Taxonomy Nodes Section:

This sections shows a list with all the taxonomy nodes in the first level of
the taxonomy. Nodes can be moved up and down using the arrows beside
them, and also deleted from the list with the trash icon. Also the nodes
can be accessed by clicking in their id.
In the bottom of the list there are two actions:

> Associate nodes: allows selecting an already existing node (see sections
3.5.3.1.4 and 3.5.3.1.5 to see how to select nodes).

» Create new node: allows creating a new node (see section 3.5.3.1.3 about
how to edit nodes). This action will not associate the new node to the

taxonomy; the node must be linked using the previous action.

Validations:
» Mandatory fields: Taxonomy Id, and at least one name.

» The Taxonomy id must not previously exists.

3.5.3.1.3 Edit Taxonomy Node

Figure 32 shows the Taxonomy Node Edition page. This page is shown once the
user selects a Taxonomy Node from the Taxonomy edition page or from other

Taxonomy Node edition page.

X Tasmnamy node editor - Micesoft Inbernet Caplores SETE:|

| e - w3 [H 4 Dieisguds SiFeeortn (eoimeds F - o8 = W -
-+-‘I = == = D
: r:_'.l:.-.,'_.-.-.' Taxomemy node aditor m ::’_“PIW __| |; :li
Actienss (3]
=== ============= "= ============== ==
[t Nadas 000
L LTI Ahstract
@ P& admin & @
o] ol PA dmine 5 P
ey | 1

f
o

Hodga090E smapongibilty] v
Hadaa0Iog tast Haw
Modud0d0g marsgs Haw
Hodee 00T A |:;| v
Hedainios manitar Haw
P R T — Haw
HodasG0s c;ab Fiics v
Hedsan3os wutharky War
Hodubidng npre aw
Hodeg0sgs akelity a
Associate rodes

Figure 32 - Edit Taxonomy Node page

The following fields and actions may be identified:

Actions:

» Save
» Delete
Fields:

Header Section

> 1Id: The Id of the Taxonomy node. If the Taxonomy is new, this field is
updateable. The user should provide a Taxonomy node identifier without
spaces and special characters, as hyphens, slashes, and so on.

» Description Table (Name, Synonym and Abstract) - See Multi-lingual
tables (3.3.1.3).
Nodes linked with the current node Section:

» This sections shows a list with all the taxonomy nodes linked with the
current node. The functionality of this list is very similar to the First Level

Nodes list in Taxonomy Edition (see section 3.5.3.1.2 for more details).

Validations:
» Mandatory fields: Taxonomy Node Id, and at least one nhame.

» The Taxonomy Node id must not previously exists.

3.5.3.1.4 Associate nodes by Taxonomy

When selecting nodes to associate them to a taxonomy or a taxonomy node, a
way of selecting these nodes is navigating the already existing taxonomies, to
select a node already located in other taxonomy, or in the same taxonomy in
different branch.

For this purpose, a list of all the taxonomies is shown in the page to select nodes
and, by clicking in one of them, the taxonomy is shown below (see figure 33)
allowing to select the nodes that we want to add to the taxonomy or taxonomy
node currently in edition.

Once we have selected the nodes, we can click in the “link nodes” action to

confirm our selection.

3 Associate nodes - Microsolt Intemet Explores

i - =+ - Q[A} Dibtequeds [sfFavoatos FHistordl [[5- I =[] ¥ | |

. adrministrator 1=

i
bz
3

e
in

Saarch by Id | £

List of Existing Taxonomies

=Ml pa admino
[Tl responsibilitys

[T gl staffo
=] &l mansges
CEl. Managan
=) &l maonitars
L= parformancs measured
= el statistica
] :]l'l authorityo
[3 &l improves
= abilitya

[l PA structures

x l_-,_Z'.: Cllantso

& [el Serviceso

& J"q_t..: Extarnal anvironrmants

TS [(%5 irwranst loeal

o

Figure 33 - Select nodes by Taxonomy page

3.5.3.1.5 Associate nodes by Node Id

Although the selection of nodes using the taxonomy can be useful in some cases,
the more usual way of selecting a node will be entering its Id, because the most
frequent case is that a node is only in a taxonomy, so we cannot locate that node
navigating other taxonomy.

Therefore, it will be necessary remembering the Ids of the Nodes that we are
creating, so it is important to use a coherent way of assigning id to the nodes.
Anyway, it is allowed the use of wildcard (The “%"” matches any number of
occurrences of any character) in the Id field, making easier to search nodes (see
example in figure).

Once performed the search, a list of the nodes fitting the introduced string is
displayed. There is possible to select as many nodes as desired, to associate them

to the taxonomy or taxonomy node currently in edition.

7} Azsociate nodes - Microsoft Internet Explores

| tmse « = - D [2) | QBisueds [siFavomos (PHinowl |G- p 0 A0 W [|
o O
S
= iSaier Associate nodes I:i E
St tast
Saarch by Id | ,Q
List of Existing Taxononies
Smaddoy Texonomy SmartGoy Help
Id. Mane Abstract
- Hodas0000 pa adrin
I Hodet0929 data protection
C podeé0ens staff & PERSON with RESPONSIBILITIES in a PUBLIC AUTHORITY
the ACTIVITY of assigning PURPOSES and MONITORING their
[Hodass0d mansge ACHIEVEMENT
rC Hodabds0s FRanager & Role in which an Actor MANAGES
g an ACTIVITY in which & LEGAL ENTITY uses a PERFORMANCE-
& Tioefeet 200 okl MEASURE to IMPROVE
& maasure of how an ACTIVITY is ACHIEVING the INTENDED
r Hodedd 507 Barformancs mease PURPGSE of its ACTIVITY SPECIFICATION
I Hodetleng statistics
the right o sutharite & DOER to paderm an ACTIVTITY; aur own
definition: & Ralstionghip batween & LEGAL ENTITY and an
r Medapdhly AihEty, ACTIVITY SPECIFICATION in which the LEGAL ENTITY has & right to
EXECUTE the ACTIVITY SPECIFICATION
: an ACTIVITY vhose INTENDED PURPOSE is to incraase a
[Hodes 0920 \FHprena PERFORMAMCE MEASURE of an ACTIVITY SPECIFICATION
[Hodes0ass ability
Azsodiste seleched nodes
81 Listo [[intranet local p

Figure 34 - Select nodes by Node 1Id page (after searching ‘Node60%")

3.5.3.2 Taxonomy Retrieving tool

Given that it is possible to link all the elements of the platform to taxonomy
nodes, a useful way of searching elements is through the taxonomy, retrieving all
the elements linked to a node.

This option is available through the “Taxonomy retrieval” list, available in all the
portal pages of the Front-end. In this section there is a list with all the available
taxonomies and, clicking in one of them, it is possible to navigate through the

taxonomy to find the searched node.

3.5.3.2.1Taxonomy tree view

When the user selects a taxonomy in the “Taxonomy retrieval” list, then the
taxonomy is shown as a tree view, allowing the user to expand or collapse the
different branches (clicking in the plus or minus icon, similar to Windows
Explorer), in order to find the searched node. The figure Error! Reference

source not found. shows a taxonomy with some expanded nodes.

T smartGoy Design Drvecnment Portal - FHiorosolt Intermet Enplorer

| seitis =+ - D[2 Deivmda ilfavrin SHbaeda P | o b = S (9 ¥
| Eremecién (4] hiteciiocahos:: 5080 Srmart oo oronmyfetievial doTtaeonomy IDmMapier Tasoncrydld = B
A = v e 2]
' .:]n;.-_ Taunnany Retriswsl ﬁ'_‘"::'.“m [15 I = |
N

[T T pra——

EmariGos Texongmy

o ek
* P4 abnin
=LA stcture
= (oapabilimy
“ebull
= | g-operation
" publiedprivate partnership
| oo ioation
rasource
#H i bmeial accepronce
lahility
Blarhority

Slelagibility
P

L

e wtarmal aewimonmant

Figure 35 - Taxonomy Retrieval tree view page

Once the user has located the node, the related elements can be seen clicking on
the name of the node.

3.5.3.2.2Taxonomy node related objects page

When the user selects a node in the taxonomy tree view (see previous

paragraph) a new page opens with the list of related nodes (see figure 36). From

this list it is possible to access all the elements related with the taxonomy node,
clicking on the name.

3 Objets linked to the selected taxonomy node - Microsoft Internet Expli

J dm fbras v o v @ ﬁ | @Eﬂsqueda [3] Favoritos @Multimedia @ | %v s

User: user expert
- Objets linked to the selected taxonomy =g

S— |
o node work |, =1
o =

group

Element Name Abstract
kErnowledge Unit - Introduction to debate on
(KL transparency intro

transparency and trust

Taxaonorny Mode social acceptance

Instantiated TSE Circulation Date Circulation Date input

Instantiated TSE

E-WAT detail TSE Sroup E-wAT detail TSE Group
Sraup
Farm sl acc:::rsr::mn Bt E-WAT acquisition detail farm

Figure 36 - Taxonomy node related objects page

3.6 Managing Service elements

The main goal of the SmartGov platform is develop electronic service. Therefore
the creation and management of all the elements related with these services is a
key function in the Front-end. With the added value of the associated knowledge,
the Front-end coordinates the process to create a service, including the

management of the whole life-cycle of the Service.

3.6.1 The TS life-cycle

In the figure Error! Reference source not found. is shown the TS life cycle.
The diagram shows the three possible states for a TS, the available actions in
each state and the required role to perform this tasks. The cycle is very similar to

the KU’s, but simpler.

[EDITOR] [APPROVER]
Approye Approve
. ——
Approving Approved
Reject
[APPROVER]

Reopen
[APPROVER]

ROLE Acticn
roLe) (Siate) Acry

Figure 37 - TS life-cycle figure

When a user logs on the Front-end application, the SmartGov Portal will show on
the right side the task list. This list will show all the TSs in a state in which the
user has the right role to perform an action, save the approved TSs, that will not

be shown in the task list.

3.6.1.1 Designing the service

Before start working with the Front-end tool, the service operation, the roles
involved, the business rules governing the service and the data that must be
presented and/or collected should be identified and documented. Portions of the

documentation (e.g. supporting legislation, information regarding the workflow,

service development expected time schedule) may be stored within the SmartGov
platform as knowledge units associated with the whole service.

In this phase, the service name is entered, along with a high-level description of
it and at least one set of forms. The description may document the overall service
functionality, the result of the feasibility study and so on. Finally, Knowledge Units
and some taxonomy nodes related with the service may be entered.

The only pre-requisite before the TS generation consist in having at least one
form element created. It is mandatory for the TS to have at least one form set.
The form could be just a dummy form (just the ID and the description) if
anything else have been defined.

After that, Domain Experts and IT Staff add the form elements (Forms, TSE, TSE
Groups), and the KUs attached to them, the categorization and all the methods
and validation rules required.

Once the service is finished, the experts should send TS to approve. The manager

should approve the TS before the integration.

3.6.1.2 Integrating components

Once all necessary elements for a transaction service have been defined, the
integration phase will arrange for performing a synthesis of these elements into
an operational instance of the transaction service. In more detail, the integration
step will perform the following actions:

1. It will access the service definition, extracting from it the links to the
forms that implement the service, the validation checks pertaining to the
service as a whole and the associated KUs.

2. It will retrieve the form definitions and the definitions of the TSEs
appearing on each form, together with the associated validation checks
and KUs. If a TSE group has been placed on a form, all TSEs belonging to
the group will be retrieved, together along with their descriptions, KUs and
validation checks. KUs and validation checks pertaining to the TSE as a
whole will also be retrieved.

3. It will load the information regarding the statistics that need to be
collected.

Once this information is available to the integrator, the service instantiation task
may proceed. The integrator module will generate a page for each form defined
within the service, using the form layout specification. Forms belonging to the
same service will be suitably linked, based on form sequence information
specified for the service; “submit” buttons will also be placed on the forms that

have been designated to provide such functionality. At this stage, the

completeness of references to TSEs should be verified: each TSE declared to
participate in a form, should be linked with an element of the form layout. If this
is not the case, the SmartGov platform user should be informed of the
discrepancy, in order to amend the situation.

Validation checks defined at TSE level and form level will be used to generate
code that will validate user input. This code may be executed:

1. At the front-end (client-device side), if the service designers have
designated that this is desirable and if the client device supports active
features. Regarding the timing of the execution, these checks may be
performed either when the user changes a field value (usual case when
the validation check pertains to the field data type or the field value
range), or when the user leaves the page (typically when the validation
check involves multiple fields).

2. At the server-side. All input should be always validated at the server-side,
since in a distributed environment clients should be considered
untrustworthy, and thus the system may not rest on the perception that
all client-side checks have been properly executed. Server-side checks
may be run when the user leaves a page or when a final submission is
made, depending on the timing specified by the service designers.

The integrator will also generate code for the validation checks defined at service
level. These will be executed on the server-side upon the final submission, since
in general they involve TSEs appearing in different forms, which inhibits execution
at the front-end upon form change (it is not guaranteed that all involved values
will have been provided).

Finally code will be generated to arrange for the communication with third-party
systems through the SmartGov agent. This communication will be mainly
performed when the user invokes a service, in order to retrieve values for TSEs
that need to appear pre-filled in with values obtained from registries or
databases.

Knowledge units that are associated with TSEs, TSE groups, forms and the
transaction service and that have been designated as “help items for end-users”
should be appropriately linked to the forms. The integrator should arrange for the
proper generation of help pages from KUs and embedding of the hyperlinks to the
appropriate anchors.

Statistics definitions will also be translated to pieces of code that will arrange for
collection and storage of relevant statistics. For example, if the sum of the values
filled in a specific form element has been requested to be computed, the

integrator will generate code that will add the value of each submitted form to a

database element; if the number of submissions should be counted, code will be
generated for adding up one to a specific database element upon submission.

Once the final pages and the associated programs have been generated, the files
produced may be installed on a restricted access server for testing and evaluation

purposes, or on a public access service for full service deployment.

3.6.1.3 Reopening services

After the approval of the service, modifications may be required. For instance it
will be common that the service required several integrations and changes in the
form definitions before a total deployment, or a service already deployed may
suffer updates during its life-time.

In order to do that, the Ts should be reopened by the users with the “Approver”
role. The Ts will be in “Editing” state after this operation.

The integrator is the responsible for all the tasks described in section 3.6.1.2. In

the section 4 this module is completely described.

3.6.2 Introduction and common task

3.6.2.1 Introduction

The Front-end enables user to create service or to modify already deployed
services. In both cases this application allows user to collaborate and work
together to complete the service, establishing the Forms and elements taking part
in the service, and also the “help” —using Knowledge Unit” related to the service.
In the following sections this document describes all the tasks to perform
concerning the development of a service. These tasks include:

e Create or modify a TS.

e Define its forms, with their associated XHTML layouts.

e Create the required elements in the form (Generic and Instantiated TSEs

and TSE Groups).

3.6.2.2 Working with Validation Rules

The validation rules enable the user to add “intelligence” to the service, by
incorporating checks to assure that the data entered are conferment to the
organisation’s business rules governing the service.

Validation checks may apply to individual TSEs, TSE groups, forms or TS.

Validation checks pertinent to specific TSEs will mainly check the data type

(integer, string, date etc) and the value range of the data entered. These
validation checks may be considered as properties of the relevant TSEs.

Validation checks applying to TSE groups, forms or services will mainly check if a
certain relationship between different TSEs holds. The TSEs referenced in the
validation check should all be valid in context of the object within which the
validation check is defined; for example, a validation check defined at TSE group
level only references TSEs participating in the TSE group.

Validation checks may be entered either via a graphical interface or in textual
form, using SmartGovLang, a validation rules language that has been defined
within the SmartGov project. In both cases, the definition of complex validation
checks will be carried out by IT staff, rather than domain experts. IT staff should
be allowed to code validation checks directly in the language used by the service
delivery platform (e.g. Java, JavaScript etc.) if this is found to be convenient, or
if the coding language/environment provided is not expressive enough to

implement the desired functionality.

: Vabhdation rule edition - Miciozoft Intemet Explones

| - - = - D [F 4| Dbbgeds [Faveitos PHiseal |G- FHOD O T

e user_staff
S validation rule edition
- Gov tast
Walidation rule edition
Id.
Validation Rule Configuration
Rule code ey method
Validate at: IE ack and ;I
Statistics
Humber of failures " Enabled ™ Disablad Exwcution Hme " Enabled ® Gisablad
Walidation rule edition
21 Listo i Intranet local

[

Figure 38 - Validation Check

For a deeper view over the validation checks, please review Appendix B.

3.6.2.3 Methods

Methods are used to define both validation check codification and actions to be
performed when some event occurs in the related elements (for instance when a
form is loaded).

The user has to choose between the following types of methods:

o

» Native Language

» SmartGov Language
o Full Rule
o Compact Rules

Please review Appendix B for a deeper explanation.

3.6.3 Service Portal

In the service area of the SmartGov portal menu there are four options, to access

for different portal-like pages.

3.6.3.1 TS Portal

This portal page (see figure 39) is very similar to SmartGov main portal, but the
list of last KUs has been replaced by a list with the last TSs, and the task list is
not shown. The user is able to access the complete definition of the different TSs

clicking in their names.

[k senartGoy Design Crvircniment Portal - Microsoft Internet Poplores

e Edoin e Eworin Heraments A) i |
bk » o= - [3 Dbisgmds [Gfeoe Fndimeds F | e S H B R
'_wjﬁmmgmm:mlwm_lm1mmm TR = P

Wiks @ smndo.es @jGocgl @jindramet | SmartGovWebapp | tioks | _iDwdcnarics | Javatooks | |1svaDocs 4 Jiocmmentum Indea Geslo:

o'_ff" " Uspry mi:.

.I'SHU-J ot o et 2
] o NemseswyRees
EL bdknr Liwt of Exiwting Taxoncmine
s e Imartes TaKanam
i £
IEE Echkor e TS
THE Groups Edane Hmma [Author State Duscription
E-slas 13102003 Ligut appnived E-vils dogpud tion
Cazmidlic o 5 134103003 String Skring A pample penvecs to fubmit income bas data
TG Editer incoms Tax Ssrocy 13/10/2003 Sirimg Skring & pamphs renvece to submit income kux data
o et ek e e Wk
Thare i no TS cresied By the csmart group.
Figure 39 - SmartGov TS Portal
3.6.3.2 Form Portal

This portal page (see figure 40) is very similar to SmartGov main portal, but the
list of last KUs has been replaced by a list with the last Forms, and the task list is
not shown. The user is able to access the complete definition of the different

Forms clicking in their names.

n [nveonment Portal - Microsoft Internet Explores

| Archien G e Faecritos Heanenis Asuds

[e - = - Q]) Dsiwwede sifwortss Poiaimeds 3| F 5 I B !
| Eermgeiden [] hitofocshost B080/SnartGovirdesSarvcsEdbor doslenent=FORM =] &r |
| Voo jeburdons Elancge @inkweb | |SmaitorWebapo | Boks | [Dkcionwics | jkeaitook | Jlavaboss i luamentum Indes Gesoc -i

TEE Grpuane Editoe Hama Dmbn Duscription
E-uaT peguipition dtsil P 1501002003 E-WAT aoquisition detsi] foem
. 13/10/2003 EAVAT mcguitiion hasdsr farm
o Edker 310/ st
TS Eding Thes Fourrs aPows tha uiar to praveda infermaben on paricnel balongings that hilp defing hishai
Qbisctive Ciberin 131002003 Fradlbiidy
This form afloss the user b0 proside pecranal informabion about himseirherself such as nama. address,
Parronal detaily 102003 Al
Essrznal incoma dets 13/10/2003 Thix foem providar fialde for the subméssion of percnal incoma scures s well @z sxpanses
Bt

Tha & no TS ormabed by the cument group,

Figure 40 - SmartGov Form Portal

3.6.3.3 TSE Portal

This portal page (see figure 41) is very similar to SmartGov main portal, but the
list of last KUs has been replaced by a list with the last Generic TSEs and other
list with the last Instantiated TSEs. The task list is not shown. The user is able to

access the complete definition of the different TSEs (Generic or Instantiated) by

clicking in their names.

| bl - = - Q[A Deiinds Sifwots Pudowds F LSS JBW .
Durmgrdén (4] Hetoeikecabhost B0 fSmart oviirdesSenceEdtor dorement=TSE = o

[rakos @lebrdons Glooge @it | Smeritoieh e Bl (iDsoonarics) boolt " JevaDocs g [Oeeasmartum nces Gesboe W
ata L=]
Examely of 755 Irutertiaty 18102003 Example of TSE
Eerm Edtar Examgla of 755 Instaraiate 1540/2003 P:w:I: #TE
T Elibos
o etieenetated TR
14, rama Data Doesripkion
CIRCULATION DATE TI8 Circulation Daks 18/1 0/ 3083 Ciradabon Data input
SEES TEE Arwd 101 0 0 Araa Input
SEMETRUCTION DATE TBE Consteuction Date 13/10/3003 Cartruction Dats input
Zubic em 18/10/206% Lokt o inpuk
EDLICATION FEES TBE Educabion Fess A3/10/2003 Edutation Faes input
.04
Thars is no TS created by the cumsnt group,
Figure 41 - SmartGov TSE Portal
3.6.34 TSE Group Portal

This portal page (see figure 42) is very similar to SmartGov main portal, but the

list of last KUs has been replaced by a list with the last Generic TSE Groups and

other list with the last Instantiated TSE Groups. The task list is not shown. The

user is able to access the complete definition of the different TSE Groups (Generic

or Instantiated) by clicking in their names.

N smeartiGor Design Environment Portal - Micresoft Intermet Explores] .llﬂil
T R e e

|omts - 2 - D13 3 Ooiuads Gifwors Piadwads J B ST HDE

| st] s o0 rarovder s 5 enen T o e |
| Vi @lebrurdons ElGosge @]irdsb | JSmartGowWebape Boks [iDkcknarios | Jnvabool | [Javaocs 4 plumsntum Indes Gailbie -

TEE drpugs Editpe Harnm Gatn Deacnption
o Esltar Exdgenplp of TOE Groug legtentighy 102003 Examgds of TSE Sroup
I S etnetebated TSR G
id. e Date Drescrption
AT d
TSEQ EVAT DETall il LT E-AT dutail THE Greup
Taxable's details 137107 3003 Datais of the ompery
SEG EvaT BERJOD SatenigFin pareed 130103003 Pasipd doing which this form is subenitted
CAE._DETAILE GROUS Cunad Cur datails 13/10/3003 Form to submit car dabnic
PECUCTIRLE GHPEMSES GROUE m:.':'_' 134104 003 Fom o submit dedudtibls supennes
Hast

Thars ir no TS creatad by the cument group.

Figure 42 - SmartGov TSE Group Portal

3.6.4 Development of Transaction Service Components

3.6.4.1 Introduction

During this phase the various components of the electronic service are taking a
concrete form within the SmartGov platform. The following paragraphs elaborate
on the process of creating the different elements. It is important to note that,
once the service process model has been defined, the object definition need not
be carried out sequentially. For instance, the form layout may be developed in
parallel with the TSEs or the KUs that will be placed on the form, and links to
external IT systems can be established independently of all other activities.
Restrictions are placed on the development timeline only when a specific object
depends on the existence of another: for instance a validation check involving two
TSEs cannot be modelled until both involved TSEs have been defined and placed
in a Form or in a TSE Group.

It is necessary to have a form before creating a Ts, a Generic TSE before creating

a TSE Group, and other restrictions described in the following sections.

3.6.4.2 Transaction Service (TS) Edition page

Figure 43 shows the TS Edition page. This page is shown once the user selects

a

TS and he/she has the rights to update it. The Figure shows the sections unfolded

for clearness purposes.

@ Deiceds sffects Gadeeds - S G W

SRy

RSt KR

i

0 Tae Larviim B paryiom s Al e plabfnren sndd fe pecaibivses.) | @
Q Barpios du grabe Lisy pwrvetn pavs peobiar ls platafarma v sus pesibibdadas - v}

[=) I =

gt et Sarac s Lebion (153 :_ Sttt | =y

o

ara —

Al s C tras & Falia [y ™ Trua & patsn

|
i
{
i
i

H

1
‘
E

| |

. e Dats
Foem Sval a0 DETalL E-vaT scguisiton detall feem 15/10/206% AT sgostsen dutel fere

hidd ey Faman

l

{
:
i.

Tharw i na AU bekad,

Thasw 0 nn Taannnry reds linkaid,

|

[A —— © pnabied 7 Dicabilad Funbse Of Garsl s bt Ses— T pnabted T paabied
Fitptribass 13 Sasbarsbamios, With, W sevngt knabiad ® Disabled P 0F Folitn © emabied ™ Dusabiad
[P a— prsbiad * Dissblad Pl (] Hapostmd Sulisssines T inabled 7 puakled
Full Submission T € pnabied 7 Dipabied trrnr Correchon Pems I pmabied 7 Diabilad
Handle Submession T " natind F pissbied

I} Raes
e T st

Figure 43 - TS Edition page

The following fields and actions may be identified:
Actions:
» Save
» Delete
> Approve (Depending of the role of the user and the state of the TS)
> Reject (Depending of the role of the user and the state of the TS)
Fields:

Header Section

|

>

>

Id: The Id of the TS. If the TS is new, this field is updateable. The user
should provide a TS identifier without spaces and special characters, such
as hyphens, slashes, and so on. Notice that this Id should be human
readable in order to easily search and locate the TSs afterwards.

Description Table (Name and Content) — See Multi-lingual tables (3.3.1.3).

Properties Section

>

YV V V V

Authentication requirements: The type of authentication that will be used
to verify the identity of the service end-users. The username and
password method is supported by default; all other methods should be
supplied by the organisation’s IT staff.

Allow save

Allow edit

Allow delete

Deadline: Defines when this TS stops being valid; after this date, the
deployed TS will not be usable by end-users.

Validation Rules Section: This section contains all the validations check
to be performed when a service end-user submits a document. Please see
section 3.6.2.2 for further information about Validation Rules.

Available Methods Section: This section contains two methods:
preaction and postaction, which enable SmartGov platform users to specify
actions to be performed when launching the service (preaction) and when
it is finished (postaction).

Included form sets: This section enables the user to create form sets. A
form set is a group of forms directed to a specific platform. The possibility
of defining different form sets has been implemented as a future capability
of the tool to generate services for different platforms (HTML, WAP...),
although currently only "HTML"” form sets are supported.

When a new form set is created (clicking in “"Add new Form set”) or an
already defined form set is modified (clicking in the name of the form set,
in “Target Platform” column) a new page opens, allowing the user to select

the forms to include in the form set (see figure 44).

;

T Transsction Service Edition {T5) - Microsoft Inbemet Explorer g
oo - - @[] 0 Dot Glrerwtos Grtmeds |G S B W

ot Ye

|

al

Usery Uger DAt ™~ E

_‘.' _'3}’..';1_.:.: T5 Fowmn Seis Work S varl

L RO

. ane Datm Duscripbon
FORM_EVAT_ad DETALL E-WAT acquisition dated form ASLOFE00S E-WAT acquisition dated form r]

Target Platform : HTHL

M Cratm oo
r E-unT b pdar AR L0/ 2003 E-vaT acquisiban header Ferm
‘m f== TR T T 13/10/2003 Thix forrm slicws the user to pravids infermaticn an perconal balangings that hels defins hisfhar incama
r Pgrjon il 13102003 This form altows B user to provide parsanal infamation shaat PamiathTaoe® puch a5 name, sddress. abe
] Parional incnre dats 13710/ 200% This Foerns pravidus Tislds for tha submission of parsonal incame sours s wall & axsanse
[Fpure Parsonal Detals 13/10/2003 Thiz form alloss the urss to provids pencnsl informaticn shout hin'her cpoures Tuch sz nams snd ags,

Figure 44 - Form set definition

For a more detailed reference about managing tables, see section 3.3.1.4.
Associated knowledge units: KUs can be associated with a TS. The
way of attaching KUs is explained in 3.3.1.7.
Categorization: The way of linking a TS or other SmartGov elements to
Taxonomy Nodes is explained in 3.3.1.8.
Statistics: The definition of the desired delivery environment statistics for
the TS. In this section a set of choices are displayed which enable users to
activate or deactivate the collection of these statistics in the delivery
environment.
Validations:
» Mandatory fields: TS Id, and at least one description (name and abstract)
and one Form set.
» The TS id must not be in use by any other object in the SmartGov
platform.
If the user does not have the privileges required to edit the TS, a read-only page
will be shown (see figure 45), allowing him/her to view all the characteristics of

the TS. The structure and fields are the same with the Edition Page.

Microsolt Internet Faplorer

L - , : [=]
B '3}1,1‘;1 Tranasction Service Viewing (T5) :& ::'-M E:: ﬁ

o AT A _—

[[Hama Content

| e : E-wiud A THONG aoRia
| @ | Fealnn F-iwe acquigitions
E..u—u:.-— s

Ihlbrs Save s Alkerrs Dbt as

HIH_I Eiit W Deadling FLF1T29FF

Thare is v availsble Rube to Ank

|

Prmaction s tiod il
Postaction method Thearw e no sesilsble msthod

Target Platfoem Tnchaded Frmes

| | 1. Harma Date Dusriptaon
| EORH Eva¥ o pEapER E-vAT haader 1AL 20D E-HAT aoguisdicn haader Fom
‘Wab
| i EORM pwAT a0 DETAIL E-WAT aoquizikion detel forn 1572002003 E-VAT moguirtion detail farm

Thars o Ao KU bekad.

Thasw ia no Texonory reds linkad.

|

Hagrrbiar OF Enabled Fiuinbiir OF Sawed toi Subieibed Sessmns Digutdad
Haarnber OF Submissions With Wamings Cipablad Furnbaes Of Crlewsied
tusnbar (F Duletons Binablad b F 4 Sul Dinskbdad
Fsll Sislsanvis s Tiona Ceipablad Ervor Dorre o T Digmtibed
Hardis Submission Time Dizablud
O
(&t [B - [s—————" -

Figure 45 - TS read-only page

3.6.4.3 Forms

Forms are the basic presentation and interaction unit for the end user of the
transaction service. In the context of the SmartGov platform, a form is divided in
two parts:

1. The semantic part, which defines what information is entered in the form,
the validation checks that apply to the form and the knowledge units,
which will be presented to the user.

2. the layout part, which defines the appearance of the elements on the
client device through which the electronic service is accessed.

Although in an ideal world both these parts would be developed in an

integrated environment, in the context of the SmartGov project this is not

feasible because (a) developing a web page editor with modelling power and
user friendliness comparable to the commercial tools service designers are
used to work with, is a huge task outside the scope of the project (b) devoting
person power in development of such a module is not in line with the

objectives of the key action (c) existing products are “closed” platforms and

cannot be extended. Taking these into account, the two parts will be

developed independently as follows:

1. The semantic part is developed using the SmartGov development
platform.

2. The layout part is developed outside the SmartGov platform using any
appropriate tool for form layout definition that targets the dissemination
channel through which the service will be delivered. For example, if the
service will be delivered through the WWW, HTML form editors should be
employed (e.g. DreamWeaver, FrontPage, vi etc.); if the service will be
delivered through the WAP, a WAP page editor (3TL WBuilder, Rasquares
Wap, vi etc) might be used. For services that will be deployed through
multiple dissemination channels, appropriate form sets should be
developed, one for each dissemination channel.

Since the two parts will be developed independently, there is a need to integrate
them, by establishing links between the elements of the semantic part and the
elements of the layout part. This procedure is covered in 3.7. The development of
both parts should adhere to the results produced by the service process model
creation phase, so these parts will be consistent with one another. Any
inconsistencies between the semantic part and the layout part (such as a
reference from the layout portion to a TSE or KU that does not exist) will be
detected at the integration phase, and users will be advised on the actions that
need to be taken to resolve the inconsistencies.

The key advantage of this separation is the independence between presentation
(covered by the layout) and the logic (the Form element itself). In this way, it is
very easy change the visual aspect of a complete service without modifying the
logic, or reusing this logic, given that it is isolated and stored in the different
elements (TSE, TSE Groups, Forms) that can be reused.

Figure 46 shows the Form Edition page. This page is shown once the user selects
a Form and he/she has the rights to update it. The Figure shows the sections

unfolded for clearness purposes.

=l8lx|

a Form Edition - Microsoft Internet Explorer

J Gorss - = - D) ﬁ| ‘QiBlsqueda [dFavoritos SfMultimedia (4 ‘ B-SEHEGE®
K T User: user_sxpert

SIZILE
! Work group: test
- Gov group

I

Actions: 3 [

1d. FORM_EVAT AQ_HEADER
Name Description
[<:] E-UAT header E-VAT acquisition header farm @ s
=) Enikeqakifa E-waT éppa cnikepakifac anokThozwy E-VAT)]
|spanish =] |

|I

Form Layout (html/FORM EWAT AQ HEADER.xhtmlChoose Form

Name of the Rule
@ TSE_EWAT_DCL_NG
& TSE_EVAT TAX_OFFICE

& TSE_EVAT_RECEIMING_TAX_OFFICE
anew rule

|
B
e

Method to be executed when loading the form Mew methad
Method to be executed when leaving the form Mew methad

1d. TSE Name
TSE EVAT DGL NO Declaration Numnber
TSE EVAT SUBM DATE Submission date
¥l TSE EVAT RECEPTION DATE Recaption dats
4] TSE EVAT TAX OFFICE Tax office code
] TSE EVAT RECEIVING TAY OFFICE Recsiving tax office
] TSE EVAT CURRENCY E-VAT currancy
[¥] TSE EVAT IS CORRECTIVE Chack for corrective E-VAT
@ TSE EVAT TRIMESTER Subrnission trirmester
TSE EVAT YEAR ‘aar of submission

Associate TSE

1d. TSE Group Name
¥’} TSEG EVAT PERIOD Submission period
] TSEG EVAT CONTACT Taxablegapos;s detalls

Associate TSE Group

There is no KU linked.
Associate an existing Ku

There is no Taxonomy node linked,
Associate nodes

actions: @ [

@ F!ili

Figure 46 - Form Edition page

The following fields and actions may be identified:
Actions:
» Save
» Delete
Fields:
Header Section
» Id: The Id of the Form. If the Form is new, this field is updateable. The
user should provide a Form identifier without spaces and special
characters, such as hyphens, slashes, and so on. Notice that this Id should
be human readable in order to easily search and locate the Forms
afterwards.
» Description Table (Name and Description) - See Multi-lingual tables
(3.3.1.3).

Layout Section: this section enables the user to select the layout file
associated with this form. The file will be uploaded into the server where
the application is installed (see section 3.3.1.9 for further details about
uploading).

Validation Rules Section: This section contains all the validations check
to be performed over the form, when the form is submitted. Please see
section 3.6.2.2 for further information about Validation Rules.

Available Methods Section: This section contains two methods: the first
one to be executed when the form is loaded, and the second one to be
executed when the form is submitted.

Included elements: This section enables the user to include Instantiated
TSEs and TSE Groups to the form, using the links “Associate TSE” and
“Associate TSE Group”. These links open new windows to select the
elements to be included in the form. For a more detailed reference about
managing tables, see section 3.3.1.4.

Figure 47 shows an example of the page to select Instantiated TSEs.

W seleck 1505 - =hcrosoft Intemet Enplorer o[- s |
| dmiime o w o B (3] o Diosgueds TEFwvodes Muieda Of | G o o7 o] BO¥ -
¥ o = Uanrs U swp e T D
Shusirt Saluct T5Es Wt graps tashs
Sann Datn Decripon
i} 13710/ 200 Hupshars VAT nurbar TEE
W 1341072003 Country prafix T8E
r 1371042003 Supehies TSE
I3 13 L0 200 Triargulesrs suppliss TSE
I 13/10/2003 Nis reanbar TSE
r 134003003 Bagin of avalustion pedod TEE
r LACLOS200F End of wvaluaion parod TEE
r 13/10/2003 Taxsbla's parson sddrars TSE
n 13710/ 200% Tawsbls's parean wAT rumber TSE
I 13100 200F Taxwble's parics arks THE
ik 'zs: r’d _a:

Figure 47 - Select ITSE to include in a form

Associate knowledge units: KUs can be associated to a Form. The way
of attaching KUs is explained in 3.3.1.7.

Categorization: The way of linking a Form or other SmartGov elements
to Taxonomy Nodes is explained in 3.3.1.8.

Statistics: The definition of the desired delivery environment statistics of
the Form. In this section, a set of choices are displayed which enable users
to activate or deactivate the collection of these statistics in the delivery

environment.

Validations:

» Mandatory fields: Form Id, and at least one description (name and
abstract). The layout file is not mandatory to save the form but a warning
message will be displayed while no file has been selected.

» The form id must not be in use by any other object in the SmartGov

platform.

1 Waewnng - Microsolt Internet Caplores . -IMH

< @ () Dnkawds SiFwnrin Edimeds B 0h- b A B W 3

JEeE : R
! .5;_‘“: Ferm Viuwing : &mm 1:]

L A

. FORMH_EVAT & CETAIL

e [D‘m'lﬂ
| @ AT acquizstion, detad form Lwrr seguir®ion datad form
! ﬁ Sippa Mrdioeie anoerfosuy B :han,lu AUTTOUIR B QNOETH TG EART

har

i
i

Pl FORM_EVAT &0 DETRIL shvined

i

W id A wnailable Ruls ks sk

Hathed to ba sxscuted whan loading the form Thare ia ro avalsbls mathod
Fathed to ba sxescutnd whan lwaving the Form Thurs iz no svsdskls mathod

Thars is & KU linkad,

Figure 48 - Form Read-Only page

If the user does not have the privileges required to edit the form, a read-only
page will be shown (see figure 48), allowing him/her to view all the
characteristics of the form. The structure and fields are the same with the Edition

Page.

3.64.4 Transaction Service Elements (TSEs)

Transaction service elements will be the basic building blocks for transaction
services. TSEs will be mainly defined by domain experts, and their work will be
complemented by IT staff, who will code the IT related portions, and by service
workers, who may contribute by adding knowledge units that will serve as help

items for the end-users of the transaction service.

Figure 49 shows the Generic TSE Edition page. This page is shown once the user
selects a TSE and he/she has the rights to update it. The Figure shows the

sections unfolded for clearness purposes.

I Transaction Service Element Cdition (T5E) - SMicrosoft internet Esplorer

SRLIEY
(@]

| bt - - Q[A Diedsuds SFwords (Grdineds P DY = B
L R — U
1‘..5:‘;1}'”: Frunwaction Service Hhrment bddion (T5E) mmm" Bl E
Tomesde
B THEzsmels hanee [Ecsmpls of 58
I Lontmet |
[o Exampla of T5E [= | @
| zeamizh = | D
e
| | : |
mmperses
ta, Lenagth fin
F';'_w. fract =]
ot vae |
e fr—]

Thasw | no Taxonomy rede linked.

Figure 49 - TSE Edition page

The following fields and actions may be identified:
Actions:

» Save

» Delete
Fields:

Header Section

» Id: The Id of the TSE. If the TSE is new, this field is updateable. The user

should provide a TSE identifier without spaces and special characters, such

as hyphens, slashes, and so on. Notice that this Id should be human

readable in order to easily search and locate the TSEs afterwards.
Name: The name of the TSE.
Content Table — See Multi-lingual tables (3.3.1.3).

Y VY

Properties Section:

» Max. Length: The maximum allowed length for this TSE. Zero means

unlimited length.

> Data type: The data type that this TSE will contain. The possible values

are:
o Currency
o Date

o Integer

o Boolean
o Text
o Real
> Value list: Provides a table to add possible values of the TSE, and allowing
to specify the default value (see 3.3.1.4 for more details about table

management).

Validation Rules Section: This section contains all the validations check
to be performed over the form when submitted. Please see section 3.6.2.2
for further information about Validation Rules.

Available Methods Section: In this section, it is possible to add
methods. This is a provision for future platform extension". In future,
methods placed in this section (java code, SmartGovLang etc) may be
included once and could be used in several validation checks.

Associate knowledge units: KUs can be associated with a Form. The
way of attaching KUs is explained in 3.3.1.7.

Categorization: The way of linking a Form or other SmartGov elements

to Taxonomy Nodes is explained in 3.3.1.8.

Validations:

» Mandatory fields: Tse Id and data type.
» The TSE id must not be in use by any other object in the SmartGov

platform.

S HIDHee

: L
s Teansaction Service Flement Viewing (TE] o i .| s |

TSEE=#mpla i __Ewarnple of THE

Lotk

& Exaenple of TSE

! HH
g

Thars o re avelsbls Buls to fink

FAiwnilable Methods Mo suailstls mathod hsr besn defined

Thars i3 no KU krked

Thare iz no Texsnomy neds linkad,

Figure 50 - TSE Read-Only page

If the user does not have the privileges required to edit the Generic TSE, a read-
only page will be shown (see figure 50), allowing him/her viewing all the
characteristics of the Tse. The structure and fields are the same with the Edition

Page.

3.6.4.5 Instantiated Transaction Service Elements (ITSEs)

The ITSEs represent instances of Generic TSEs. These instances are created to
include the TSEs in forms, allowing the user to modify or adjust some of the
characteristics of the TSE. Therefore, the structure of the ITSE is very similar to
the TSE’s, as the figure 51 shows. This Instantiated TSE edition page is shown
once the user selects an Instantiated TSE and he/she has the rights to update it.
The Figure shows the sections unfolded for clearness purposes. Given that the
structure is very similar to the previous paragraph, only the differences will be

commented.

Y tnstartiated TSE Cdition - Microsoft Intermnet Explorer

| orts - & - D[] A Deiegeds SiFwois (Prameds |54 = E R - []
:'*_ﬁzéfr Transsction Servics Harment Edtion (T5E) :;: : ;L.“'“ - =3
']
Tomesder
1. T_TEEE armeie_0001
| B Ihx..mpq. of T8E Erampla of Ti [« @ |
| s anieh =] |
| | | ¢]
]
mmele
e k i
_B'l’h'lﬂr- [crrarey 20 |
Dot Yakun [§ I
b Lint ri"‘" = Description Btabt| Bl Defets||
~ i — = —_— |
|singte setect [rrus 1 Fatea [1s Whstbe [T Trom @ iraine
[—r— [€ Trua. 7 Futse Tl Mandatery T T pa
Fowmenmides
Bdd a nuw rule
% Wi e
it i | | {_ |
[P ——— [L I
———— ' L |
Shores st [A |
P Rsscdabed Kmenledgu Bt
There i i KU beked, =

Thara i e Taxanamy noda linked

|

Hesmbur of hom Emply ¥l T Toua 7 pales Humbar of Distinck Valuss Trus F rabra

sums of all Waluss ™ Toua * Falea Mo Yalus Teun Fakey

Hinnang Wl T Toue & Falsa Hainenin Vb C Teis 7 Falsa
. =
Euee 7T vtenetecd

The foll
Fields:

Figure 51 - Instantiated TSE Edition page

owing fields and actions may be identified:

Header Section

Id: The Id of the ITSE. This id is generated using as base the Id of the
Generic TSE used to instantiate it. A “T_" prefix is added if the ITSE is
instantiated from a Generic TSE, while a “"G_" prefix is added if the ITSE is
instantiated from a Generic TSE Group.

Description Table (Name and content) - See Multi-lingual tables (3.3.1.3).

Properties Section:

Single select: For TSEs that present a list of values to the end-user, if this
flag is “true”, only a single value may be selected; if this flag is “false”,
multiple values may be selected.

Is visible: designates whether the TSE will be visible by the end-user or
will remain hidden.

Is read-only: if this flag is “true” the end-user will not be able to modify
the TSE value; if this flag is “false”, modifications will be allowed.

Is mandatory: if this flag is “true” and the end-user provides no value for
this TSE, an error will be flagged; if this flag is “false”, provision of a value

is not mandatory.

Available Methods Section: In this section is possible to specify four
methods:
- Computation rule: a method to compute the value of this field.
- On value change: What to do when the value of this ITSE changes.
- Retrieve method: how to load its value when the form where it is
included is loaded.
- Store method: how to store its value when the form where it is

included is submitted.

Statistics: The definition of the desired delivery environment statistics of
the ITSE. In this section are displayed a set of flags which enable users
activate or deactivate the collection of these statistics in the delivery

environment.

Validations:

>

Mandatory fields: all pre-filled when instantiating the object.

a Instantiated TSE Yiewing - Microsoft Internet Explorer

J Gfras v o= - @ 4| Qposaueda [EiFavortos Fmatimedia A By S 2 9 W

=18l x|

U
L) . User: administrator i
o eamart Instantiated TSE Viewin: g m E!

Work group: tast
- Giov g P

-

d. T_TSEExample_0001
[Mame [Content

[5:] ‘ Exarnple of TSE ‘ Exarnple of TSE

z
]
B
H
5

1
Data Type Currency

Default Value

value List [value Description [Default |

Single Select False 1s Visible False
Is ReadOnly False Is Mandatory False

There iz no available Rule to link

Computation rule Mo zvailable method has been defined
0On value change method Mo awvailable method has been defined
Retrieve method Mo awvailable method has been defined
Store method Mo available method has been defined

There is no KU linked,

There is no Taxonamy node linked,

Figure 52 - ITSE Read-Only page

If the user does not have the privileges required to edit the Instantiated TSE, a

read-only page will be shown (see figure 52), allowing him/her to view all the

characteristics of the ITSE. The structure and fields are the same with the Edition

Page.

3.6.4.6 Group of Transaction Service Elements (TSE groups)

With layout definition being developed outside the SmartGov platform, a TSE

group defines the following:

> a set of TSEs that appear together within services

> Repetition information, indicating whether only one instance or multiple
instances of the member TSEs is required. For groups allowing multiple
instances, the member TSEs actually form a table row, which is repeated
as many times as needed, and may be used to model “detail” sections,
e.g. the items that are included in an order along with their prices, the
customers of an enterprise together with the net value and the tax due for
the transactions conducted with each one etc. The repetition information
may indicate the initial, minimum and maximum number of instances and
the step for adding new rows in the group.

» Validation checks that must hold among the elements of this set

» Knowledge units that apply to the set of TSEs, rather than to individual

elements (e.g. for a TSE group representing a citizen’s identification data,

a KU containing the law that states which information is considered as

“required identification data” may be defined)
It is worth noting that a single TSE may participate in more than one TSE group,
thus the relationship between TSEs and TSE groups is of cardinality “many-to-
many”. For instance, the identification number of a citizen may appear in the TSE
group “Personal Identification Data” and in the TSE group “Page footer”, which
can be placed on the bottom of a page to provide an immediate reference to the
service context. TSE groups may not be nested, i.e. a TSE group may only
contain individual TSEs, not TSE groups. This restriction leads to a more
comprehensible and easy-to-manage framework for SmartGov platform users to
work in, while it does not downgrade the platform functionality since (a) the same
result may be obtained by adding the individual TSEs belonging to the source
group to the target group and (b) the cases that such a functionality will be
needed will be -if existing at all- rare.
TSE groups with no repetition requirements are not an indispensable element of
the SmartGov platform; they are provided for convenience purposes, since the
working team will be able to package in a single entity all the necessary
information for TSEs that usually appear together. Determination of whether a set
of TSEs should be packed in a group with no repetition specification should follow
some “rules of thumb”, such as “if some TSEs will be frequently used together, it
will be beneficial if they were grouped together once and used thereafter as a

single entity”.

Figure 53 shows the Generic TSE Group Edition page. This page is shown once
the user selects a TSE Group and he/she has the rights to update it. The figure

shows the sections unfolded for clearness purposes.

A service elements group edition { TSE Group) - Miorosoft Intermet Explorer

| ke - o - D[] Deeds SiFwertss Gtmess P - S5 AB W m
Sl T e rar_ st 3 8
._'-_5‘:,:,_- Sarvizn shemants greup sdisss (158 o) mmm.‘ e - =
s
5. TEEGOOL anns [Fxsmpls of T58 Grous

! ! ERt nUE=

| [} Exwmpla of TSE Grivp | = | @ |

|zpunich 3] [18] I
| ‘
| 5] f
CF Repadtee nforstion
Ipﬂhmmm- I:l Fram, Direndes IJ |
[— i Cantral Duttona JHona = '
:llomhm I:l |
Towsmdstonmules
HAuded o nave rule
TomtudedEeests
i THE Hame
@ TigE=smpla Examiple of THE
Assecints TIE
T nmecmmd kneledgaeits
Thare b ne KU lrked.
Aggociate an sulsting Ku

Figure 53 - TSE Group Edition page

The following fields and actions may be identified:
Actions:

» Save

» Delete
Fields:

Header Section

> 1Id: The Id of the TSE Group. If the TSE Group is new, this field is

updateable. The user should provide a TSE Group identifier without spaces

and special characters, as hyphens, slashes, and so on. Notice that this Id

should be human readable in order to easily search and locate the TSE

group afterwards.
Name: The name of the TSE.
Content Table — See Multi-lingual tables (3.3.1.3).

Repetition Information Section:

vV VY

Min Occurrences: The minimum number of rows for the TSEG.
Max. Occurrences: The maximum number of rows for the TSEG.
Initial rows: number of rows shown when the TSEG is loaded.

Rows to process

YV V V V V

Control buttons: this field enables the user to specify the type buttons that

must be added to the group in order to manage the number of rows. The

possible values are:

- None

- Delete rows

- Add rows

- Delete and Add rows
Validation Rules Section: This section contains all the validations check
to be performed over the form when submitted. Please see section 3.6.2.2
for further information about Validation Rules.
Included elements: The TSEs included in this TSE Group.
Associate knowledge units: KUs can be associated to a Form. The way
of attaching KUs is explained in 3.3.1.7.
Categorization: The way of linking a Form or other SmartGov elements

to Taxonomy Nodes is explained in 3.3.1.8.

Validations:

» Mandatory fields: Tse Group Id, name and one content. At least one
element must be included.

» The TSE group id must not be in use by any other object in the SmartGov
platform.

ervice elements group retrieval (TS0 Group) - Micresolt Inbernet Baploner

- D E () Deisuds alFwories @vemeds | She o6 T S B

: S ila]
S D R e

M_-!,l-lh-:t

Examghe of TSt Group Hame TeEG001

=) Exarmeds of TSE Group

Thatn 17 na svailable Auls to lek

1. TSE Hama
TEE=priply Example of TSE

Thara is A6 kU linkad.

Thare o re Taxonomy noda linked

Figure 54 - TSE Read-Only page

If the user does not have the privileges required to edit the Generic TSE group, a

read-only page will be shown (see figure 54), allowing him/her viewing all the

characteristics of the group. The structure and fields is the same that for the

Edition Page.

3.6.4.7 Instantiated Group of Transaction Service Elements

The Instantiated TSE Group represent instances of Generic TSE Groups. These

instances are created to include the groups in forms, allowing the user to modify

or adjust some of their characteristics. Therefore, the structure of the ITSEG is
very similar to the TSE Group’s, as the figure 55 shows. This Instantiated TSE
group edition page is shown once the user selects an Instantiated TSE Group and
he/she has the rights to update it. The Figure shows the sections unfolded for
clearness purposes. Given that the structure is very similar to the previous

paragraph, only the differences will be commented.

< Editing & 15E Groop - Microsalt inbernet Bplores

! i X
| dasts oo - D A A Peinmds (lFaotos Pruneds §] - ST B ¥ [|
‘.,5‘:_“,":;" Eting o T5E Grous et Y =

|.

Al (TRERLEVE ML . =
Hame I Combmnt
& EVAT dutud THE Grous VAT dutail TEE Broue e | @
=1 PUAFSTRE Mrmoptpndy via T [puiba T8 kanropapiniy o o EVAT " @

[Erariat = [

&
A

|I

_b'llﬂ Mirsnr e -_I-lr.n:n- .
mtrol Bubios [522 and Dalate Aoes =]

g
il
T

Harms of the Buls
& TEE_PUAT_DETAIL TRIAMAULAS S0 TES
@ TEE_EuaT_DETAlL_aFM

?
i
F
I

Lr Vinible s Readtnly i Mandatory
Falin Falia Falss
Falsn Falsa Falsa
Talin Fulsa Falsa
Faten Fulsd Falsa

|

|
i

|

i

i
SRR

|

rula

e G e, e walus o 1 474K changne
TSE_EVAT,_CETAIL_COUNTRY_FREFIX
THE_EVAT_DETAIL_AFH
TSE_EvaT_DETalL_SUPPLIES
THE_EVAT_DETAIL TREAHSULAR_SUPPLIES

RRRR

Thars iz mz KU linkad.

H

Hurplsir OF Son Evply Walues Teum ™ Falsa Hizam Murliser OF Aoves T Trum Falsa
branerum Humbar (6 Bome ™ reum 1 Falza Hamirum Fumbar OF Bows trus % Fajes
dcwees O L

Figure 55 - Instantiated TSE Group Edition page

The following fields and actions may be identified:

Fields:
Header Section

> 1Id: The Id of the ITSE Group. This id is generated using as base the Id of
the Generic TSE Group used to instantiate it. A numeric suffix is added to
distinguish the different instances of a TSE Group. If the Instantiated TSE
Group has been created outside the Front-end, its name may follow
different rules.

» Description Table (Name and content) — See Multi-lingual tables (3.3.1.3).
Included elements Section: This section is very similar to the section in
the TSE Group, but in this page the list elements are Instantiated TSEs,
not generic TSEs.

Available Methods Section: In this section is possible to specify three
general methods:
- Retrieve method: how to load the values of the different TSEs when
the form where it is included is loaded.
- Store method: how to store the values of the different TSEs when
the form where it is included is submitted.
- Computation rule: a method to compute the values of the TSEs.
In addition to these general methods, specific methods to execute when
the value of an ITSE changes can be defined.
Statistics: The definition of the desired delivery environment statistics of
the ITSE Group. In this section a set of choices are displayed enableing
users activate or deactivate the collection of these statistics in the delivery
environment.
Validations:

» Mandatory fields: all pre-filled when instantiating the object.

S Conault do un v St do SamicsTotaeciado (115 Groug) e M Bl B3

o e iAr
Tl TREG_FWaT_DETAIL
v Confunt
E-VAT detsil TSE Grcup AT datsil TSE Grcun

@®

3;:“ R RO RCA optla THE MnTo@paky yia To AT

|

loog
il wed Daleta Rows

T

1l
:
]

Hams of ths Aule

I

THRE Mamnn D Fault ki g Wisibda: Is L

TEE_EVAT_DETAIL_COUHTRY_PRIFIH falzm falee falum
THE_EwAT_DETAIL_aFM felsm falsm falia
TEE_PWAT_DETAL_BUPPLIER Fairw Fales Falrw
TEE_Fuat_bETall_TRIAHALLAR_SURPLERE Falrm Falzm falaa

Fmtriu e i thed

Sborn mathad
Compatston nde

Hathads o sxucuts when the vabes of & Instantiated TsE .u..,..
TEE_EVAT_DETAIL_COUNTRY_PREFTH
TIE_EVAT _CATAIL_AFH
TEE_EyaT_[ETAIL_SUPPLIES
THE_FUAT_DETAIL_TREAHGLLAR_SLIPPLIES

Thate i e KU bekad,

Tamomeay Mode nams

‘

Hagrbiar O bos Emply Valess Falie Mg tapdber OF Rosves Fali
i Sumdesr OF Roses Falea Piaairrm Humbss 0F Rows Fales

Figure 56 - ITSE Group Read-Only page

If the user does not have the privileges required to edit the Instantiated TSE
Group, a read-only page will be shown (see figure 56), allowing him/her viewing
all the characteristics of the ITSE Group. The structure and fields is the same that

for the Edition Page.

3.7 Establishing links between the form visual
elements and SmartGov semantic elements

A form participating in a SmartGov service essentially combines two facets:

1. the visual part, comprising of XHTML elements

2. the semantic part, consisting of links to SmartGov objects, such as KUs,
TSEs, TSE groups etc.

These two facets must be integrated in a way that is (a) easy and intuitive for the
domain experts to use, with basic only technical skills and (b) is possible to be
sequentially processed in order to produce the final service forms, together with
the accompanying code. Moreover, it is highly desirable to produce high-quality
forms, in order to make the service attractive to the users if its target group.
Taking these facts into account, the SmartGov project has specified a procedure
for extending one of the most popular HTML editors, namely DreamWeaver MX, to
allow for the integration step to be performed easily by domain experts that only
have basic skills in HTML page editing. According to this procedure, domain
experts use DreamWeaver MX to specify the associations between visual
elements of the XHTML forms and SmartGov platform items. Domain experts
select through a click-and-drag procedure the visual elements and then select the
associated SmartGov item through intuitive dialog boxes. When these selections
have been made, DreamWeaver MX formulates a proper custom tag that uniquely
identifies the SmartGov platform item, and embeds this tag into the XHTML code.
Upon service generation the integrator module recognises these custom tags and
arranges for retrieving the information pertaining to the relevant SmartGov
platform items from the SKDB and appropriately enhancing form functionality.
More specifically, the complete procedure comprises of the following steps:

1. domain experts populate the SKDB with SmartGov platform items
(transaction services, forms, TSE groups TSEs and KUs), using the
SmartGov front end. It is important that all links between SmartGov
platform items have been established i.e.:

a. the transaction service refers to all forms (through the available
form sets) and all KUs it contains

b. each form description is complete in regard to the KUs it is
associated with and TSE groups and TSEs appearing on the form

c. each TSE group refers to all TSEs and KUs it contains

d. each TSE description is complete in regard to KUs the TSE is
associated with

This step is accomplished as described in previous portions of this

manual.

2. domain experts, possibly assisted by the IT staff, prepare the XHTML
forms for the service. This is accomplished using standard commercial
off-the-shelf tools such as Macromedia DreamWeaver, Microsoft
FrontPage etc.

3. the IT staff exports SmartGov items (KUs, TSEs, TSE groups etc) from
the SKDB into appropriately formatted XML files. These files are
installed in predefined locations, in order to be accessible by the
DreamWeaver MX environment. File installation is also performed by
the IT staff.

4, the domain experts establish the links between the visual XHTML
entities and the semantic items of the SmartGov platform by
highlighting first the desired XHTML entities and then selecting the
SmartGov item that the highlighted elements should be linked to.
XHTML entity highlighting is performed through the standard “click-
and-drag” methodology of window-based environments, whereas the
selection of the SmartGov platform items is performed via a tree-
structured index that may correspond to the organisational taxonomy
that has been entered in the SmartGov platform or, alternatively, to
the Service/form set/form hierarchy which is used by the SmartGov
development environment. It is also possible that both selection paths
may co-exist, and the users can make use of the one more suited to
their preferences.

In the following paragraphs, steps (2), (3), (4) and (5) will be covered in

detail, since step (1) has been discussed in previous portions of this manual.

The actual procedure for addressing step (2) is documented in the relevant

tool’s manual, however some issues on preparing forms to be used in the

context of electronic services developed using the SmartGov platform are

presented.

3.71 Preparing the HTML forms

An XHTML form to be used within a SmartGov platform service may be prepared
as any other XHTML form, using an HTML editor. However, the form design

should cater for all phases of the user interaction with the service i.e.:

1. data input. Input areas should be provided with appropriate labels.
Note here that since SmartGov services are multilingual, simple
provision of text labels is not sufficient.

2. access to help. Anchors from where the user can access the on-line
help texts should be provided

3. navigation/submission. Widgets that will allow the user to navigate
between forms and submit the document should be made available

4, system error output. Values provided by the user are validated by the
system and, in case of errors appropriate errors are emitted. The
designers should reserve space on the form for these error messages
to be displayed.

5. dynamic group expansion and shrinking. For repeating groups, in
particular, certain controls have to appear on the form to enable the
user to add and delete rows.

Important note: for repeating groups (i.e. TSE groups whose
elements may be cloned multiple times) only one instance of the
elements should be placed on the form, as shown in Figure 57. The
Integrator module will cater for producing code that will allow addition
and deletion of rows dynamically, during service execution.
Figure 57 presents an example of a form designed for a SmartGov service in the
DreamWeaver MX design environment, while Figure 58 presents the same form
rendered in a browser. On the top, a short title (VIES ACQUISITIONS) and a long
description (Form for VIES acquisitions) of the form appear. The question mark
icon appearing on the right of the short title is intended to serve as an anchor for
accessing help associated with the form. Similarly, the other question marks on
the form provide anchors for accessing help on the items appearing on their left.
Below the general information on the form, a line appears displaying the taxable
entity’s VAT id, which is effectively a TSE. On the line we can identify two

portions:

) Macromedia Dreamweaver MX 1N =10l x|
File Edit Wiew Insert Modify Text Commands Site Window Hel
=101 x|
-
4
remove raw
<body> <p> 823 1 448 » |BK / 2 sec i
- w Properties =
Format [Parsgraph |+ | /A [DefauFor: -] s nene o] B|Z|= @
Lk | i Tase| = |EE 2
-y

Figure 57 - A SmartGov form designed in the DreamWeaver MX environment

A EYAT AQ - Microsoft Internet Explorer

File Edit \iew Favorites Tools Help

= Back o+ = - @ it | @Search (3] Favarites @Media @| %v = = @ &P

=10l |

Address @ uments and SettingsicostasiMy Documentstprojectstsmartgoywps DW_HTMLY TMP7Z a3impjit. htm j @GD

VIES AQUISITIONS &2

Transactions data

Fdd row errors go
here

Aquisitions total:

Triangular aquisitions total

Country prefix WAT id Supplies Triangular supplies
ISeIectcountry;Ihz | |ﬂ | |R | |R .
Srrors in country errors in YATId go errors in aouisifions Srrors in tHang., aguis, |
prefix go here here raiue go here go here

remoue row

FEMOUE FOW SFFOrs g0
here

R ——
| ——

S

|@ Done

l_ l_ I_ |@ My Compuker

S

Figure 58 — The SmartGov form rendered in a browser

1. the TSE label (the text Taxable entity's VAT id) and
2. the TSE value area (the box on the right of the label)

Since this TSE will have a pre-populated value, no validation checks will be
associated with it and no errors will be emitted for its value; therefore, there is no

need to allocate space for an error message.

SmartGov good practice tip 1:

Place labels on the left of the form, values on the right. If many TSEs
appear on the same form, use a two-column table placing labels on the
left column and input areas on the right. The table helps keeping labels
and input areas aligned. Place help anchors, if any, on the right of the
respective input area.

If a field is bound to emit validation errors, allocate space either on the
right of the input area (expanding the table to a three-column one) or

immediately below (or above) the input area.

The Transaction data area is actually the space that the user will type values in.
In SmartGov terminology, this area hosts a TSE group with four TSEs, namely the
country prefix, the VAT id, the value of the supplies and the value of triangular
supplies. The group has a generic label (Transactions data) and is organised in a
four-column table (one column per TSE), with each column having a column label
(the TSE short name). The two following rows of the TSE provide the input areas
in which the service user will provide the values (first row) and the space in which
relevant errors will be reported (second row). The third and fourth row,
respectively, host the controls for adding and removing rows from the group and
for displaying errors that may occur upon row addition and deletion (e.g. while

trying to remove rows from an empty group).

SmartGov good practice tip 2:

Always use tables when entering repeating groups. Use as many columns
as the number of TSEs within the group and place error report areas
directly beneath the value input area. If the group contains too many TSEs
to fit in a single row, place firstly TSEs in the first row until no more space
is left, then insert a new row into which error report areas for the newly
placed TSEs will be hosted. Repeat the process by adding row pairs, until
no more TSEs are left within the group.

Controls for adding and removing lines should be placed at the bottom of

the group.

The two following lines display summary information for the group, allowing the
user to view the sum of the declared transactions value and triangular
transactions value. Since these fields are automatically calculated, only the label

and number appear, with no provision for error reporting areas.

SmartGov good practice tip 3:

Keep group summary data as close as possible to the bottom of the
pertinent group. Use descriptive labels for them and, whenever possible,

align them with the columns they report summary data on.

Finally, at the bottom-left part of the form, two navigation arrows appear allowing
the user to move to the previous form (left arrow) and to the next form (right

arrow).

SmartGov good practice tip 4:

Form navigation controls should appear on the bottom of the form, either

on the left or on the right.

Once the HTML form has been prepared using the guidelines presented above,

the link establishment procedure may commence.

3.7.2 Data export and file installation

The data export and file installation procedure step is performed by the IT staff.
During this phase the SmartGov XML repository is queried to retrieve descriptions
and identities of SmartGov platform objects. The data retrieved is formatted as
needed for use by the DreamWeaver tool and installed in the appropriate location.
Data retrieval and formatting are performed using the dwexport.jar Java
archive, which contains all the appropriate functionality. In order to initiate the

export and installation procedure, the following commands should be executed:

set CLASSPATH=dwconvert.jar;xmlstore-2.0.0.Jjar;xmlstoreapi-2.0.0.jar

java XMLToDWConverter repositotyPropFile DWeaverInstallationPath folderName locale

Note that in the first command the Java archives (jars) providing the
implementation of the export functionality and the XML store are referenced;
these may need to be replaced with the full java archive pathname, if they do not
reside in the current directory. In the second command, parameters are as
follows:
1. repositoryPropFile: the settings for the XML repository property file to
be queried.
2. DWeaverInstallationPath: the location where DreamWeaver MX is installed
on the system. Care should be taken if the installation path contains
spaces e.g. C:\Program Files\Macromedia\Dreamweaver MX, in which

case it must be enclosed in double quotes, i.e. entered as

"C:\Program Files\Macromedia\Dreamweaver MX"
3. folderName: The name of the folder into which SmartGov tag content will

be placed. The value “"SmartGov” is recommended

4. locale: the SmartGov Services and Knowledge repository holds
multilingual resources for various elements of the SmartGov entities, such
as names, descriptions etc. During the export procedure, the locale that
will be used during the form design procedure is specified (en for English,
el for Greek es for Spanish etc). This should be set to match the
preferences of the expert working in the link establishment procedure.
Please note that the specification of a single locale affects only the
DreamWeaver MX environment, and does not restrict the multilinguality
capabilities of the running service.

Alternatively to invoking the export procedure through the command-line, users
may use the graphical front-end to accomplish the same task. Figure 59 displays
the SmartGov DreamWeaver Integration graphical front-end. The user should
provide appropriate values for the form fields, which correspond to the
parameters of the command-line version. When all form fields have been entered,
the “Export” button should be pressed to initiate the export process. The “Export
messages” area displays information regarding the progress of the export

process.

& SmartGoy DreamWeaver Integration - |EI|5|
SmartGov DreamWeaver Integration

HhL repository properies file: || |

DreamiWeaver Installation Path: | |

Mew Falder Mame:
Locale to export:
Expaort messages:

Export | Eit |

Figure 59 - Graphical front-end for the export procedure

Upon completion of the execution of this command, the tags related to the form
design for the service “serviceName” have been installed in DreamWeaver and
are ready for use.

The final step required is to enable the usage of SmartGov tags in HTML

”

documents. This can be accomplished through the “Edit/Tag libraries...” menu,
selecting the “"SmartGov Site Tags” folder from the upper pane, checking the

“HTML" control in the lower pane and finally clicking "OK".

Tag Library Editor

Tags: il ;I

B wml]
) CFML Tags
Bl 75 ASP.NET Tags
=) JSP Tags
=y JRun Custom Library
T ASP Tags
[PHP Tags
3 Template Tags
= WML Tags
_______ Sitespring Project Site Tags
i @m SmartGo

LCancel

ui

Help

Usedin: |[] &SP JavaScript -
[asP WBScript

[CJASPMNET CH

[JASPMET vE

[ColdFusian

[ColdFusion Companent

HTHML

[CTHTHL Template

[Jsp

] Library lterm hd|

Tag Prefis: |

Figure 60 - Enabling the use of SmartGov tags

Notes to system administrators:
1. The export procedure generates tags in a single locale, in order to
minimise user confusion caused by a large humber of offered selections. If
multiple users on the same machine need to work using different locales

during the same period, this can be accomplished provided that:

a. A multi-user OS is installed on the computer (Windows NT,
Windows 2000 or Windows XP)

b. The different users use different accounts to log into the computer.

C. The files are not placed into the DreamWeaver MX installation

directory but rather in each user’s personal DreamWeaver MX
configuration folder. For Windows NT systems this folder is usually

located at
C:\WinNT\profiles\<username>\Application Data\Macromedia\Dreamweaver MX\Configuration

while for Windows 2000 and Windows XP systems this folder is

located at
C:\Documents and Settings\<username>\Application Data\Macromedia\Dreamweaver MX\Configuration

For more information, please refer to your DreamWeaver MX
documentation.

2. The case of the SmartGov tags should not be altered for the linkage

procedure to work properly. To ensure that no conversion occurs, please

verify that the DreamWeaver MX preferences do not specify forceful tag

case conversion. From the Edit menu select “Preferences”, select the

“"Code format” category and verify that the “Override case of tags”

checkbox is clear (this is the default setting).

x|
Categary Code Format
Genera! -
'égsgségﬂ:-;"n Indent: W Llse: ISpaCes vl Indent Size: |2
Code Hints Tab Size: |4
Code Rewriting
£S5 Styles Automatic Wrapping: W after Columm: I?E
File Types / Editors .
Fonts Line Break Tupe: IEH LF [windows) j
Highlighting
Irvizible Elements Default Tag Case: |<|0wercase> j
Layers
Layout Wisw Default Attribute Caze: IIowercase:"vaIue" j
Mew Docurment
Panels Ovenide Case OF [Tags [
Preview in Browser
Quick Tag Editar Mo Break dfter TD: W
Siter o
Ctatus Bar Centering: * Use DY Tag ¢ Use CEMTEFR Tag

W alidator

Set the format of individual tags and attributes in the Tag Library Editor.

Ok I Cancel | Help |

Figure 61 - Code format preferences dialog

3.7.3 Link establishment

Once the “data export and file installation” step has been completed, the
DreamWeaver MX tag library will have been enriched with tags corresponding to
the SmartGov platform objects. These tags must be placed on the form, replacing
the visual elements placed in the initial form design, in order to allow the
Integrator module to create the application the final service. Deletion of existing
visual elements can be done by highlighting individual elements and pressing the
“Delete” key (or selecting “Edit/Clear” from the menu). Tag insertion can be

performed through the “Insert/Tag” menu of the DreamWeaver MX.

SmartGov good practice tip 5:

The appearance of the form will be distorted in this stage, it is thus
advisable to create a copy of the original form design and work with this
copy.

Figure 62 presents an example of the enriched DreamWeaver MX “Insert tag”

menu. A new top-level folder entitled “SmartGov site tags” is now available,

which will contain one entry for each service created using the SmartGov front-

end (“Income tax service” in the example screenshot).

Each service folder

contains additional subfolders for each form within the service, and each of these

form folders will

linked to this form.

@ Tag Chooser

contain additional subfolders for the TSEs and KUs that are

Ad

SGTSE_SPOUSE_AGE_TSE
SGTSE_SPOUSE_AGE_TSE_DESCRIPTION

SGTSE_SPOUSE_AGE_TSE_ERROR
SGTSE_SPOUSE_AGE_TSE_MAME
SGTSE_SPOUSE_FIRST_MAME_TSE
SGETSE_SPOUSE_FIRST_MAME_TSE_DESCRIPTION
SGTSE_SPOUSE_FIRST_MAME_TSE_ERROR
SGTSE_SPOUSE_FIRST_MAME_TSE_MAME
SGTSE_SPOUSE_LAST_MAME_TSE
SGTSE_SPOUSE_LAST_MAME_TSE_DESCRIPTION
SGTSE_SPOUSE_LAST_MAME_TSE_ERROR

SGTSE_SPOUSE_LAST_MNAME_TSE_MAME

Help |

J J5P Tags
B3 JRun Custom Library
£ 28 ASP Tags
J FHF Tags
F3) WML Tags
J Sitespring Project Site Tags
E}-"J SmartGov Site Tags
E}l[; Ihcame Tax Service
I[; Perzonal details
E}l[; Spouze Perzonal Details
[Ll Included TSEs
= Taglnfo H’ﬂ
age. included TSEs

Thiz forrn allows the uzer to provide perzonal information about hizfher spouse such as name and

Imzert | LClose

Figure 62 - Enriched “Insert tag” DreamWeaver MX dialog

In the following paragraphs the procedure for inserting tags for each SmartGov

entity type is presented.

3.7.31 Inserting form-level tags

For any form with id equal to formlId the following tags are available and may be

used:

Tag name Description Manda

tory?

SGFORM_formId_BEGIN Marks the beginning of the form YES

SGFORM_formId_END Marks the end of the form YES

SGFORM_formId_NAME The name of the form is inserted here NO

SGFORM_formId_DESCRIPTION | The description of the form is inserted here NO

SGFORM_formId_ERROR Error messages produced by the form | NO
validation checks

3.7.3.1.1Inserting the SGFORM_formId_BEGIN tag

In order to insert the SGFORM_formId_BEGIN tag the form designer should click

at a form location before any SmartGov item on the form, including the form title.

The start of the XHTML form document will usually be an appropriate location.

After clicking on the desired location, select “Insert/Tag” from the menu, navigate
to the appropriate form sub-folder in the tags hierarchy by first opening the
SmartGov site tags folder, then the relevant service and finally selecting the
appropriate form node, and from the right pane choose the
SGFORM_formld_BEGIN tag; finally the designer should click on the “Insert”

button. The tag choosing procedure is illustrated in Figure 63.

#JTag Chooser
B3y JRun Custom Library |
B ASPTags SGFORM_PERSONAL_INCOME_FORM_DESCRIFTI
PHE T SGFORM_PERSONAL_INCOME_FORM_END
= agE SGFORM_PERSOMAL_INCOME_FORM_ERROR
B3 WL Taos SGFORM_PERSONAL_INCOME_FORM_MNAME
B3y Sitespring Project Site Tags SGTSE_MET_IMCOME_TSE
=0y Smantor Sie Tags SBTeENETINCOMETeE ERROR |
®g Income Tax Service SGTSE_NET_INCOME_TSE_NAME
W3 Persanal details SGTSE_OTHER_INCOME_TSE
[+ 2 Spouse Personal Details SGTSE_OTHER_IMCOME_TSE_DESCRIPTION
l[g {Personal ncame data SGTSE_OTHER_IMCOME_TSE_ERROR
T et g e rne
= Taglnfo |\§ﬂ
Tag Mame PERSOMAL_IMCOME_FORM
Comments
This form provides fields for the submission of personal incorne sources as well as expenses
Help | Inzert I Cloze

Figure 63 - Inserting the “form begin” tag

No differences in the form appearance should be visible, the tag, however will
have been inserted. If the designer wants to verify the tag insertion, she must

switch to code view by selecting “View/code” from the DreamWeaver MX menu.

3.7.3.1.21Inserting the SGFORM_formId_END tag

In order to insert the SGFORM_formld_BEGIN tag the form designer should click
at a form location after any SmartGov item on the form, including the form
navigation elements. The end of the XHTML form document will usually be an
appropriate location. After clicking on the desired location, select “Insert/Tag”
from the menu, navigate to the appropriate form sub-folder in the tags hierarchy
by first opening the SmartGov site tags folder, then the relevant service and
finally selecting the appropriate form node, and from the right pane choose the
SGFORM_formId_END tag; finally the designer should click on the “Insert”
button.

No differences in the form appearance should be visible, the tag, however will
have been inserted. If the designer wants to verify the tag insertion, she must

switch to code view by selecting “View/code” from the DreamWeaver MX menu.

3.7.3.1.31Inserting the SGFORM_formId_NAME tag

This tag should replace the short description of the form, if such a description
appears on it. If no such description appears, the tag insertion step may be
skipped altogether. Firstly, the designer should select the short form description
and delete it. Afterwards, the designer should select “Insert/Tag” from the menu,
navigate to the appropriate form sub-folder in the tags hierarchy by first opening
the SmartGov site tags folder, then the relevant service and finally selecting the
appropriate form node, and from the right pane choose the
SGFORM_formId_NAME tag; finally the designer should click on the "“Insert”

button.

File | Edit Wiew Insert Modify Text Commands Site ‘Window Help

Unda Edit Source Ctri+2 iz | Forms | Templates [Characters [Media [Head | Serpt| Application
Redo CEHHY
Yook = =
L) S5 =0895
Cut Chrl+i
J ﬁ Copy Chrl+C A @. C 4% 1) =.v
Paste ChrlY =
Bi| EVAT AQ (DW_HTML/FORM_E¥AT_AQ_DETAIL.xhtml)
13 ="80%" border="0" cellspacing="0" cellpadding="0">
Copy HTML ChrlShift+C -
Paste HTML CErl4-Shift+y i
Select all Chrl+a 16 class="formnMName "> ENERFOINEINENNIE <ing src="inages help. gif"
Seleck Parent Tag Chrl+[il_l
Select Child Chrl+]
Find and Replace... CLrl+F w R
Find Mext F3 P e -
Gt Line ChrlHG
Show Code Hinks Chtl+5pace
Indent Code L
Dutdent Code Ctr+Shitt = Tarabie cetitys Ut E
Balanice Braces Gl T —— — 5 |

Figure 64 — Deleting the short form title

After this step, a comment mark indicator will appear at the place that the form
short description formerly was; this space is internally occupied by the

appropriate tag, and will be filled in by the Integrator module.

3.7.3.1.41Inserting the SGFORM_formId_ DESCRIPTION tag

This tag should replace the long description of the form, if such a description
appears on it. If no such description appears, the tag insertion step may be
skipped altogether. Firstly, the designer should select the long form description
and delete it. Afterwards, the designer should select “Insert/Tag” from the menu,
navigate to the appropriate form sub-folder in the tags hierarchy by first opening
the SmartGov site tags folder, then the relevant service and finally selecting the
appropriate form node, and from the right pane choose the
SGFORM_formId_DESCRIPTION tag; finally the designer should click on the

“Insert” button.

After this step, a comment mark indicator will appear at the place that the form
long description formerly was; this space is internally occupied by the appropriate

tag, and will be filled in by the Integrator module.

3.7.3.1.5Inserting the SGFORM_formId_ERROR tag

This tag should be placed at the location where errors resulting from form
validation checks will be displayed. If no validation errors are associated with the
form or form elements, this step may be skipped altogether. Firstly, the designer
should select any text indicating this space and delete it, as illustrated in Figure
65. Afterwards, the designer should select “Insert/Tag” from the menu, navigate
to the appropriate form sub-folder in the tags hierarchy by first opening the
SmartGov site tags folder, then the relevant service and finally selecting the
appropriate form node, and from the right pane choose the
SGFORM_formId_ERROR tag; finally the designer should click on the “Insert”
button.

&) racromedia Dreamweaver mx

File | Edit View Insert Modify Text Commands Sike Window Help

Unda Edit Saurce Cirl+Z <[Forms | Templates| Characters] Media] Head | Soript | Application |

Rieda Chrl

[« H

Cut Chrl+%
J @ Copy Chrl+C W, @, C 4 | }Y EY
Paste Chrl+Y
ﬁ EYAT AQ {DW_HTML/FORM_E¥AT_AQ_DETAIL.xhtml
Copy HTHL CHILShFEAC 32 <td class="walidationError"-|Yaae-Seaupg-s (i alda=- /.1
Paste HTML Chrl+Shift-+ e
34 </table>
Select All Chrl+a
Select Parent Tag Chrl+[
Select Child Chrl4+]
Find and Replace. .. Chrl+F
Find Mext F3
G0 ke Line Chrl+5
Shioyy Code Hints Gt +5pace
Indent Code Chrl -5ttt
Outdent Code Chrl St
Balance Braces Chrl 4
Sef Breakpoint Chrl +AlE+HE
Fmrmmrim 8l Demalimmimk-

Figure 65 - Deleting the form validation error placeholder text

After this step, a comment mark indicator will appear at the place that the form
validation error placeholder text formerly was; this space is internally occupied by
the appropriate tag, and will be filled in by the Integrator module. Please note
that during service runtime this space may expand or shrink, depending on the
number of validation checks that have failed and the error messages emitted by

each validation error.

3.7.3.2 Inserting TSE group-level tags

For any TSE group with id equal to groupld the following tags are available and

may be used:

Tag name Description Manda-
tory?

SGGROUP_groupld_BEGIN Marks the beginning of the | YES
group

SGGROUP_groupId_END Marks the end of the group YES

SGGROUP_groupId_NAME The name of the TSE group is | NO
displayed here

SGGROUP_groupld_DESCRIPTION The description of the TSE | NO

group is displayed here

SGGROUP_groupId_ERROR Error messages produced by | NO
the TSE group validation

checks are displayed here

SGGROUP_groupIld_ADD_BUTTON The TSE group Add button is | YES
displayed here

SGGROUP_groupId_REMOVE_BUTTON The TSE group remove | YES
button is displayed here

SGGROUP_groupId_ADD_BUTTON_ERRORS Errors from adding rows are | YES

inserted here

SGGROUP_groupld_REMOVE_BUTTON_ERRORS Errors from removing rows | YES

are displayed here

3.7.3.2.1Inserting the SGGROUP_groupId_BEGIN tag

The SGGROUP_groupld_BEGIN tag should be placed exactly at the beginning of
the visual elements that comprise the group’s elements. If a table is used for the
group’s elements (see SmartGov good practice tip 2 in section 3.7.1), then the
first row hosting group elements may be selected by moving the mouse pointer to
the left of the row (the pointer becomes an horizontal right arrow) and clicking
the left mouse button, as illustrated in Figure 66. Afterwards, the designer should
select “Insert/Tag” from the menu, navigate to the appropriate form sub-folder in
the tags hierarchy by first opening the SmartGov site tags folder, then the
relevant service and finally selecting the appropriate form node, and from the
right pane choose the SGGROUP_gropuld_BEGIN tag; finally click on the “Insert”
button.

QMacromedia Dreamweaver MX

File Edit Yew Insert Modfy Text Commands Site ‘wWindow Help

v lInsert

L=

BR[| @ % @ @ & 5

B &R &3
% ® | C o E |

1

"x'=3elect coOuntry

-

|

Figure 66 - Selecting the first row hosting TSE group elements

No differences in the form appearance should be visible, the tag, however will
have been inserted. If the designer wants to verify the tag insertion, she must

switch to code view by selecting “View/code” from the DreamWeaver MX menu.

3.7.3.2.2Inserting the SGGROUP_groupId_END tag

The SGGROUP_groupld_END tag should be placed exactly at the end of the visual
elements that comprise the group’s elements. If a table is used for the group’s
elements (see SmartGov good practice tip 2 in section 3.7.1), then the row
immediately after the last row hosting group elements (including the error
message placeholders for the group elements) may be selected by moving the
mouse pointer to the left of the row (the pointer becomes an horizontal right
arrow) and clicking the left mouse button, as illustrated in Figure 67. Afterwards,
the designer should select “Insert/Tag” from the menu, navigate to the
appropriate form sub-folder in the tags hierarchy by first opening the SmartGov
site tags folder, then the relevant service and finally selecting the appropriate
form node, and from the right pane choose the SGGROUP_gropuld_END tag;

finally click on the “Insert” button.

#)Macromedia Dreamweaver MX =101 x|
File Edit Wew Insert Modfy Text Commands Site ‘Window Help

Comman | Layout | Text| Tables| Frames [Forms | Templates | Characters [Media| Head | S cript [Application “ » Design

BN EB@0 s 50 o

Application
~ v Files

B =

File, Editv View- Sites
O |8t bm| D
IEdi i Sites... J ILUcaWiew j

= ED [ho site defined)

Define 5 Site

| ® [#] Desktop

= i 4 »
_iremove row amors go bare T E

Disconnected

Learning Macromedia
Dreamweaver MX

What's Hew

Readme
Tutorials
Update Panel

Click Update to connect to
macromedia.cormn and get the latest

Update

&|<|

<body: <table.main> <t <td> <table.group> <tr> 750 352 - |5K. /2 sec

- w Properties

Che) i

Link |

_| @@ Talgell
a Fow Horz|Defaulr -I W Mowep[~ Eg {5«@
@3] ven[oear =] B[Heater [g [B [

Figure 67 - Selecting the proper row when inserting the SGGROUP_groupId_END tag

No differences in the form appearance should be visible, the tag, however will
have been inserted. If the designer wants to verify the tag insertion, she must

switch to code view by selecting “View/code” from the DreamWeaver MX menu.

3.7.3.2.3Inserting the SGGROUP_groupId_NAME tag

This tag should replace the short description of the group, if such a description
appears on it. If no such description appears, the tag insertion step may be
skipped altogether. Firstly, the designer should select the short group description
and delete it, as illustrated in Figure 68. Afterwards, the designer should select
“Insert/Tag” from the menu, navigate to the appropriate form sub-folder in the
tags hierarchy by first opening the SmartGov site tags folder, then the relevant
service and finally selecting the appropriate form node, and from the right pane
choose the SGGROUP_groupld_NAME tag; finally the designer should click on the

“Insert” button.

100

GjMacromedia Dreamweaver Mx
File | Edit Wiew Insert Modify Text Commands Sike ‘Window Help

Undo Edit Source Cri+2 ez | Forms | Templates | Characters | Media| Head | Script Application_
Redo Chrlt .)
T = = =
EHE0R8 5
Cut Chrl+2
ﬁ Copy Chrl+C W, @, C 4 {}, 5,
Paste Chrl-Y
N T
Copy HTML Chrl+Shift+C
Paste HTHL (T L
Select Al Ctrl+A colapan="4": RN R A bl
Select Parent Tag Chrl+[y
Select Child Chrl+] =
Find and Replace. .. Ctrl+F
Find Mext F3
Go ko Line ChrltG
Show Code Hints Ctrl4-Space
Indent Code Ch{-Shifk- -
Outdent Code (R W W T -an sactions datal
Balance Braces ZhH Supplis gular suppli
Sek Breakpoint CErl+-AlE+E
Remove Al Breakpoints """"t,,ang."';;,w:. a0
Repeating Entries 4 GG NIETE RS B

Figure 68 - Deleting the short group description

After this step, a comment mark indicator will appear at the place that the group
short description formerly was; this space is internally occupied by the

appropriate tag, and will be filled in by the Integrator module.

3.7.3.2.41Inserting the SGGROUP_formId_ DESCRIPTION tag

This tag should replace the long description of the group, if such a description
appears on it. If no such description appears, the tag insertion step may be
skipped altogether. Firstly, the designer should select the long group description
and delete it. Afterwards, the designer should select “Insert/Tag” from the menu,
navigate to the appropriate form sub-folder in the tags hierarchy by first opening
the SmartGov site tags folder, then the relevant service and finally selecting the
appropriate form node, and from the right pane choose the
SGGROUP_groupld_DESCRIPTION tag; finally the designer should click on the
“Insert” button.

After this step, a comment mark indicator will appear at the place that the group
long description formerly was; this space is internally occupied by the appropriate

tag, and will be filled in by the Integrator module.

3.7.3.2.5Inserting the SGGROUP_groupId_ERROR tag

This tag should be placed at the location where errors resulting from group
validation checks will be displayed. If no validation errors are associated with the
group or group elements, this step may be skipped altogether. Firstly, the
designer should select any text indicating this space and delete it. Afterwards, the

designer should select “Insert/Tag” from the menu, navigate to the appropriate

01

form sub-folder in the tags hierarchy by first opening the SmartGov site tags
folder, then the relevant service and finally selecting the appropriate form node,
and from the right pane choose the SGGROUP_groupld_ERROR tag; finally the
designer should click on the “Insert” button.

After this step, a comment mark indicator will appear at the place that the group
validation error placeholder text formerly was; this space is internally occupied by
the appropriate tag, and will be filled in by the Integrator module. Please note
that during service runtime this space may expand or shrink, depending on the
number of validation checks that have failed and the error messages emitted by

each validation error.

3.7.3.2.6Inserting the SGGROUP_groupId_ADD_BUTTON tag

This tag should be placed at the location where the “add row” control for the
group should appear. Firstly, the designer should select any text or widget
indicating this space and delete it, as depicted in Figure 69 (the button labelled
“add row” is selected). Afterwards, the designer should select “Insert/Tag” from
the menu, navigate to the appropriate form sub-folder in the tags hierarchy by
first opening the SmartGov site tags folder, then the relevant service and finally
selecting the appropriate form node, and from the right pane choose the
SGGROUP_groupld_ADD_BUTTON tag; finally the designer should click on the

“Insert” button.

@Macromedia Dreamweaver Mx
File | Edit Wiew Insert Modify Text Commands Sike ‘Window Help

Unda Edit Source Chrl+Z es]’Forms]’TemplatesfEharactersIMediaIHeadTScriptIApplication_
Q Redo CEr[4 ,.A_?i- Ew | @ | @ E
Cuk Chrl+3
J ﬁ Copy Chrl+C Wv @, 47 1 }, E,
Paste Chrl+W
AQ (DW_HTML/FORM_E¥YAT_AQ_DETAIL.xhtml*}
<rds "button” Tadd row" - g
Copy HTML CtrhShift+C Lo Thutton” “remove row'< /o
Paste HTML Cerl+Shift-+4 SRR
Select Al Chrl+-a L/tr=
Select Parent Tag Chrl+[
Select Child Chrl+]
Find and Replace. .. Chrl+F
Find Mexk F3
G ko Lime G
Show Code Hints Chrl+5pace L
Indent Code CErlShift+2
Dutdent Code ChrlShifb<
Balance Braces Chrl
Set Breakpoint Chr|+AlHE .
Remove &l Breakpoints i country o
Repeating Entries (3
Edit with External Editaor oo
Taq Libraries. ..

Figure 69 - Deleting the “add row"” control placeholder

102

After this step, a comment mark indicator will appear at the place that the group
“add row” control placeholder formerly was; this space is internally occupied by

the appropriate tag, and will be filled in by the Integrator module.

3.7.3.2.7Inserting the SGGROUP_groupId_REMOVE_BUTTON tag

This tag should be placed at the location where the “remove row” control for the
group should appear. Firstly, the designer should select any text indicating this
space and delete it, as depicted in Figure 69. Afterwards, the designer should
select “Insert/Tag” from the menu, navigate to the appropriate form sub-folder in
the tags hierarchy by first opening the SmartGov site tags folder, then the
relevant service and finally selecting the appropriate form node, and from the
right pane choose the SGGROUP_groupld_REMOVE_BUTTON tag; finally the
designer should click on the “Insert” button.

After this step, a comment mark indicator will appear at the place that the group
“remove row” control placeholder formerly was; this space is internally occupied

by the appropriate tag, and will be filled in by the Integrator module.

3.7.3.2.8Inserting the SGGROUP_groupId_ADD_BUTTON_ERRORS tag

This tag should be placed at the location where errors emitted during “add row”
operations for the group should appear (e.g. adding rows to a group having
reached its row limit). Firstly, the designer should select any text indicating this
space and delete it, as depicted in Figure 70. Afterwards, the designer should
select “Insert/Tag” from the menu, navigate to the appropriate form sub-folder in
the tags hierarchy by first opening the SmartGov site tags folder, then the
relevant service and finally selecting the appropriate form node, and from the
right pane choose the SGGROUP_groupId_ADD_ERRORS_BUTTON tag; finally the
designer should click on the “Insert” button.

After this step, a comment mark indicator will appear at the place that the group
“add row” error messages placeholder text formerly was; this space is internally

occupied by the appropriate tag, and will be filled in by the Integrator module.

103

G}'Macromedia Dreamweaver MX
File | Edit View Insert Modify Text Commands Site ‘Window Help

Lindo Edit Source Chri+2 es[FormsITemplates[W
Redo Chrl e .
% S E08eR
Cuk Chrl-i
J & Copy ctrhC 0§ @, | © < {} ¥,
Paste Chrl+y
AQ (DW_HTML/FORM_EYAT_AQ_DETAIL.xhtmi*)
<td class="wvalidationError =< i=Ellsaan - dah 4= (i 1= 4=
Copy HTML Crl+Shift+C <td class="validationError"s=<i>remove row errors go here</i>
Paste HTML Chrl+Shift 4+t st Sl
Select All Chr4-A </tre
Select Parent Tag e[
Select Child Chrl+] T
Find and Replace. .. Chrl+F
Find MNext F3
G ko Line ChtlG
Shiov Code Hinks Chtl+5Space
Indent Code CErl4-Shift4-=
Cutdent Cade CEr-Shift4-=
EBialance Braces Chrpl+!
Set Breakpoint Chrl+AlE+E
Remave Al Breakpoints
Repeating Entries » i
Edit with External Editar
Taq Libraries. ..
Keyboard Shortcuts. ..

Figure 70 - Deleting the “add row” error messages placeholder

3.7.3.2.9Inserting the SGGROUP_groupId_REMOVE_BUTTON_ERRORS tag

This tag should be placed at the location where errors emitted during “remove
row” operations for the group should appear (e.g. removing rows from a group
with no rows in it). Firstly, the designer should select any text indicating this
space and delete it. Afterwards, the designer should select “Insert/Tag” from the
menu, navigate to the appropriate form sub-folder in the tags hierarchy by first
opening the SmartGov site tags folder, then the relevant service and finally
selecting the appropriate form node, and from the right pane choose the
SGGROUP_groupld_REMOVE_ERRORS_BUTTON tag; finally the designer should
click on the “Insert” button.

After this step, a comment mark indicator will appear at the place that the group
“remove row” messages placeholder text formerly was; this space is internally

occupied by the appropriate tag, and will be filled in by the Integrator module.

3.7.33 Inserting TSE-level tags

For any TSE with id equal to tseld the following tags are available and may be

used:

Tag name Description Manda-
tory?

SGTSE_tseld The actual TSE area is displayed here YES

104

Tag name Description Manda-

tory?
SGTSE_tseld_NAME The name of the TSE is displayed here NO
SGTSE_tseld_DESCRIPTION | The description of the TSE is displayed here NO
SGTSE_tseld_ERROR Error messages produced by the TSE|NO

validation checks are displayed here

3.7.3.3.1Inserting the SGTSE_tseld tag

This tag should be placed at the location where the actual TSE area will be
displayed on the form. The actual widget used for the TSE is selected by the
Integrator module, depending on the TSE semantic information. For example,
TSEs with Boolean types will be represented via check boxes; TSEs for which the
user should select a value among a set of pre-defined ones will be represented as
a drop-down list and so on.

Firstly, the designer should select any text or control indicating this space and
delete it, as shown in Figure 71. Afterwards, the designer should select
“Insert/Tag” from the menu, navigate to the appropriate form sub-folder in the
tags hierarchy by first opening the SmartGov site tags folder, then the relevant
service and finally selecting the appropriate form node, and from the right pane
choose the SGGTSE_tseld tag; finally the designer should click on the “Insert”
button

#)Macromedia Dreamweaver MX
File | Edit Wiew Insert Modify Text Commands Sike Window Help

Undo Edit Source iz memplates]’CharactersmHeadfScriplIApplication_
Redo CErH n)
) = [8| = &
Cut Chrl+i
J @ Copy Chrl+C W, @, 4 1 }, E,
Paste Chrl+W
AQ {DW_HTML/FORM_E¥AT_AQ_DETAIL.xhtml*})
<td class="tse">
gy [RALL Chrl+ Shift+C <td class="tse": "auppliesval e ol
PEER VL Chrb+3hift+v <td class="tse":» "triagsuppliesval el n
Select Al Chrl+4 </trxdfegrse_other_income tse:
Select Parent Tag Chrl+[
Select Child Chrl+]
Find and Replace. .. Crl+F
Find Mext F3
G bo Line Chtl4-G
Shiovy Code Hints Chrl+5pace
Indent Code Chr|+Shifk+ =
Qutdent Code Cht|4-Shift =
Balance Braces Chrl rermoue rou
Siet Breakpoint ChrltAlb+E

Figure 71 - Deleting the TSE placeholder

For the designer’s convenience, a separate sub-folder is provided under each

form folder, labelled “Included TSEs”, as illustrated in Figure 72. This subfolder

105

contains only the TSEs appearing on the form, facilitating the selection of the
appropriate TSE-related tags.
G}Tag[hooser ll

J JRun Custom Library ;I SGTSE_MET_INCOME_TSE

B ASP Tags SGTSE_NET_INCOME_TSE_DESCRIPTION
B PHPT SGTSE_NET_INCOME_TSE_ERROR

0 ags SGTSE_MET_INCOME_TSE_MAME

B3 WML Tags SGTSE_OTHER_INCOME_TSE

B3 Sitespring Project Site Tags SGTSE_OTHER_INCOME_TSE_DESCRIFTION
S SmartBov Site Tags SGTSE_OTHER_INCOME_TSE_ERROR

: . SGTSE OTHER INCOME TSE_NAME
=-mg Income Ta Servics SETSE PROFESEION TSE
W3 Persanal details SGTSE_PROFESSION_TSE_DESCRIPTION

[+}-M2 Spouse Personal Details SGTSE_PROFESSION_TSE_ERROR

: SGTSE_PROFESSION_TSE_NAME
SGTSE_SALARY_TSE

SGTSE SALARY TSE DESCRIPTION Jid

= Taglnfo

PROFESSION_TSE

Comments

Profession input

Help | Insert I Close

Figure 72 - Included TSEs subfolder

After this step, a comment mark indicator will appear at the place that the TSE
control placeholder text formerly was; this space is internally occupied by the

appropriate tag, and will be filled in by the Integrator module.

3.7.3.3.2Inserting the SGTSE_tseld_NAME tag

This tag should replace the short description of the TSE, if such a description
appears on it. If no such description appears, the tag insertion step may be
skipped altogether. Firstly, the designer should select the short TSE description
and delete it, as illustrated in Figure 73. Afterwards, the designer should select
“Insert/Tag” from the menu, navigate to the appropriate form sub-folder in the
tags hierarchy by first opening the SmartGov site tags folder, then the relevant
service and finally selecting the appropriate form node, and from the right pane
choose the SGTSE_tseld_ NAME tag; finally the designer should click on the
“Insert” button. The designer may also use the convenience “Included TSEs”

subfolder.

106

#)Macromedia Dreamweaver MX
File | Edit ‘“iew Insert Modify Text Commands Site Window Help

Unda Delete Cirbz esfForms[Templates[[ﬁ-haractersIMedia[HeadW
Repeat Delete Chrl+ e = —

™ S E0H e H
Cut Chrl+% -

J & copy Chrl+C 1 @. | 42) =, |

Paste Crl+

&0)_DETAIL.xhtml*}
class="tseName kg QRik- / ©d-

Gl R Ctri+Shift+C class="tseName"-Triangqular supplies </td>-
Paste HTML Chrl+Shift+y

Select Al Chrl+a

Select Parent Tag Chrl-+[

Select Child Chrl+]

Find and Replace... Chrl+F

Find Mext F3

G b Line Chrl+G

Shiow Code Himts Chtl4Space

Indent Code: CErl+Shift+

Outdent Code Chrl+5hift+<

Ealance Braces Chrl+ rer;w-oue row
Siek Breakpaint ChtlH-AlE+E

Remaove &l Breakpoints

Repeating Entries 3

Figure 73 - Deleting the short TSE description

After this step, a comment mark indicator will appear at the place that the TSE
short description formerly was; this space is internally occupied by the

appropriate tag, and will be filled in by the Integrator module.

3.7.3.3.3 Inserting the SGTSE_tseId_ DESCRIPTION tag

This tag should replace the long description of the TSE, if such a description
appears on the form. If no such description appears, the tag insertion step may
be skipped altogether. Firstly, the designer should select the long TSE description
and delete it. Afterwards, the designer should select “Insert/Tag” from the menu,
navigate to the appropriate form sub-folder in the tags hierarchy by first opening
the SmartGov site tags folder, then the relevant service and finally selecting the
appropriate form node, and from the right pane choose the
SGTSE_tseld_DESCRIPTION tag; finally the designer should click on the “Insert”
button. The designer may also use the convenience “Included TSEs” subfolder.

After this step, a comment mark indicator will appear at the place that the TSE
long description formerly was; this space is internally occupied by the appropriate

tag, and will be filled in by the Integrator module.

3.7.3.3.4Inserting the SGTSE_tseId_ERROR tag

This tag should be placed at the location where errors emitted from the
validations associated with the TSE should be displayed. Note that these
validations include “implicit” checks, such as data-type validations (e.g. a humeric
TSE is always checked to determine if the user actually entered a numeric value).

If implicit or explicit validation checks are associated with the TSE, the tag

107

insertion step may be skipped altogether. Firstly, the designer should select the
long TSE validation checks error text placeholder and delete it as shown in Figure
74. Afterwards, the designer should select “Insert/Tag” from the menu, navigate
to the appropriate form sub-folder in the tags hierarchy by first opening the
SmartGov site tags folder, then the relevant service and finally selecting the
appropriate form node, and from the right pane choose the SGTSE_tseld_ ERROR
tag; finally the designer should click on the “Insert” button. The designer may

also use the convenience “Included TSEs” subfolder.

#)Macromedia Dreamweaver MX
File | Edit View Insert Modify Text Commands Site Window Help

Undao Delete Chrl+Z e [Forms [Templates | Characters | Media[Head [Script Application_

Repeat Delete Chrl+%

Cuk Chrl+
J @ Copy Chrl+C

Paste Chrl+y

Copy HTML Chrl+Shift+C
Paste HTML Chrl+ShifE+4
Select &l Ctrl+a
Select Parent Tag Chrl+[

Select Child Ctrl+]

Find and Replace. .. Chrl+F

Find Mext BE

Go bo Line G

Shiav Code Hints Chrl+Space
Indent Code Chrl+Shift+
Gukdent Code Chrl+Shifk <
Ealamce Braces Chrl+

Set Breakpoint Chrl+AlE+-E
Remave Al Breakpoints

Figure 74 - Removing the TSE error messages placeholder

After this step, a comment mark indicator will appear at the place that the TSE
error messages formerly was; this space is internally occupied by the appropriate

tag, and will be filled in by the Integrator module.

3.7.34 Inserting KU-level tags
For any KU with id equal to KUId the tag SGKU_kuld is available. This tag is

optional, and can be placed at the location that help anchors should appear on
the form. Firstly, the designer should select the help anchor placeholder and
delete it, as depicted in Figure 75. Afterwards, the designer should select
“Insert/Tag” from the menu, navigate to the appropriate form sub-folder in the
tags hierarchy by first opening the SmartGov site tags folder, then the relevant
service and finally selecting the appropriate form node, and from the right pane
choose the SGKU_kuld tag; finally the designer should click on the “Insert”
button. The designer may also use the convenience “Included KUs"” subfolder,

which is a direct descendant of the relevant form folder.

108

{.-'_)"Macromedia Dreamweaver Mx

File | Edit View Insert Maodify Text Commands Site ‘Window Help

.

I

Uindo Edit Source ctrhz < [Forms | Templates | Characters | Media] He
Redo Delete Chrly
IR et =
= | e
Cut Chrl+i
Copy Chrl+-C W. @. C 4 l}, =,
Paste Chrl+i
Copy HTML ChrlShifteC r="0" cellspacing="0" cellpadding="0"2>
Paste HTML Chrl+Shift+4
Select Al Chri+A RS AN NI EN- 11y src="inages/help. gif” width="19" height
Select Parent Tag Chrl+[
Select Child Chrl+]
Find and Replace... Chr+F
Find Mext F3
Go ko Line s
Shaw Code Hinks Chrl+5pace
Indent Code Chrlfahiftr=

Figure 75 - Deleting the help anchor placeholder

After this step, a comment mark indicator will appear at the place that the help

anchor placeholder formerly was;

appropriate tag, and will be filled in by the Integrator module.

3.7.4

Final form appearance

this space is internally occupied by the

After having completed the link establishment activities, the form will appear with

virtually no content on it, as depicted in Figure 76, with only comment mark

indicators present. These comment mark placeholders contain all the information

necessary for the Integrator module to create the services.

#) Macromedia Dreamweaver MX

=18 x|

Fie Edit View Insert Modify Text Commands Site Window Help

TLopout] Te] Tables] Frames | Farms] Templates] Characters| Meda] Head] Scipl] Apphcation]

iz fl » Design

“ » Code

% » Application

Filee Edite Wigws Sies

¢body> <p.globalValidationE rror>

= Pioperties

agoph <] (A [oerekFoe =] &

] O |8 2 baD
,!.J. T — !J o r Define 5 Site
L & [H] Deskiop
7]
iy
i it i n i
9 iy] u T I— i
) iy U 1 Disconnected
B]
iy i
1 i3
4 B
Jad|

750 % 485« (1K /1 sec 4

o]

=B Tamm

BOR

I |

=

Figure 76 — Form design view after link establishment

The XHTML form is now ready for uploading to the SmartGov platform and for

processing by the Integrator module.

109

4 The SmartGov Integrator tool (ARC)

4.1 Introduction

411 Summary

The SmartGov Integrator is a functionally complex component. It interacts with
various system components directly (SmartGov Agent-SGA, Information
Interchange Gateway-IIG, XMLStore) or indirectly (Front-end UI application). For

this reason, it is absolutely critical for the component to be set up correctly.

4.1.2 Purpose, Scope and Audience

The purpose of this document is to provide setup instructions for the correct
deployment of the Integrator component and serve as a simple usage guide.

The scope of this document is not to explain the internals of the Integrator, how it
co-operates with various system components or the technologies used. Instead,
this document is meant to serve as a step-by-step installation guide for end-users
to avoid possible pitfalls. And get up-and-running a.s.a.p.

This document is targeted towards the members of the SmartGov consortium and

whichever third party might be interested in installing the Integrator component.

413 Typesetting Conventions

Monospace text (e.g., DataServices) designates identifiers, such as keys in a
properties file. Slanted text (e.qg., ./temp/foo) is used to designate file names and
paths. Slanted (e.g., yyyy) monospace text designates placeholders for user

input. Bold text (e.g. Deployment) is used for emphasis.

4.2 Requirements

For the Integrator to operate smoothly, two distinct, application server
installations are required, in two different hosts: one for service development
and one for the final deployment and operation of the generated service.
However, in cases when this is not feasible, both application server installations
may co-exist in the same host (provided that they operate on different ports).
The following tables describe the minimum hardware/software requirements for

each of the two hosts:

110

Hardware Development Deployment

CPU Pentium IV, 1.8 GHz Pentium IV, 2.8 GHz

RAM > 512 Mb > 756 Mb

HDD > 100Mb free space > 100Mb free space
Software Development Deployment

(01 Windows 2000, Service Pack 3+ Windows 2000, Service Pack 3+

Servlet Engine Tomcat 4.1+ Tomcat 4.1+
JDK Java2 SE 1.4.2+ Java2 SE 1.4.2+

4.3 Environment Setup

The Integrator co-operates closely with the XMLStore during design-time to
retrieve service description files. On the other hand, during run-time, the
generated service propagates and retrieves documents to the SGA, which in turn
propagates changes to the IIG. These three components require a DB to be setup

in a host, accessible by the development and deployment hosts.

4.3.1 Setup actions roadmap

To correctly set up the Integrator and all peripheral components, the following
actions need to be taken in the following order. Each action item corresponds to a
subsequent section of the document.
e Install Integrator
The Integrator is available as a self-installing package. See 4.3.2 for more
details.
e Create SGA/IIG DBs
The SGA and the IIG rely heavily on the existence of databases for the
temporary storage of outgoing/incoming messages as well as for storing
authentication information. For more details, see 4.3.3.
e Populate IIG login DB
During authentication, user credentials are checked against a back-end DB
containing all registered users. To be able to create a running service, one
or more user accounts have to be created. For details, see 4.3.4.
e Create IIG XML Repository
The IIG needs to access a run-time XML Repository to store incoming user
documents. The details on how this is done can be found in 4.3.5.

e Install IIG

The IIG comes bundled as an installer. Section 4.3.6 details the screens of the

installer in relation to the previous steps.

e Fine-tune installed IIG

After the IIG has been installed, there are a number of steps that may be
needed to enhance its functionality. Section 4.3.7 provides more info.

e Set up document pre-population

This step is optional and concerns certain applications where initial values
should be displayed for certain fields, originating from a back-end system.
Section 4.3.8 details the steps needed to be taken for the creation of a pre-
population “DB"” for the eVies service, where each user should have his/her
own personal details.

Create Integrator XML Repository

The Front-End and the Integrator share a common, design-time service
element repository. Section 4.3.9 details the steps required for the creation of
the repository so as it is accessible by the Integrator.

e Populate Integrator XML Repository

For testing purposes (e.g. when the Front-End is not installed) the design-

time repository may need to be populated with service elements. For details, see
4.3.10.

Configure the deployment server

The generated service uses a contained SGA agent to communicate with the
IIG. For the SGA to function properly, a set of configuration files has to be
updated. Moreover, the Integrator requires a special account on the

deployment server. The details on this process are given in section 4.3.11.

112

43.2

4.3.21

Install Integrator

Splash screen

V] SsmartGov Integrator. =] EI'| |

L BN B BN BN BN BN BN BN BN P B

Installammhere by fero G

Startin

sel stallation Set
EEIHQEIM Folder
Select Shortcut Folder
Tomcat Servers
#hLStore Repositony
Fesources Input & COutput
SGA configuration file
Fre-Installation Sumimary
Installing...

Installation Complete
Install Complete

Starting...

InstallAmawhere will guide you thraugh the installation of SmanGoy
Integrator.

It is strongly recommended that youw quit all programs before
continuing with this installation.

Click the 'Mext' button to proceed to the nesxt screen. Ifyau want to
change something on a previous screen, click the 'Previous' hutton.

You may cancel this installation at any time by clicking the 'Cancel’
huttan.

Cancel |

Displayed at the beginning of the installation. At this point you should stop all

Previous Mext

Tomcat processes that may be running on both deployment and development

hosts.

(E

4.3.2.2 Installation type

J SmartGov Integrator =]

Select Installation Set

Startin Normal
Thiz iz the default installation process. Installs both the Integratar

Sal stallation Set

SEIHE,QEM B application and the auxiliany tools.
Salect Shortcut Folder
Tomcat Servers
#hLStore Repositony
Fesources Input & COutput

[

Minimal

This oprion does not install the auxiliany tools.

®

SGA configuration file Uninstall

Pre-Installation Summary Remowe all files of integrator from the system

@

Installing...
Installation Complete

a e s a8 8eedTd

Custom Installation

Choose this option to customize the features to be installed.

Install Complete

&

Installammhere by fero G

Cancel | Prewvious i Mext

This screen allows the selection of the installation type. Normal installation selects

all features, while Minimal does not install the Document Crawler and XMLStore
Manager.

T

4.3.2.3

Installation directory

J SmartGov Integrator =]

b

"

a s s sBeBsaaqd

Installammhere by fero G

Cancel |

Startin
Sel
Sel

stallation Set

a Folder
Select Shortcut Folder
Tomcat Servers
#hLStore Repositony
Fesources Input & COutput
SGA configuration file
Fre-Installation Sumimary
Installing...
Installation Complete
Install Complete

Select Installation Folder

This folder only holds uninstall information. It is not used by the
Intedratar component itself,

Select the default product installation folder

CAProgram Files\smantGoy

Restore Default Folder Choose, .,

Prewvious i Mext

This directory only contains uninstall information about the application. It is of

absolutely no importance as the installation process, not the Integrator itself, only

uses it.

75

4.3.2.4

L1 SmartGov Integrator T il

i

|

InstallAmawchere by Zero G

Startin

Sal stglﬂnnaﬁst
Selﬁgnawn Folder
Select Shortcut Folder
Tomcat Servers
whlLStore Repositony
Fesources Input & Cutput
SGEA configuration file
FPre-Installation Summany
Installing...

Installation Complete
Install Complete

Shortcut group

JRTelf

Select Shortcut Folder

Specify where shortcut icons should be placed.

" In a news Program Group:

{* In an existing Program Group: ISmar‘tGm‘

" Inthe Start Menu
{~ On the Deskbop

{ In the Quick Launch Bar

|Smartl:3wlntegratnr

{ Cther:

{" Don't create icons

[T Create Icons for all Users

CREasE.. |

Cancel |

This screen determines where the application’s shortcuts should be placed.

Previous Mezxt

6

4.3.2.5

Tomcat server configuration

M SmartGoy Integrator:

a8 888 d

Installamshere by Zero G

Startin r

Sel stallation Set
EEIHSQaM Folder
Select Shortcut Folder
Tomeat Servers
AhlLStore Repository
Fesources Input & Cutput
SGA configuration file
Fre-Installation Summary
Installing...

[nstallation Complete
Install Complete

=101]

Tomcat Servers

Specify the development server where the Integrataor application will
he installed and the serverwhere generated semvices will be

deployed by default.

Development Server location

Semer home path|J3Tomeat_5_0

Cancel |

This screen requires the directory where the development Tomcat server is

Restore Default Zhoose. ..
Deployment Tomcat server
Host I localhost
Part 8080
Prewvious Mext

installed. It also requires the host name and port where the deployment Tomcat

listens on. It is very important to specify all information correctly, as denoted in

the image, for the application to function properly.

It is also a very good idea to have the development server installed in a directory

path that does not contain spaces (e.g. avoid c:\Program Files\Tomcat, d:\My

Server\Tomcat 4, etc). Tomcat is known to occasionally present erratic behavior

when installed in such a directory.

7

4.3.2.6 XML Repository configuration

M SmartGoy Integrator:

Installamswhere by Zero G

Cancel | Prewious | Mexk |

=101]

XMLStore Repository

' Startins m a rt Specify the necessan connection parameters far the Integrator
A Selﬁstallatinn Set application to connect to the XMLStore DEMS.
™ gel atien Folder

™ Select Shortcut Folder
& Tomcat Servers

A HMLStore Repository

Resources Input & Output KMLStore implementation class

G4 configuration file Zlass name Icnm.archeh,rp|:|n.xml.stnre.lmpl.}{mlﬁtnrelmpl

Installing... Datahaze type I Microzoft SOL Server 2000

Installation Complete

&)
]
]
B Pre-lnstallation Summary ¥MLStore DBMS type
®
]
s JDBC DataSource implementation

Install Complete

Restare Default | Choose, .,

Classpath root ﬂ:ulderl CiProgram Files/Microsaoft SGL Server 2001

-

Specifies the connectivity information for the Integrator to locate the service

element repository. The information defined in this screen should be identical with

that defined later on, in section 4.3.8.

The different fields of the screen are explained below

Class name: Should be left as is, unless otherwise noted in the
documentation.

Database type: Type of DBMS that the XML Repository is installed on. Only
two values are accepted at this time: Microsoft SQL Server 2000 and MySOQOL
4.x. Putting any other value in this field will require re-installation or manual

correction.

Classpath root folder: Browse to select a folder where the classes of the JDBC
driver have been extracted. One can only select a folder at this stage and not
a JAR. This has been done so because of the Microsoft JDBC driver being
delivered in multiple JARs. So, if your driver is delivered as a ZIP/JAR, you will
need to extract it in a folder and select this folder in this field. Be careful to
modify the final path that you will select in this field. Replace all back-slashes
(\) with forward-slashes (/).

T8

e Datasource class: The IJDBC Datasource implementation of the driver (e.g.
com.microsoft.jdbcx.sqglserver.SQLServerDataSource for the official
Microsoft SQL Server driver,
com.mysqgl.jdbc.jdbc2.optional .MysqglDataSource for the official MySQL
driver). Consult your driver’'s documentation.

e Server name: The qualified intranet name of the host that the XML Repository
is (or will be) installed.

e DB name: The name of the DB that contains (or will contain) the XML
Repository.

e Username: SQL login for the target host

e Password: For the previous login

4.3.2.7 Input / output directories

& SmartGoy Integrator ;Iglil

Resources Input & Output

™ Startin Specify where the Integratar will locate xHTWL files referenced during
M Sel stallation Set senvice creation and which folder should he used for temporany
A Swl afian Folder storage of generated files. Lse i instead of to specify the path

™ Select Shortcut Folder
™ Tomcat Servers
M WmLStore Repository

Resources Input & Output Generated service temporary storage

SGA configuration file Storage folder path I clservice

A

B

B Pre-Installation Summary Root path for referenced =HTML files
B (nstalling... ¥HTML home folder path IE:IIHTMLI
]
"

Installation Complete
Install Complete

Installammhere by fero G

Cancel | Prewvious Mext

The first field defines which folder should be used to temporarily store the

generated service files. This feature is useful so as to have a backup copy. File
separators should be added as shown. The directory will be created at run-time if
not present.

The second field defines the directory where the xHTML files used by the service
are located. Care should be taken to take into account the relative url defined in

the service description files. (E.g. if the xHTMLs are located in c:\Foo\Htm/ and

79

service description files refer to files Html/XXX.xhtml/, and then you should specify
c:\\Foo in this dialog). If you are using the Integrator along with the Front-End,
this folder should be the same as the one where the Front-End saves uploaded
xHTML files. All files placed inside this directory should have an .xhtml file

extension.

4.3.2.8 SGA configuration file

2 SmartGoy Integrator

=101 x|

SGA configuration file

™ Startin r Specifythe location ofthe SGAConfig file in the target server. Use f
A Seletallatinn Set instead oftto specify the path
™ Sel aten Folder

™ Select Shortcut Folder
7 Tamcat Servers

7 ¥MLStore Repositony

™ Resources Input & Output SGAConfig path |ximyPathrSGAC onfig.bd

SGEA configuration file
Fre-Installation Summarny

5]
]

B |nstalling...
B |nstallation Complete
]

Install Complete

InstallAmawchere by Zero G

Cancel | Previous

This screen requires the location of the SGA configuration file in the deployment
server. The deployed service will use this value to locate it and attempt to
initialize the agent. For information on how to setup the SGA configuration files,
see 4.3.11. The recommended value for this field is
c:/SmartGov/conf/sga/SGAConfig.txt.

120

4.3.2.9 Summary

‘] SmartGov Integrator

=10 i

Pre-Installation Summary

™ Startin m a r t Please Review the Following Before Continuing:
=] Selmstallatinn Set Product Name:
= el aM Folder StmartGov Integrator
™ Select Shortcut Folder
= Install Folder:
Tomcat Servers :
ChProgram Files\SmartGov

& HMLStore Repository

' Resources Input & Output Shoricut Folder:
! BGA configuration file CAlrocuments and Settingshsgerogiatbtart
7 Pre-Installation Summary IMemiPrograms\smantGov

Installing...
Product Components:

SmartGov Integrator,

|
<]

B |nstallation Complete
. Taonls & Uiilities

[nstall Complete

Installamaehere by Zero G

Cancel | Previous Install

Contains the summary of the installation parameters.

43.3 SGA/IIG DBs

The SGA and the IIG have two internal Pending Actions Queues (PAQs) where
they store messages, which for some reason failed to be sent. These PAQs are
implemented over a relational DB and are one for incoming (EntraPAQ) and one
for outgoing messages (AdelantePAQ), making a total of four different DBs .
Moreover, the current version of the IIG implicitly requires a DB to maintain

service user logins.

The schema of the first four DBs is exactly the same, so, in a low-traffic
environment they can be "merged” into one physical DB. In that case, all different
modules will establish connections to the same DB. In addition, since the table
names of the login DB are different than those used in the PAQ DBs, this DB may
also be merged with the previous. So, to make things short, this step shall create
at least one or at most 5 different DBs (as combinations in DB merging may be
chosen - e.g. both SGA PAQs in one host, etc)

To create the PAQ DBs, follow these steps:

1. Connect to the DB host that you wish, through the administration client (e.g.
Enterprise Manager for MS SQL Server).

121

2. Create a new DB. Note down its name and its logical function (e.g. DB named
Testl shall be the SGA PAQ) as this will be used later on.

3. Connect to the new DB and execute against it the proper script found in
Appendix D.

4. If you choose to create more than one DB, go to step 2, being careful to

select different names.

To create the login DB, follow these steps:

1. Connect to the DB host that you wish, through the administration client (e.g.
Enterprise Manager for MS SQL Server).

2. Create a new DB.

3. Connect to the new DB and execute against it the proper script found in
Appendix E.

If you choose to create one common DB for all the PAQs and the login information

then concatenate the two relevant scripts before executing against the target DB.

4.3.4 Populate IIG login DB

After the IIG login DB has been created, a number of end-user accounts needs to
be added to be able to use the generate service later on. Each user account is
allowed to access one or more services, identified by their unique id, as defined

during the design stage.

Suppose we have two services (TaxService and evies) and want to update the

DB so as to “capture” the usage scenario depicted in the following table.

Alias Full Name Password Allowed to use...

Foo John Foo foo TaxService

Doe Jack Doe doe TaxService
eVies

In that case, the login DB’s sGUserData table should look like the following image

122

' 2:Data in Table 'SGuserData’ in 'SmartGoy’ { o] 3
@I%ENII@I'@:S&’IHALW = | %
userID | usermame | password [Fullrdarme
| 1 Froo Fro Johin Foo
| &z doe doe Jack Coe
| ¥ |

| | 4

At the same time, the sGUserServices table should look like this

'ii 3:Data in Table ‘SGuserSeryi =10l x|

|§l|nuﬁsm-|m'-‘| ' oL 2] 2]
userlD | serviceMams

|1 TaxService

A eies

|2 Tax3ervice

¥ |

| | I /4

4.3.5 Create IIG XML Repository

This step supposes that the Integrator has been installed in 4.3.2 selecting

Normal setup. In a different case, the features mentioned here are not available.

To create the IIG XML Repository perform the following steps:

1. Create a DB through the target DBMS’ user interface. Only MS SQL Server
2000 and MySql v.4.x are supported. We assume that the target DB is nhamed

IIGXmlStore, located in an SQL Server host, named testHost.

2. From the Windows Start menu, select programs -> SmartGov -> XMLStore

Manager. The XML Store Manager application is launched.

123

% EML Store Manager = | I:Ilﬂ
-Document Types ~Indexes

Hew ... Delete | | New ... Delete
Save ...

3. Press the left New... button to create a new document type for service

description files. Name it serviceResults.

Mew Document Type ﬁl

Hame: |EewiceResult5 |

Create

4. Press the right New... button to create a new index for the created document

type.

Newindex x|

Document Type: | ServiceResults w |

Hame: |59wReaUsername |

XPath Expression: |IS erviceResultsiusertametext) |

Value Type: | class java.lang. String bl | [_ Unigue Values

Create

For the IIG to work correctly, 3 different indexes need to be created in total in

the same manner.
Their details follow (all entries are case-sensitive):
¢ Name: servResUsername
i. XPath: /ServiceResults/userName/text ()
ii. Value type: string
iii. Non-unique

¢ Name: servResServiceName

124

i. XPath: /ServiceResults/serviceName/text ()
ii. Value type: string
iii. Non-unique
Name: servResTimestamp
i. XPath: /ServiceResults/timestamp/text ()
ii. Value type: string
iii. Non-unique
After all indexes are created and listed in the main window (make sure the

Document Type list entry is selected), the Save... button is pressed.

] X

IDBL(tm) Settings Dialoc

DBMS Type: | Microsoft SQL Server 2000 v |

DataSource Class: ||:|:|m.micrnsuﬂ.jdbc}:.sqlsewer.SGLaewerData5Durce |

Class Path: Files\Microsoft SGL Server 2000 Driver for JOECUiLY | Browse... |
Server Name: ltestHost

Port Humber: 1433

Database Name: |IIG}<mI5tDre

User Name: |sa |

Passworil: e |

rDriver-specific Properties

[Fropemy | Tvpe | Yalue
|=selecthethad class java.lang.String |cursor

Save

The information presented in the image matches the suppositions mentioned

earlier. The driver property has been added by using the New... button. The
class path can either be a directory or a JAR file, inside which all driver classes

reside.

If the target DB host were a MySQL server, then it would be

DBMS type: MySQL 4.x

DataSource class: com.mysql.jdbc.jdbc2.optional . .MysglDataSource
Port number: 3306

Username: root

Password: <none>

125

6. Pressing the Save... button creates the following tables: XpathIndex,
servResServiceName, servResUsername, servResTimestamp. Open the target

DB with a DB client application to verify the creation of the new tables.

4.3.6 Install IIG

4.3.6.1 Splash screen

A SmartGov IIG Installer Ly =101 %]

Introduction

- Introduction Installanynwhere will guide you through the installation of I1G,
_ | Chooge Installation Folder
[t is stronaly recommended that you quit all programs before

o Select Startmenu Short..
continuing with this installation.

| G- Fart
| G- EntraP AL Click the 'Mext' button to proceed to the next screen. [Fyou want to
[113 - Adelante PAO change something on a previous screen, click the 'Previous’ button.

ldd 12 - ML Repasitary You may cancel this installation at any time by clicking the *Cancel’
.| Login DB button.

o LogListeners

.| 5GA- EntraPAQ

L BGA - AdelantePAG

| SGA-Target IG

| BEA- N

| Pre-Installation Summary

| Inetallinm

InstallAmanchere by Zero G

Cancel | Presvioms Mexk

Shown at the beginning of the installation.

126

4.3.6.2 Installation folder

W SmartGov I1G Installer =101 x|

Choose Installation Folder

Introduction - : —
i Select the folder on your disk where you would like the G application
] choose Installation Falder to be installed

| Select Start menu Shortc...
NG - Part

G- EntraPAC

] G = Adelante PAR

| 13 - ¥ML Repository
] Login DB CHSmanGowlG

Specify the G Installation folder

_ | LogListeners Riestore Default Folder Choose. ..
_| 534 - EntraPAQ

L SGA- AdelantePAC

. BGA-Target I

| 8GA- NI

| Pre-Installation Summary

| Inetallinm

Installamswhere by Zero G

Cancel | Prewious Mexk

In this screen the destination folder where all program files will be copied is set.

The directory path must not contain spaces. Moreover, make sure that all back-
slashes (\) in the path are changed to forward-slashes (/), otherwise the

component may not work correctly.

127

4.3.6.3

Shortcut folder

] SmartGoy IIG Installer

Select Start menu Shortcut folder

Intraduction..

Choose Installation Folder
ﬂ Select Start menu Shortc...
G- Port

_ | IG - EntraPAQ

NG - Adelante PAG

| G- #¥ML Repository

. Login DB

_ | Log Listeners

_ | 53A - EntraPAQ

_ | BG4 - AdelantePAL

_ | GGA- Target IG

B R=Ter

_! Pre-Installation Summany

Ulnetallinn

15

Where would you like to create shortcut icons?

{7 In a new Program Group: I |15

{* In an existing Prograrm Group: IIIG
™ Inthe Start Menu
{" On the Deskiop

" Inthe Quick Launch Bar

{~ Cther:

{" Don't create icons

[T Create Icons For All Users

Choase,, . |

Installamahere by fero G

Cancel |

Previous Mext

In this screen the user determines the folder that will contain the component’s

shortcuts.

128

4.3.6.4 lIG ports

¥ smartGoy IIG Installer 1Ll

Introduction

Choose Installation Folder
Select Start menu Shorc...
G- Port

o IG - EntraPAc

| G - Adelante PAG

G - ML Repository

.| Login DB

o Log Listeners

_ | SGA- EntraPAc

| SGA- AdelanteP A

| SGA-Tardet G

o BGA- NI

| Pre-Installation Sumimary

| Imnetallinm

=100 x|
G - Port

Specify connectivity parameters for the 11G, such as port and

accepted client IP.

G port

Part 5000

SSLnGpun|42435

Allowed SGA IP

Client IP I 0oo.000.000.000

Installammehere by Zero G

Cancel |

Presious

Mexk

This screen specifies the connectivity information for the IIG component. The

fields are:

Port: The port where the text-based IIG will listen on

SSL IIG port: the port where the SSL-based IIG will listen on.

Client IP: The allowed client IP. The IIG has a built-in security mechanism that

accepts calls from specific IP addresses for each published method call. This

field should be filled in with the IP of the service deployment host. Do not

specify 127.0.0.1 as the IP if you are using localhost: use start -> Run ->

cmd -> ipconfig to see the localhost’s IP address.

129

4.3.6.5 IIG EntraPAQ

¥ SmartGoy IIG Installer }

Installammehere by Zero G

Cancel | pravious | it |

=101 x]

G - EntraPAG

Introduction
Choose Installation Folder DR
Select Start menu Shorc...
G - Part

L] NG - EntraPan

| NG - Adelante PAG

Specify the information required for the 1G to connect to its EntraPAG

o N5 - XML Repository EntraPAQ DB connection settings
.| Login DB Database name |
o Log Listeners
Lsernarme |
| BGA - EntraPAG
| SGA- AdelantePAQ Password I
| SGA-Tardet G o)
e JDBC Driver implementation

: Drriver class ||:|:|m.micrnsnﬂ.jdbc.sqlsewerEGLSewerDriver
| Pre-Installation Sumimary

lnetallinm

This information will allow the IIG (both text-based and SSL version) to connect

to its EntraPAQ DB. The information defined in this step should be in line with

what was defined in section 4.3.3. The fields are:

Database name: the name of the physical DB that will host the IIG EntraPAQ
Username: The SQL login used to connect to the DB

Password: the password of the SQL login

Driver class: The JDBC driver implementation class. This may be
com.microsoft.jdbc.sglserver.SQLServerDriver for the official SQL
Server driver (pre-selected), org.gjt.mm.mysql.Driver for the MySQL
driver, etc. Consult your driver’'s documentation.

Connect string: The JDBC connection string to use while connecting to the DB.

The value is

jdbc:microsoft:sglserver://change the host name:1433;SelectMethod=
cursor;DatabaseName= for the SQL Server driver (pre-selected),
jdbc:mysgl://change the host name/ for the MySQL driver, etc. In the
previous strings, only the host name needs to be changed. Consult your

driver’'s documentation.

130

4.3.6.6 IIG AdelantePAQ

W smartGoy IIG Installer B

Introduction

Choose Installation Folder
Select Start menu Shorc...
G - Part

IIG - EntraPAQ

16 - Adelante PAG

G - ML Repository

.| Login DB

o Log Listeners

_ | SGA- EntraPAc

| SGA- AdelanteP A

| SGA-Tardet G

BB =1 e o]

| Pre-Installation Sumimary

| Imnetallinm

T B

lIG - Adelante PAQ

Specify the reguired information for the 1G to connect to its Adelante

FPAG.

AdelantePAQ DB connection settings

Database I

Llsername |

Passward I

JDBC Driver implementation

Drriver class ||:|:|m.micrnsnﬂ.jdbc.sqlsewerEGLSewerDriver

Installammehere by Zero G

Cancel |

Presious |

This information will allow the IIG to connect to its AdelantePAQ DB. The

information defined in this step should be in line with what was defined in section

4.3.3. The fields have the same meaning as in 4.3.6.5.

&

4.3.6.7 IIG XML Repository

M SmartGov I1G Installer i o [l S

G - XML Repository

Introduction 7 : x :
x | Specify the necessary information for the XML Repository that the 1G
Choose Installation Folder will use to stare incoming docurnents.

Select Start menu Shorc...
G - Part

IIG - EntraPAQ

G - Adelante PAQ

U 13 - ¥ML Repository ¥ML Store connection information -
_ | Login DB Provider class Icnm.archetg.rpun.xml.stnre.impl.}imISturelmpl

had -0ELISIRHEES MySOL 4.% or Microsoft SQL Server 2000

o 3GA- EntraPAG DEMS type |Microsoft SQL Server 2000
| BGA- AdelantePAR =
4 56 - Taraet G JDBC Datasource provider class

Datasource class I crosoftjdbex sglserver. SQLSenerDataSource

| SGA-NMI
| Pre-Installation Summary Databse connectivity settings ﬂ
I

| Imnetallinm

Installammehere by Zero G

Cancel | Prewious |

This information will allow the IIG to connect to its local XML Repository. The
information defined in this step should be in line with what was defined in section

4.3.5. The fields have the same meaning as in section 4.3.2.6.

132

4.3.6.8 IIG login DB

M SmartGov I1G Installer i =101 x|

Login DB

Introduction

Choose Installation Folder
Select Start menu Shorc...
G - Part

IIG - EntraPAQ

G - Adelante PAQ

Specify the reguested information for the user login database

IIG - ¥ML Repositary Login DB connection settings]
;ﬂ Login DE DB narme I
o Log Listeners
: Llsername |
| BGA - EntraPAG
_| BGA - AdelantePAG SE TR |
| BGEA - Target G o)
B JDBC Driver implementation |

Drriver class ||:|:|m.micrnsnﬂ.jdbc.sqlsewerEGLSewerDriver

- L =]

| Pre-Installation Sumimary

| Imnetallinm

Installammehere by Zero G

Cancel | Prewious |

This screen contains connectivity information for the DB containing service user
logins. The information defined in this step should be in line with what was

defined in section 4.3.3. The fields have the same meaning as in 4.3.6.5.

133

4.3.6.9 Log listeners

A SmartGoy IIG Installer R =101 =]

Log Listeners

Introduction _ ; _
g Specifythe ports and log file folder that the two installed log listeners
Choose Installation Folder will Uz,

Select Start menu Shortc.. The two ports must be different.
G - Part

IIG - EntraPAQ

G - Adelante PAQ

G - ¥ML Repositary IIG Log Listener 2]
Login DB Host IIncthnst
] Log Listeners
Port 42426
| BGA - EntraPAG
2 5G4 - AdelantePAG SGA Log Listener
_ | SGA - Target [1G Host III:n:thclst
lad 524l SGA Log Listener
| Pre-Installation Sumimary Fort I42424 =

lnetallinm

Installammehere by Zero G

Cancel | Prewious i Mext

This screen allows the user to define the log listeners that will be used to log error

messages generated by the IIG and the agent. The fields are:

e IIG listener host: Do not change this value, unless you are going to use a log
listener other than the one installed by default. In a different case, specify the
name of the log listener host.

e IIG listener port: Do not change this value, unless you are going to use a log
listener other than the one installed by default. In a different case, specify the
port on which the other log listener listens on.

e SGA listener host: If you are not going to use the bundled, test SGA client,
ignore this value.

e SGA listener port: If you are going to use this host for the SGA log listener,
specify this port accordingly. This field should be in line with the information

specified in section 4.3.11.

134

4.3.6.10 SGA EntraPAQ

Y SmartGoy IIG Installer b | =10 =]

SGA - EntraPAQ

Introduction

Choose Installation Folder
Select Start menu Shortc...
G - Part

G - EntraPAG

G - Adelante PAQ

Specify the necessary information for the EntraPAQ DB of the SGA

15 - ¥ML Repositary EntraPAQ DB connection settings =
Lagin DE DE narme I

Log Listeners]

- CE login I

] 5GA- EntraPAG

_ | 5GA- AdelantePAG Pasawidid |

L SGA-Target IG o)

B e JDBC Driver implementation (.

Diriver class Icnm.mi|:r|:|5uﬂ.jdb|:.sqlsewerEQLaewerDriver

- L =

| Pre=Installation Sumrmary

Inetallinm

Installamahere by fero G

Cancel | Prewvious | Mexk |

This information will allow the local, test SGA client to connect to its EntraPAQ
DB. The information defined in this step should be in line with what was defined

in section 4.3.3. The fields have the same meaning as in 4.3.6.5.

Ignore this screen, unless you are going to use the local, test SGA client.

135

4.3.6.11 SGA AdelantePAQ

¥ smartGoy I1IG Installer

Introduction

Choose Installation Folder
Select Start menu Shorc...
G - Part

IIG - EntraPAQ

G - Adelante PAQ

I1G - %ML Repositary
Login DB

Log Listeners

SGA- EntraPAQ

] 5G4 - AdelantePAG

| SGA-Tardet G

BB =1 e o]

| Pre-Installation Sumimary

| Imnetallinm

iEix

SGA - AdelantePAQ

Specify the reguired information for the SGA Adelante PAG

AdelantePAQ DB settings

DE name I

DE login |

Passward I

JDBC Driver implementation

Drriver class ||:|:|m.micrnsnﬂ.jdbc.sqlsewerEGLSewerDriver

=]

Installammehere by Zero G

Cancel |

Presious | Mexk |

This information will allow the local, test SGA client to connect to its AdelantePAQ

DB. The information defined in this step should be in line with what was defined

in section 4.3.3. The fields have the same meaning as in 4.3.6.5.

Ignore this screen, unless you are going to use the local, test SGA client.

136

4.3.6.12 Target lIG

M SmartGov I1G Installer B} =101 x|

Introduction

Choose Installation Folder
Select Start menu Shorc...
G - Part

IIG - EntraPAQ

G - Adelante PAQ

I1G - %ML Repositary
Login DB

Log Listeners

SGA - EntraPAQ

SGA - AdelantePAQ

] 5GA- TargetIG

EGa- N

| Pre-Installation Sumimary

| Imnetallinm

SGA -Target lIG

Specify the information for the 1G that SGA components will connect
to.
Do MOT uze "localhost”

Plain-text IG
Host IIncthnst

S5L NG
Host IIncthnst

Installammehere by Zero G

Cancel |

Presious

This information will allow the local, test SGA client to connect to the two different

I1Gs.

Ignore this screen, unless you are going to use the local, test SGA client.

137

4.3.6.13 SGA NI

¥ SmartGoy 11G Installer B

Introduction

Choose Installation Folder
Select Start menu Shortc...
M G- Port

G - EntraPAG

G - Adelante PAQ

G - %ML Repository
Login DB

Log Listeners

SGA- EntraPAQ

SGA- AdelantePAQ

SGA- Target I1G

L sca-n

_, Pre-Installation Summany

Ulnetallinn

Installamahere by fero G

Cancel |

N = |
SGA-NI
Specify the reguired information far the NIl component
Fort | 30000
Previous Mext

This information specifies the port where the SGA NI component will listen on.

Ignore this screen, unless instructed otherwise.

138

4.3.6.14 Summary

% smartGov IIG Installer

=100 x]

Pre-Installation Summary

Introduction Please Review the Following Before Continuing:
Choose Installation Folder Pt Mg

Select Start menu Shorc... e

G - Part

IIG - EntraPAQ Install Folder:

IG - Adelante PAQ CProgram Files\IIG

G - ¥ML Repositary SHioricit Folder:

LHRIEES ChDocumentz and Settingshsgerogiatatart MentProgramstIIG
Log Listeners

BG4 - EntraPAG Digk Space Information (for Installation Target):
Ss - Adelante PAC Fequired: 2.070.325 bytes

G4 - Target G Available: 22,509 026.080 bytes

SGA- NI
_'J FPre-Installation Summary

lnetallinm

Installammehere by Zero G

Cancel | Prewious Inskall

The final screen before the installation begins.

4.3.7 Use / Fine-tune installed lIG

To launch the IIG go to the Start menu and select pPrograms -> IIG -> Start
IIG Servers. This will launch

o the IIG server

e the SSL IIG server

e the IIG dispatcher

e the IIG log listener

A successful launch results in 4 different console windows being added in the

desktop.

To launch the SGA servers, go to the Start menu and select programs -> 116 ->
Start SGA Servers. This will launch

e the SGA log listener

e the SGA dispatcher

e the SGA NI

A successful launch will result in 3 different console windows being added to the

desktop. However, if steps 4.3.6.10 to 4.3.6.13 have been ignored, only one

139

console window should remain open at the end, the log listener. This is also

normal.

If you want to re-create the IIG DBs, you will have to follow the instructions

found in section 4.3.3. To easily locate the DB creation scripts, from the Start

menu, select Programs -> IIG -> Auxiliary -> SQL scripts. This directory

contains all the SQL scripts to generate the DBs, as included in Appendix D and

Appendix E.

The delivered IIG component, by default, supports Microsoft SQL Server 2000 for

the deployment of the PAQ and login DBs. If you want to use a different DBMS,

then you will need to

e specify the necessary information in screens 4.3.6.5, 4.3.6.6, 4.3.6.8,
4.3.6.10 and 4.3.6.11

e copy the DBMS’ specific driver in the appropriate folder. The
JARs/ZIPs/classes should be copied in the folder accessible by the Start menu

shortcut Programs -> IIG -> Auxiliary -> Place additional JARs here.

e Close all IIG console windows and re-launch them from the Start menu
shortcut.

The included SSL IIG server is not usable as it misses the necessary security
certificates. Before using it, you will have to create them. To do so, select from
the Start menu pPrograms -> IIG -> Auxiliary -> Create SSL certificates.
You will have to restart the SSL IIG process.

The IIG servers (both text-based and SSL), as installed by the setup program,
only allow one SGA agent to access them, located in the IP address specified in
4.3.6.4. If you have more than one deployment hosts and you want all of them to
share the same IIG, you will have to explicitly declare the additional IP addresses.
This can be done via Start menu shortcut programs -> IIG -> Auxiliary ->
Allow additional SGAs here. Edit the XML file with an editor (even WordPad
will do), creating copies of the different 11GCredentials elements for each new
IP address and save the file. You will have to restart the IIG processes for the

changes to take effect.

4.3.8 Set up document pre-population

After the login DB has been created in step 4.3.3, a set of XML files should be
created to cater for pre-population of document fields, upon end-user login. The
idea is the following: when a user logs in to the service for the first time (and,
hence, no submitted documents exist), the back-end IIG creates an empty

document with certain values pre-filled, such as name, telephone, etc. The

140

mechanism to do so is quite simple: the IIG looks for properly named XML files in

its working directory.

To be able to pre-populate the form with each user’s personal data, you will have

to do the following

e For each user defined in table sGuUserData in section 4.3.4, create a file
named username.xml, inside folder <IIG install dir>\defaultXml. Here,
username denotes the same value as the one added in column username in

table sGUserData.

e Edit the file with Notepad or an XML editor (e.g. XMLSpy) and insert the XML
excerpt found in Appendix F. Replace all XXX placeholders with the
appropriate values and save the file. If there are values that have characters
non-Latin (e.g. Greek) the file must be saved as UTF-8. All date values must
be saved in the DD/MM/YYYY format. XML editors do so by default. If using
Notepad, you should select from the menu File -> Save As -> Encoding -

> UTF-8.

Important note: The XML structure found in Appendix F is only suitable for the
eVies service. A different service requires a different document. Moreover, you
cannot have two services that require automatic initial pre-filling using the same
IIG server. If you feel that these issues are important, send an email to

SmartGov@archetypon.gr for more information.

4.3.9 Create Integrator XML Repository

The Integrator, when installed selecting the Normal setup option, comes bundled

with a visual management tool to assist in the creation of the back-end relational

DB.

To create the XML Repository DB perform the following steps

1. Create a DB through the target DBMS’ user interface. Only MS SQL Server
2000 and MySql v.4.x are supported.

2. Execute the XML Repository Manager application from the Start menu,

selecting Programs -> SmartGov -> XmlStore Manager.

141

mailto:SmartGov@archetypon.gr

% EML Store Manager = II:Ilil
-Document Types ~Indexes

Hew ... Delete | | New ...
Save ...

3. Press the left New... button to create a new document type for service

description files. Name it serviceDescriptor.

Mew Document Type i x|

Hame: |SewiceDescriptnr |

Create

4. Press the right New... button to create a new index for the created document

type.

Newndex x|

Document Type: | ServiceDescriptor - |

Name: |KU |

X¥Path Expression: |IKUIKLJIdItex‘tt} |

Value Type: | class java.lang.String - | [¥ Unigue Yalues

Create

For the Integrator to work correctly, five different indexes need to be created

in total in the same manner.
Their details follow (case-sensitive, the Name might be different):
¢ Name: KU
i. XPath: /KU/KUId/text ()
ii. Value type: string
iii. Unique

e Name: Form

142

i. XPath: /form/formId/text ()

ii. Value type: string
iii. Unique

Name: InstantiatedTSE

i. XPath: /instantiatedTSE/instantiatedTSEId/text ()

ii. Value type: string
iii. Unique

Name: InstantiatedTSEGroup
i. XPath:

/instantiatedTSEGroup/instantiatedTSEGroupId/text ()

ii. Value type: string
iii. Unique
Name: TS
i. XPath: /TS/TSId/text ()
ii. Value type: string

iii. Unique

After all indexes are created and listed in the main window (make sure the

Document Type list entry is selected), the Save... button is pressed.

IDBC{tm} Settings Dialog

DBMS Type:

| Microsoft SQL Server 2000

>

x|

DatasSource Class: ||:|:|m.micrnsuﬂ.jdhcx.sqlsewerEQLSewerData5Durce

Class Path: \P:Microsoft SAL Server 2000 Driver for JOBCHiD, || Browse.. |
Server Name: |sgerogial

Port Number: 1433

Database Name: |}(mI5tnre

User Hame: |SEI

Password: e

- Driver-specific Properties

Froperty | Type

| Yalue

selectethod

cursar

143

The driver property has been added by using the New... button!. The class
path can either be a directory or a JAR file, inside which all driver classes
reside.

6. Pressing the Save... button creates the tables. Open the target DB with a DB

client application to verify the creation of the new tables.

4.3.10 Populate Integrator XML Repository

The Document Crawler is a visual utility that crawls through any number of
folders and stores all encountered files inside a specified XML Repository.
Directory crawling is not recursive and all non-valid XML files are ignored. To be
able to use this tool, you must select Normal setup during Integrator installation.

To add files to the XML Repository

1. Launch the Document Crawler from the Start menu, in pPrograms ->

SmartGov -> Document Crawler.

=10 i

Add.. || Remove

Connection properties

Document type

SericeDescriptor |

Execute!

2. Pressing the Add.. button a file dialog appears, allowing the user to select any

folder.

! This particular property MUST be set as shown in the image in the case of SQL
Server using the Microsoft JDBC driver.

144

% Choose folder x|
Look In: Ex, service_description i @ @ @ IEE
Clcvs
Cltax
3 xhtmi

File Name: |W:15martG mASmanGoiservice_descriptionitax
Files of Type: | Folders onhy >
Open Cancel

3. This process can be repeated any number of times to include all directories
that hold service description files. To remove a directory from the list, select it
and press Remove.

4. To be able to connect to the XML Repository, we need to specify a connection

properties file. Pressing the ellipsis button (...) allows us to locate it.

=
Look In: |[Jtest v @ @ @ IEE
I com
CIcvs

|j| settings.properties

File Name: |settings.prnper1ies

Files of Type: | Properties files >

Open Cancel

It is a good idea to re-use the connection properties file created during the
Integrator installation. The path to this file is
<deployment_Tomcat_dir>\webapps\Integrator\scripts\integrator.properties.

145

5. Finally, you will need to specify the document type that the added documents
will belong to, by editing the last field. The value entered here will have to be
the same as the one entered in step 3, section 4.3.9. After all parameters
have been set, we can press the Execute! Button.

It should be noted here that all documents “belonging” to the specified
document type already in the repository will be removed. This allows you to
“update” existing files in the repository en masse.

It is a good idea to use the tool to populate the repository with files belonging
to the same service each time, i.e. do not specify directories containing XML
files belonging to many services. This is necessary because each time the tool
is used, all documents belonging to the specified document type are deleted.
To be able to update the description files for a service, you should specify the
document type these files have been saved as. If descriptor files belonging to
a different service are saved under the same document type, then they will be

removed as well, which is probably wrong.

=10 i

Folders

WhSmantGovsmanGoviservice_descriptiontax
P:\AheadNero

Add.. || Remaove

Connection properties

MSmanGonsSmanGotiestisettings properies
Document type

FLUDocumentType |

Execute!

6. During execution, the tool provides feedback on which files are being

processed.

146

=100 %]

1 Processing file...

Other_Income_TSE_KU.xmi

Add.. || Remove

Connection properties

-W:iS ma.rtG uﬂSmarTIG Dﬁfe sutls ettin gs.prope rties

Execute!

4.3.11 Configure the deployment server

During Tomcat installation at a certain point it asks which JVM to use. Avoid

specifying the JRE proposed by default (usually located in c:\Program Files\...).

Instead browse for the installation directory of the JDK v.1.4+4+. The installation

directory of the JDK should not contain spaces.

After installing Tomcat, go to My Computer -> <right click> -> Properties -

> Advanced -> Environment Variables. Make sure that the following variables

are added in the System Variables pane

e JAVA HOME: The value of the variable is the installation directory of the JDK.

e CATALINA HOME: The value of the variable is the installation directory of
Tomcat.

After performing these changes, restart Tomcat (the executable or the service).

The Integrator employs the remote deployment feature found in Tomcat

v.4.1.18+. to do so, and to avoid compromising the deployment server’s security,

the Integrator assumes that there is a smartGov login configured on the target

server with manager privileges. To create this login on the deployment host:

e Locate and edit the Tomcat user configuration file. This is located in
<deployment Tomcat install dir>\conf\tomcat-users.xml.

e Add the following entry right before the </tomcat-users> XML tag. Save and
restart Tomcat.

<user username="smartGov" password="smartGov" roles="manager"/>

147

The Integrator installer copies a ZIP file containing a ready-to-use set of

configuration files for the service SGA. This ZIP file should be copied and

extracted to the deployment server.

The ZIP file can be accessed via the Start menu, shortcut pPrograms -> SmartGov

-> SGA Configuration files. Extract the contents of the file in the deployment

host(s) under folder c:\SmartGov.

If you want to...

extract the configuration files into a different directory: Extract the file
into any directory. This path should be specified in the Integrator installer, as
shown in section 4.3.2.8. Update the paths in file

<extraction_dir>\sga\conf\SGAConfig.txt.

change the host and port where the IIG servers listen on: Edit file
<extraction_dir>\sga\conA\SGAIIGConf.xml. Change the ports to reflect the
values specified in section 4.3.6.4. change the host IP to be that where the
IIG process are executed. Be careful to only specify an IP, not a machine

name.

change the SGA EntraPAQ DB to be used: Edit file
<extraction_dir>\sga\conf\EntraPAQConfig.txt. ~Change the values as

necessary. The semantics are the same as explained in section 4.3.6.5.

change the SGA AdelantePAQ DB to be used: Edit file
<extraction_dir>\sga\conf\AdelantePAQConfig.txt. Change values as
necessary. The semantics are the same as in 4.3.6.5.

change the SGA log listener to send error messages to: Edit file
<extraction_dir>\sga\conf\SGLogConfig.txt. Change values to be in line with
those specified in 4.3.6.9.

4.4 Usage Guide

The Integrator component is accessible as a web-based application.

The URL to launch the Integrator is http://development:port/Integrator,

where development is the name of the development host and port is the port

where the development Tomcat server is listening.

148

a Integrator - Microsoft Internet Explorer

File Edit “iew Favorites Tools: Help

SBack + = - @ i | laSlﬁearch [Ze] Favarites @Media @ | %* = N=l R @ ﬁ

Address IE https) flocalhost: S050/Inkegrator findex, html

GbDSlE" jl fbsearchweb + @8 Search Site | i | Eagemank ﬂv| oy
x * x
* ., *
* w
¥ Smart Service Name |

. Gov |

Deploy Service |

Usage of the tool is really simple, as the only required parameter from the user is
the unique id of the service, which the Integrator shall process and deploy.

Pressing the Deploy Service button, the Integrator process is launched and its
different sub-tasks are executed. Feedback is provided on-screen in the lower
part of the screen. Normal output is colored light blue, while error messages are

colored light brown.

149

a Integrator - Microsoft Internet Explorer

File Edit “iew Favorites Tools: Help

SBack + = - @ i | l@Slﬁearch [Ze] Favarites @Media @ | %* = N=l R @ ﬁ

Address I@ https) flocalhost: S050/Inkegrator findex, html

GDDSIETI jl fbsearchweb + @8 Search Site | i | FageRank o~ | k] option

*
" % Smart Service Name [Emartsos
b
. Gov |

Ceploy Service |

CUTPUT ZBuildfile: I:\Tamcat_4_ 1ywebappsilntegratoryscriptshintegrator. xml

QUTPUT

DLUTRPUT Z» clearServiceDir:

CUTPUTZ [mkdir] Created dir: 3:A\Tomcat_4_1vwebappsilntegratoriservice

QUTPUTZ

COUTPUT Zintegrator:

ERRORZ> [integratorTask] Translator exception

ERREORZ [integratorTask] Translator exception

ERRORZ= [integratorTask] Translator exception

ERROR>= [integratorTask] Translator exception

QUTPUTZ

DUTPUT Z copyFiles:

CUTPUT 2 [copy] Copying 20 files to 1:\Tomeat_4_1\webappsilntegratoryservice\WEB-II
COUTPUTZ [copy] Copying 17 files to 1A\Tomeat_4_1\webappsilntegratoryservicelpages
QUTPUTZ [copy] Copying 9 files to I:A\Tomcat_4_1hwebappshIntegratoriservice’WEB-INI
QUTPUTZ [copy] Copying 16 files to 2:A\Tomcat_4_ 1lwwebappsilntegratorservice’WEB-II
CUTPUT 2 [copy] Copying 30 files to 1:\Tomeat_4_1\webapps\Integratoriserviceisro
OUTPUT 2 [javac] Compiling 34 source files to IA\Tomcat_4 D\vwebappsiintegratoriservic

Error messages are an indication for technical personnel to correct errors is
service definition files (misspellings, missing files, DB failures...). A successful
build and deployment is indicated with a BUILD SUCCESSFUL final message.

150

5 Communication services: SmartGov Agents.

Installation, configuration and usage

The SmartGov platform includes facilities for communication between the service
delivery platform and the organisational information systems. These facilities are
an indispensable part of the SmartGov platform and must be installed and
configured for the service delivery platform to operate successfully. In this
section, the procedures for installing and configuring the communication services
are documented and details on the operation of the services are provided.

It should be noted that the users of the SmartGov services will be the IT staff and
system administrators of the PAs, thus the documentation provided is necessarily
technical and detailed.

5.1 Prerequisites

Before proceeding to install the SmartGov Agents bundle, it should be verified

that:

1. The Java runtime environment version 1.4.1 or higher is installed on the
system

2. The PATH variable includes the directory in which the java executable
resides (typically, the bin directory under the JRE installation directory).
This can be ascertained by issuing the following command in a shell window:
java —-version
If an error message indicating that the java command cannot be found is
printed or the version reported is older than 1.4.1, then the system
administrators should proceed in installing the appropriate JRE, or
configuring the PATH variable.

The administrators should also verify that the appropriate JDBC drivers for the

DBMS that will host various necessary tables are installed in the system and the

DBMS runtime libraries, if required, are present and registered to the execution

environment (e.g. in the LD LIBRARY PATH variable for Solaris systems).

5.2 Bundle contents and installation

The communication services bundle includes the following files:
1. SGAgent.jar. This file contains the code implementing the SmartGov
communication services, both for the service delivery environment and the
organisational information system. The file may be placed anywhere in the

file system, however it must be added to the locations searched by the

151

Java Runtime Environment (JRE) for class loading. These locations are
commonly listed in the CLASSPATH environment variable, or specified via
the -cp or -classpath flag to the Java virtual machine, as illustrated in

the following examples:

Windows Platform

mkdir c:\smartgov

mkdir c:\smartgov\sga

copy SGAgent.jar c:\smartgov\sga

java —cp C:\smartgov\sga\SGAgent.Jjar gr.uoa.di.SGANI.SGANIFactory
c:\smartgov\SGANIPropertyFile.txt

or

mkdir c:\smartgov

mkdir c:\smartgov\sga

copy SGAgent.jar c:\smartgov\sga

set CLASSPATH c:\smartgov\sga\SGAgent.jar

java gr.uoa.di.SGANI.SGANIFactory c:\smartgov\SGANIPropertyFile.txt

Unix Platform

mkdir /usr/smartgov

mkdir /usr/smartgov/sga

cp SGAgent.jar /usr/smartgov/sga

java —-cp /usr/smartgov/sga/SGAgent.jar gr.uoa.di.SGANI.SGANIFactory
/usr/smartgov/sga/SGANIPropertyFile.txt

or

mkdir /usr/smartgov

mkdir /usr/smartgov/sga

cp SGAgent.jar /usr/smartgov/sga
CLASSPATH=/usr/smartgov/sga/SGAgent.jar; export CLASSPATH

java gr.uoa.di.SGANI.SGANIFactory /usr/smartgov/sga/SGANIPropertyFile.txt

(The line cLASSPATH=... in the latter case applies for the Bourne, Korn

and Bash shells; for C-Shell and tcsh, the line
setenv CLASSPATH /usr/smartgov/sga/SGAgent.jar

should be used instead)

The CLASSPATH variable may also be set in a machine-wide fashion. For
Microsoft Windows this can be accomplished by right-clicking on My
Computer and selecting Properties, then selecting Advanced and
Environment Variables and, finally, adding or modifying the CLASSPATH
variable. For Unix environments, the OS vendor’s instruction for setting
platform-wide variables should be consulted.

SGAconf.zip. This file contains the XML configuration files, the document

type definition (DTD) files and the component property files required for

152

the operation of the communication services. The file SGAconf.zip is a zip
archive, which must initially be unzipped. The unzip process will create two
top-level directories named "windows" and "unix", for use in the
respective environments (unix subsumes 1inux). Practically, any
configuration may be used in either environment; the two separate folders
are provided for convenience, to minimise the required editing.
Configuration files in the windows directory assume that they will be
placed under c:\smartgov while configuration files in the unix directory
assume that they will be installed in /usr/smartgov. Each of the
directories contain a subdirectory conf, which in turn contain two
subdirectories namely sga and iig. The directory conf/iig contains all
the files needed for operation of the Information Interchange Gateway
(the component attached to the organisational information system), while
the directory conf/sga contains all the files needed for operation of the
SmartGov agent (the component running on the service delivery
environment). For more information on the configuration files, see sections
“Configuration, Property And DTD files” and “Package Documentation”.
SQLscripts.zip. This zip archive contains scripts that initialise the
databases used by the communication services. Three scripts are included
in the archive, namely sgaora.sql, sgamysql.sqgl and sgamssql.sqgl to
be used with Oracle, MySQL and MS SQL Server, respectively. For more
details see section “"Database Setup”.

SGsyssvc.jar. This Java archive contains the implementations of the
services required for the operation of the service delivery environment.
The zip file contents must be extracted to some file system location and
the IIGCommMethConfFile.xml configuration file should be edited
accordingly to point to the actual location of the extracted files. For more
information on configuring the system services, see section “SmartGov
system services”.

scripts.zip. This directory contains batch scripts for starting the
SmartGov communication services and for generating the appropriate
certificates to be used with the Secure Socket Layer services. Of course,
certificates provided by Certificate Authorities may be used with the
Secure Socket Layer, however organisations may create their own, self-
signed certificates for their installations, in order to minimise costs. For
more information on the SSL certificates, see section

gr.uoa.di.SSLIIGServer Package.

153

5.3 Configuration, Property And DTD files

A number of property files are necessary for providing the value of parameters required by the various modules of the SmartGov
platform. These property files are described in detail in the package documentation section. A list is provided here, along with a summary

of their contents and where there should be provided as a parameter.

5.3.1 Property files

Property file | Bundle filename Comments
SGLogger conf/sga/SGLogConfig. txt The SGLogger property file defines the address details that the SGLogger
property file conf/iig/SGLogConfig.txt entities may use to contact the SGLogListener. Two files are provided, to be

used in the service delivery environment (SGA) and the organizational
information system (IIG) respectively. The location is passed as a
parameter to the newSGLogger method of the SGLoggerFactory class of the
gr.uoa.di.SGLogging package.

If the SGUtil.logMessage method is used, the system property
SGLogger.propertyFile should be set to point to the location of the

property file. For more information on the SGLogger property file, see

section “gr.uoa.di.SGLogging Package”.

154

Property file | Bundle filename Comments

SGLoglistener | conf/sga/SGLogListenerConf.txt The SGLoglistener property file defines parameters used by the
property file conf/iig/SGLogListenerConf.txt SGLoglListener, such as the port to listen to and the log file destination. Two
files are provided, to be used in the service delivery environment (SGA) and
the organizational information system (IIG) respectively. Its location is
provided as a parameter when the
gr.uoa.di.SGLoglListener.SGLogListenerFactory class is executed. For more
information on the SGLoglListener property file, see section

“gr.uoa.di.SGLogListener Package”.

SGA-NI conf/sga/SGANIConfig.txt The SGA-NI property file defines parameters used by the SGA Notification
property file Interceptor, such as the port to listen to and the location of the EntraPAQ
configuration file. Its location is provided as a parameter when the
gr.uoa.di.SGANI.SGANIFactory class is executed. For more information on

the SGA-NI property file, see section “gr.uoa.di.SGANI Package”.

EntraPAQ conf/sga/EntraPAQConfig.txt This file contains details for accessing the queue of tasks built due to
property file conf/iig/EntraPAQConfig.txt reception of notification events (SGA side) or non real-time requests (IIG
side). Its location is provided as a property

(SGA.EntraPAQ.propertyFile=<property file spec>) in the SGA-NI

property file (SGA side) For more information on the EntraPAQ property file,

see sections “gr.uoa.di.SGANI Package” and gr.uoa.di.IIGMyP package.

155

Property file | Bundle filename Comments

IIG-NI conf/sga/IIGNIConfig.txt This file contains configuration details for the IIG notification initiator in the
property file form of pointers to other configuration files.

Its location is provided as a parameter to the newlIIGNI method of the
gr.uoa.di.IIGNI.IIGNIFactory class. For more information on the IIG-NI

property file, see section “gr.uoa.di.IIGNI Package”.

Dispatcher conf/sga/dispatcherConfig.txt This file contains details on the operation of the pending actions queue
property file conf/iig/dispatcherConfig.txt dispatcher. Two files are provided, to be used in the service delivery
environment (SGA) and the organizational information system (IIG)
respectively.

Its location is provided as a parameter when the
gr.uoa.di.dispatcher.dispatcher class is executed (SGA side) or the
gr.uoa.di.dispatcherIIG.dispatcherIIG class is executed (IIG side). For more
information on the dispatcher property file, see sections

“gr.uoa.di.dispatcherllG Package” and “gr.uoa.di.dispatcher Package”.

SGA property | conf/sga/sgaconfig.txt The main configuration file for the SmartGov agent. Its location is passed
file as parameter to the newSGAgent method of the

gr.uoa.di.SGA.SGAgentFactory class. For more information on the SGA

property file, see section “gr.uoa.di.SGA Package”.

156

Property file

Bundle filename

Comments

Adelante PAQ
property file

conf/sga/AdelantePAQConfig.txt
conf/iig/AdelantePAQConfig.txt

This file contains details for accessing the pending outgoing requests queue.
Two files are provided, to be used in the service delivery environment
(SGA) and the organizational information system (IIG) respectively. Its
location is provided as a

property in the SGA property file

(SGA.AdelantePAQConfFile=<configuration file spec>). For more

information on the Adelante PAQ property file, see sections “gr.uoa.di.SGA

Package” and “gr.uoa.di.IIGNI Package”.

IIG MYP
property file

conf/iig/iigMyPconfig.txt

The main configuration file for the Information Interchange Gateway. Its
location is passed as a command-line parameter to the execution of the
gr.uoa.di.IIGServer.IIGServer and
gr.uoa.di.SSLIIGServer.SSLIIGServer classes. For more information on

the IIG MYP property file, see section “gr.uoa.di.IIGMyP package”.

Database
store
configuration

file

conf/sga/DatabaseStoreConf.txt

This file contains information regarding the software drivers used for
connecting to the database when using a store to database method for

servicing a request at the SGA.

SEP database
store
configuration

file

conf/iig/SEPDatabaseStoreConf.txt

This file contains information regarding the software drivers used for
connecting to the database when using a store to database method for
servicing a request at the IIG. For more information on the SEP database

store configuration file, see section “gr.uoa.di.SEPDatabaseStore Package”.

157

5.3.2

Configuration files

Configuration Bundle filename Comments
file
SGA-NI conf/sga/SGANI Conf.xml An XML document containing the name and description of a method

configuration file

associated with each notification the SGA-NI is configured to receive. Its
location is provided as a property in the SGA-NI property file
(SGA.SGAServicesConfFile=<config file spec>). For more information

on the SGA-NI configuration file, see section “gr.uoa.di.SGANI Package”.

SGA Services

configuration file

conf/sga/SGAServicesConf.xml

An XML document that binds the service names that an SGA can serve, with
corresponding symbolic names for IIG and symbolic names for the
communication methods to be used for the communication between SGA
and IIG. Its location is provided as a property in the SGA property file
(SGA.SGAServicesConfFile=<conf file spec>). For more information on

the SGA services configuration file, see section “gr.uoa.di.SGA Package”.

SGA - IIG

configuration file

conf/sga/SGAIIGConfFile.xml

An XML document file that binds the symbolic name for the IIG with all
physical level information required for initiating communication with
designated IIG. Its location is provided as a property in the SGA property
file (SGA.SGAIIGConfFile=<config file spec>). For more information on

the SGA IIG configuration file, see section “gr.uoa.di.SGA Package”.

158

Configuration Bundle filename Comments

file

SGA conf/sga/SGACommMethConfFile.xml | An XML document that binds the symbolic name for the communication
Communication methods with all the physical level information required for implementing
Methods each method. The file location is provided as a property in the SGA property

configuration file

file (SGA.SGACommMethConfFile=<config file spec>). For more
information on the SGA communication methods configuration file, see

section “gr.uoa.di.SGA Package”.

IIG-NI

configuration file

conf/iig/IIGNIConf.xml

An XML document containing the names of notifications and their associated
communication information for contacting the SGA-NI. Its location is
provided as a property in the IIG-NI property file
(IIG.NI.confFile=<config file spec>). For more information on the

IIG-NI configuration file, see section “gr.uoa.di.IIGNI Package”.

IIG services

configuration file

conf/iig/IIGServicesConfFile.xml

An XML document that binds the service names that an IIG can serve, with
corresponding symbolic names for the communication methods and the
separate external processes. Its location is provided as a property in the
IIG property file (IIGMyP.IIGServicesConfFile=<conf file spec>). For
more information on the IIG services configuration file, see section

“gr.uoa.di.IIGMyP package”.

159

Configuration Bundle filename Comments
file
IIG conf/iig/IIGCommMethConfFile.xml | An XML document that binds the symbolic name for the communication

communication
methods

configuration file

methods with all the physical level information required for implementing
each method. The file location is provided as a property in the IIG property
file (IIGMyP.IIGCommMethConfFile=<config file spec>).>). For more
information on the IIG communication methods configuration file, see

section “gr.uoa.di.IIGMyP package”.

IIG SEP

configuration file

conf/i1iig/IIGSEPConfFile.xml

An XML document that binds the symbolic name for the separate external
processes with all the physical level information required for implementing
SEP. The file location is provided as a property in the IIG property file
(IIGMyP.IIGSEPConfFile=<config file spec>). For more information on

the IIG SEP configuration file, see section “gr.uoa.di.IIGMyP package”.

IIG security file

conf/iig/IIGSecurity.xml

A file that associates request senders with the credentials they must
present to the IIG, in order to be authenticated. The file location is provided
as a property in the IIG property file (IIGMyP.IIGSecurityFile=<config
file spec>). For more information on the IIG security configuration file,

see section “gr.uoa.di.IIGMyP package”.

IIG SSL server

information file

conf/iig/SSLserverInfo.xml

A file used by the secure socket layer-based version of the IIG. This file
provides information on the keystore, the supported cipher suites and other
parameters needed by the secure socket layer. The location of this file is

provided as a command-line parameter when the class

160

Configuration Bundle filename Comments

file

gr.uoa.di.SSLIIGServer.SSLIIGServer. For more information on the IIG

security configuration file, see section “gr.uoa.di.SSLIIGServer Package”.

5.3.3 DTD files

The DTD files are used for validating the content structure of configuration files or messages that are received. Their contents should not

be edited, however their presence is required in specific directories. These requirements are listed in the following table.

DTD file Bundle filename Comments

SGA-NI conf/sga/SGANI Conf.dtd DTD document that validates the SGA-NI configuration file. It should be
configuration located in the same directory with the SGA-NI configuration file. The
DTD <!DOCTYPE .. line in the SGA-NI configuration file should only reference the

DTD file name, and not the full path specification.

SGA Services | conf/sga/SGAServicesConfFile.dtd | DTD document that validates the SGA services configuration file It should
DTD be located in the same directory with the SGA Services configuration file.
The <!DoCTYPE .. line in the SGA services configuration file should only

reference the DTD file name, and not the full path specification.

SGA conf/sga/SGACommMethConf.dtd DTD document that validates the SGA Communication Methods
Communication configuration file. It should be located in the same directory with the SGA
Methods DTD Communication Methods configuration file The <!DoCTYPE .. line in the SGA

Communication Methods configuration file should only reference the DTD

file name, and not the full path specification.

161

DTD file Bundle filename Comments

SGA - IIG DTD conf/sga/SGAIIGConfFile.dtd DTD document that validates the SGA-IIG configuration file. It should be
located in the same directory with the SGA -IIG configuration file The
<!DOCTYPE .. line in the SGA - IIG configuration file should only reference

the DTD file name, and not the full path specification.

IIG-NI DTD conf/iig/IIGNIConf.dtd DTD document that validates the IIG-NI configuration file. It should be
located in the same directory with the IIG-NI configuration file. The
<!DOCTYPE .. line in the IIG NI configuration file should only reference the

DTD file name, and not the full path specification.

IIG Services | conf/iig/IIGServicesConfFile.dtd | DTD document that validates the IIG services configuration file It should be
DTD located in the same directory with the IIG Services configuration file. The
<!DOCTYPE .. line in the IIG services configuration file should only reference

the DTD file name, and not the full path specification

IIG conf/iig/ITIGCommMethConfFile.dtd | DTD document that validates the IIG Communication Methods configuration
Communication file. It should be located in the same directory with the IIG Communication
Methods DTD Methods configuration file The <!DoCTYPE .. line in the IIG Communication

Methods configuration file should only reference the DTD file name, and not

the full path specification.

IIG SEP DTD conf/iig/IIGSEPConfFile.dtd DTD document that validates the IIG Separate External Processes (SEP)
configuration file. It should be located in the same directory with the IIG
SEP configuration file The <!pocTYPE .. line in the IIG SEP configuration file

should only reference the DTD file name, and not the full path specification.

162

DTD file Bundle filename Comments

IIG security DTD | conf/iig/IIGSecurity.dtd DTD document that validates the IIG Security configuration file. It should
be located in the same directory with the IIG Security configuration file The
<!DOCTYPE .. line in the IIG Security configuration file should only reference

the DTD file name, and not the full path specification.

IIG SSL server | conf/iig/SSLserverInfo.dtd DTD document that validates the IIG SSL server information configuration
information DTD file. It should be located in the same directory with the IIG SSL server
information configuration file The <!DoCTYPE .. line in the IIG SSL server

information configuration file should only reference the DTD file name, and

not the full path specification.

XML Packet DTD | conf/iig/XMLPacket.dtd DTD document that validates the request messages received by the IIG. It
may be located anywhere in the file system, and its location is designated
by the IIGMyP.XMLPacketPath property in the IIG property file. If an
application is built that creates and sends request messages to the IIG
without using the SmartGov Agent library, it should arrange so that in the
<!DOCTYPE .. line in the request packets only the DTD file name is

referenced, and not any absolute location.

163

5.4 Database Setup

The communication services use in several cases a database for persistent
storage. A database is used in both the SGA and IIG part of the SG Agent and it

should be made available to ensure its correct operation. The communication

services may be used with any DBMS, provided that the appropriate JDBC driver

is installed; in certain cases, adaptations need to be made to cater for DBMS

particularities: for instance, in MySQL 3.x varchar-type fields are limited to 255

characters and the schema must be modified to use BLOB-type columns when

columns of more length are required.

After installing the DBMS, the following actions should be performed:

1.
2.

3.

a DBMS user, e.g. smartgov, should be created.

for DBMSs not supporting the “per user schema” model (e.g. MySQL) the
creation of a separate database is highly recommended. Full rights to this
database should be granted to the user created in step (1).

The tables needed by the SmartGov Agent bundle should be created in the
user’'s schema or database. This can be accomplished by executing the
appropriate SQL batch under the credentials of the user created in step
(1). The distribution includes three sample SQL batches, namely
sgaora.sql, sgamysqgl.sqgl and sgamssqgl.sqgl to be used with Oracle,
MySQL and MS SQL Server, respectively. The typical procedure for
creating the database objects is as follows:

a. If Oracle is used, the command

sglplus username/password < sgaora.sqgl
should be issued, where username and password are the
credentials for the user created in step (1).

b. If MySQL is used, the command

mysgl -uusername -ppassword dbname < sgaora.sgl
should be issued, where username and password are the
credentials for the user created in step (1) and dbname is the name
of the database created in step (2).

c. If SQL Server is used then the Query Analyzer tool should be
launched and the connection to the DBMS should be established by
entering the user credentials in the “Connect to SQL server” dialog
box. Then the File/Open menu should be selected and the
sgamssql.sqgl should be selected. Finally the Query/Execute menu

should be selected to complete the task.

164

Note that in a typical SmartGov platform installation, two separate database
installations are expected to be operating, one for the service delivery
environment and one for the organisational information system. Though it is
possible to use one database installation for both the service delivery
environment and the organisational information system, this is not
recommended, due to security issues that may arise. If however only one
database installation is available, two different users and/or databases should be
created, and the configuration files should be modified accordingly to provide the
appropriate connection information.

Finally, the appropriate JDBC driver should be installed in the standard extensions
directory of the Java Runtime Environment - typically the 1ib/ext subdirectory

under the JRE installation directory).
5.5 Package Documentation

5.5.1 gr.uoa.di.SGLogging Package

The gr.uoa.di.SGLogging package provides facilities for message logging in the
SmartGov environment. Messages may be logged for various purposes, including
the notification of a system operator about an event requiring imminent attention,
monitoring of the activities taking place in the context of the platform, debugging
activities etc. Certain events are logged automatically by SmartGov platform
components (e.g. request initiation, receive of a reply), whereas applications may
use these facilities to log arbitrary messages.

Applications (including SmartGov platform components) willing to exploit the
logging facilities should use the provided API to fulfill this task. Additionally,
within the SmartGov platform, an SGLogListener process (also provided with the
implementation) should be running, which is responsible for collecting the logging
requests and placing the respective messages in a persistent store.

A logging request includes (a) the message to be logged (free text) and (b) a
severity code, indicating the importance and/or the expected reactions to the
message. The SmartGov platform allows for six levels of severity, as listed in the

following table.

Table 1. Severity code numbers, names and corresponding messages.

Severity code | Severity Text to be | Use
name code displayed in the
number log file
SG_LOG_EMERG 1 EMERGENCY An event requiring

165

immediate attention
SG_LOG_ALERT 2 ALERT An event requiring
attention
SG_LOG_ERROR 3 ERROR An error condition
SG_LOG_WARNING 4 WARNING A warning message
SG_LOG_INFO 5 INFO An informational
message
SG_LOG_DEBUG 6 DEBUG IT staff wuse for
debugging purposes

When a message is placed in the persistent store, it is complemented with the
following additional information:
1. The timestamp that the message was received and stored (date and time)
2. A textual description of the severity designation
3. The actual message

An example of a log message is the following:
03-07-2003 13:58:49 ERROR IIG-NI: Notification with name wrongNotif
could not be sent to SGA-NI.

5.5.1.1 Using the logging facilities

In order to use the logging facilities, an application should import the SGLogger,
SGLoggerFactory and SGLoggerException classes contained in the package, which
implement all the necessary functionality. In more detail, the application willing to
log messages should perform the following steps:

1. Use the newSGLogger method of the SGLoggerFactory class to create a
new object of type SGLogger. Only one instance of the SGLogger class is
allowed to exist at any given time in the context of an application.

2. Invoke the logMessage method of the SGLogger object, in order to actually
log the message. The JogMessage method accepts two parameters,
corresponding to the severity designation and the actual message, for
example:

SGL.logMessage (SGLogger.SG_LOG EMERG, "Message to be logged");
While performing any of the steps listed above, certain error conditions may
arise; in these cases, an exception of type SGLoggerException is thrown, which
can be caught and appropriately handled by the application.
Since the SmartGov logging facility follows the client-server model, it is important
for the applications to be able to locate the SGLogListener entity, which intercepts
all logging requests and arranges for their persistent storage. The information

necessary to locate the SGLogListener entity should be provided in a property file,

166

and the location of the file is passed as a parameter to the newSGLogger method.
This property file contains two lines, designating the communication details with
the SGLogListener. The one is the name of the host where the SGLogListener is
located and the other the port at which the SGLogListener is listening for logging

requests. The property file must have the following form:
#SGLogger property file

SGA.Logger.port=<port>

SGA.Logger.host=<host>

For example:

#SGLogger property file
SGA.Logger.port=30000
SGA.Logger.host=hydra.mm.di.uoa.gr

5.5.1.2 Example

A sample application using the gr.uoa.di.SGLogging package is listed below:

public class testLogger {
/** Creates a new instance of testLogger */
public testLogger () { }
public static void main(String[] args) {
if (args.length != 1) {
System.out.println ("testLoggerUsage: testLogger <propertyFile> ");
}
else{
try{
/** Creates an instance of the SGLogger, giving as argument the
the property file./
SGLogger SGL = SGLoggerFactory.newSGLogger (args[0]);
/*Log the event*/
SGL.logMessage (SGL.SG_LOG_EMERG, "Message to be logged");
System.err.println ("Exited OK.");
}
catch (SGLoggerException SGLEX) {
System.err.println("Cannot create logger");

System.exit (1) ;

In order to facilitate the usage of the SGLogger, a static logMessage method is
provided in the gr.uoa.di.sGUtil.sGUtil class. The logMessage method accepts
two parameters, corresponding to the severity designation and the actual

message, for example:

167

SGUtil.logMessage (SGLogger.SG LOG EMERG, "Message to be logged");

The scUtil.logMessage method arranges for the creation of the appropriate
SGLogger instance (if necessary) and then uses this instance to log the
messages.

Both the gr.uoa.di.sGuUtil and gr.uoa.di.SGLogger packages should be
imported for the call to this method to work.

The sGUtil.logMessage method needs to have information regarding the
connection details of the SGLoglListener process. This information should be
provided by means of a property file (as is the case with the SGLogger package)
and the system property SGLogger.propertyFile should be set to point to the
location of this file. If the property is not set, the sGutil.logMessage function
ignores calls for logging.

The sSGLogger.propertyFile system property may be set programmatically from

within a Java program using the System.setProperty method:

System.setProperty ("SGLogger.propertyFile", "/path/to/property/file");
or by using the -D flag to the Java Virtual Machine when the Java program is

being run:

java -DSGLogger.propertyFile=/path/to/property/file myprog.java

5.5.2 gr.uoa.di.SGLogListener Package

The gr.uca.di.SGLogListener package implements the process that is
responsible for collecting the logging requests and placing the messages to be
logged in a persistent store. Logging requests originate from the SGLogger,
whose functionality is described in another section of this document.

The SGLogListener is started by executing the class SGLogListenerFactory,

providing as parameter the location of the SGLogListener property file.

java gr.uoa.di.SGLogListener.SGLogListenerFactory <property file>

For example,

java gr.uoa.di.SGLogListener.SGLogListenerFactory c:\SG\SGLListPrF.txt

The SGLoglistener then waits for logging requests to arrive (to a specified port).
These requests are received in the form of text messages, which the
SGLoglistener writes to a file.

The path to the file that the SGLogListener will write the log messages to, and the
port that will be monitored for incoming logging requests should be specified in a
property file, and the location of the file is provided as a parameter when the
SGLoglListenerFactory is executed. More specifically, the property file contains

three lines, designating:

168

1. the TCP/IP port where the SGLogListener is listening for logging requests
(SGA.LogListener.port property)

2. the backlog of the listener server socket, which is the maximum queue length
for incoming connection requests (SGA.LogListener.backlog property)

3. the file were the messages will be stored
(SGA.LogListener.destinationFile property)

The format of the property file is as follows:

#SGLogListener property file

SGA.LogListener.port=<port>

SGA.LogListener.backlog=<backlog>

SGA.LogListener.destinationFile=<destination specification >

For example:

#SGLogListener property file
SGA.LogListener.port=30000

SGA.LogListener.backlog=50

SGA.LogListener.destinationFile=c:\\smartgov\\logs\\LogDest.txt

5.5.3 gr.uoa.di.SGANI Package

The gr.uoa.di.SGANI package provides facilities for intercepting and storing
notifications in the SmartGov SGA-EPAQ (incoming queue for the service delivery
platform). The SGA Notifications Interceptor (SGA-NI) is an autonomous program
that continuously runs on the SmartGov service delivery platform and listens for
notifications signifying that an external to the platform event has taken place. The
SGA-NI responds to these notifications by placing a suitable entry in the SGA-
EPAQ, which will be handled by the SGA-PAQUED. The notifications are sent to
SGA-NI by the IIG Notification Initiator (IIG-NI).
SGA-NI performs the following actions:

1. Listen to a specified port for incoming notifications

2. Upon receiving a notification, look up in the SGA-NI XML configuration file

the information concerning the method associated with the notification.

3. Store the method information in the SGAEPAQ.
The SGA-NI is started by executing the class SGANIFactory, providing as
parameter the location of the SGA-NI property file, described in the following

paragraphs.

java gr.uoa.di.SGANI.SGANIFactory <property file>

For example,

169

java gr.uoa.di.SGANI.SGANIFactory c:\smartgov\cfg\\SGLANIPropertyFile.txt

The SGA-NI creates a server socket, and listens to a port, also specified in the

property file, for incoming notifications. These notifications are received in the

form of text messages. Upon receiving a notification, the SGA-NI looks it up in a

configuration file. This configuration file contains the information about the

methods associated with each notification and its location (file specification

including directory and file name) is defined in the property file.

The method information extracted from the configuration file is stored in the SGA-

EPAQ. The SGA-EPAQ is implemented as a database table. In order to facilitate

the storage and retrieval of data in the database, the gr.uoa.di.EntraPAQ

package is used, which is described in another part of this document. The

information for connecting to the database (connection credentials, network

information etc) is provided by means of a separate property file; the location of

this property file is specified as a property within the SGA-NI property file. The

contents of the SGA-EPAQ property file are explained below.

SGA-NI uses the SGLogger, which is described in another part of this document,

to log information on the following events:

1. receiving a notification

2. failure to store the notification in the database, due to communication failure
with the IIG-Notification Initiator

3. failure while retrieving the method information from the XML configuration file

4. database connection failure.

Since SGA-NI uses SGLogger facilities, it needs to have access to a property file

with the information necessary for connecting to the SGLogListener. The location

of this property file is specified as a property within the SGA-NI property file.

5.5.3.1 The SGANI configuration file

The SGA-NI configuration file is an XML document which contains the description
in XML format of the methods associated with a notification.
This file contains the following information for each notification:
1. The name of the notification
2. The method description, which contains the following items
a. The command path, i.e. the complete file specification of the OS-
level command that will be executed as a response to the reception
of the notification
b. The working directory, i.e. the OS directory that will be set as

“current” before the execution of the command is started

170

The command parameters, i.e. command-line arguments that will
be passed to the command.

The input file, i.e. a file containing data that will be read by the
command as input

The output file, i.e. a file into which the command’s output will be
stored.

The error file, i.e. a file into which error messages emitted by the
command (if any) will be stored.

The environmental variable list, which consists of pairs of variable
names and values. This item is optional. We note here that for Java
programs, in particular, environment variables may be suppressed
by the Java runtime environment, depending on the JRE version,
since Java desighers have characterised the environment variable

mechanism as “non-portable”. For communicating parameters to

Java programs, the property file approach is recommended.

SGA-NI configuration files are validated against a DTD document, which must be

located in the same directory with the SGA-NI configuration file. If an installation

uses multiple SGA-NI configuration files, which are stored in different directories,

then a copy of the DTD document should be placed in each of these directories.

The DTD contents are as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!--DTD XML Schema describing the SGA-NI XML configuration file -->
<IELEMENT root (notificationInfo*)>

<IELEMENT notificationInfo (notificationName, method)>

<IELEMENT notificationName (#PCDATA)>

<IELEMENT method (commandPath, workingDirectory, parameters, inputFile, outputFile, errorFile, envVariable*)>
<IELEMENT commandPath (#PCDATA)>

<IELEMENT workingDirectory (#PCDATA)>

<IELEMENT parameters (#PCDATA)>

<IELEMENT inputFile (#PCDATA)>

<IELEMENT outputFile (#PCDATA)>

<IELEMENT errorFile (#PCDATA)>

<IELEMENT envVariable (envVariableName, envVariableValue)>
<IELEMENT envVariableName (#PCDATA)>

<IELEMENT envVariableValue (#PCDATA)>

An SGA-NI configuration file should contain only the name and not the full path of

the DTD document. As stated above, the DTD document should reside in the

same directory with the document. An example of an SGA-NI XML configuration

file is illustrated bellow.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE root SYSTEM "SGANI_Conf.dtd">
<root>
<notificationinfo>
<notificationName>dataReady</notificationName>
<method>
<commandPath>java testProgram</commandPath>
<workingDirectory>Z:\\smartgov\\wp\\wp06\\api\\sga</workingDirectory>
<parameters/>
<inputFile>c:\\smartgov\\test\\testPinput.txt</inputFile>
<outputFile>Z:\\smartgov\\test\\testPoutput.txt</outputFile>
<errorFile>Z:\\smartgov\\test\\testPerror.txt</errorFile>
</method>
</natificationinfo>
<notificationInfo>
<notificationName>datalL ost</notificationName>
<method>
<commandPath>java testProgram2</commandPath>
<workingDirectory>c:\\smartgov\\test </workingDirectory>
<parameters/>
<inputFile>c:\\smartgov\\test\\testPAinput.txt</inputFile>
<outputFile>c:\\smartgov\\test\\testPAoutput.txt</outputFile>
<errorFile>c:\\smartgov\\test\\testPAerror.txt </errorFile>
</method>
</notificationInfo>

</root>

5.5.3.2

The SGANI property file

The SGA-NI property file is provided as a parameter when the SGANIFactory is

executed and contains the information necessary for SGA-NI to operate. This

information is stored in five properties, which are the following:

The port where the SGA-NI listens for incoming notifications.

The backlog of the SGA-NI server socket, which is the maximum queue
length for incoming connection requests.

The file name of the SGA-NI configuration file (described above). A full file
specification may be provided, including the directory and the filename of
the configuration file.

The property file of the SGA-EPAQ, which contains information for the
database connection.

The property file of the SGLogger, providing information on contacting the

logging facilities for event information logging

172

The property file must have the following form:

SGA.NI.port=<port>
SGA.NI.backlog=<backlog>
SGA.NI.confFile=<configuration file specification >

SGA.EntraPAQ.propertyFile=<property file specification >

SGLogger.propertyFile=<property file specification >
For example:

Property file for the SGA NI
SGA.NI.port=30000
SGA.NI.backlog=50

SGA.NI.confFile=c:\\smartgov\\cfg\\SGANI\\SGANI Conf.xml
SGA.EntraPAQ.propertyFile=c:\\smartgov\\cfg\\entraPAQ\\EntraPAQConfig.txt

SGLogger.propertyFile=Z:\\smartgov\\cfg\\SGLogging\\SGLogConfigSGA. txt

5.56.3.3 The Entra PAQ property file

The EntraPAQ (SGA-EPAQ) property file is provided as a property in the SGA-NI
property file and contains the necessary information for connecting with the
database where the Entra PAQ is stored. It contains the following four properties:
» The user name for connecting with the database where the Entra PAQ is
stored.
* The name of the database where the Entra PAQ is stored.
= The password for connecting with the database where the Entra PAQ is
stored.
= The driver for connecting with the database where the Entra PAQ is stored.
= The connection string for connecting with the database where the Entra
PAQ is stored.

The property file must have the following form:

SGA.EntraPAQ.username=<username>
SGA.EntraPAQ.database=<database name>

SGA.EntraPAQ.password=<password>

SGA.EntraPAQ.driver=<driver class name>

SGA.EntraPAQ.connectString=<connection string>

For example

173

Property file for the SGA EntraPAQ
SGA.EntraPAQ.username=smartgov
SGA.EntraPAQ.database=smartgov
SGA.EntraPAQ.password=sgl23
SGA.EntraPAQ.driver=oracle.jdbc.driver.OracleDriver

SGA.EntraPAQ.connectString=jdbc:oracle:oci8:@

5.5.34 Extending the SGA-NI

Currently, the SGA-NI uses the TCP/IP communication protocol in order to receive
notifications from the IIG-NI. It creates a ServerSocket and listens to a port for
incoming notifications. If the IIG-NI uses another communication protocol, the

SGANI should be modified appropriately in order to be able to receive the

notifications. In order to implement such an extension, the programming team

should:

1. replace the TCP/IP-oriented properties in the SGA-NI configuration file
(SGA.NI.port and SGA.NI.backlog) with properties appropriate for the
protocol that will be supported.

2. Modify the code that looks up the specific properties in the property file so
that it accesses the properties specified in step (1).

3. load the libraries that support the selected protocol and arrange so that these

libraries are used instead of the TCP/IP libraries.

5.5.4 gr.uoa.di.llGNI Package

The gr.uoa.di.IIG-NI package provides facilities for sending notifications from
the IIG to the SmartGov SGA-NI. Notifications may be sent for various purposes,
including the completion of a back-end batch process, the request for a specific
action to be taken at the side of the service delivery environment etc.
Applications (including SmartGov platform components) willing to exploit the
notification facilities should use the provided API to fulfill this task. Additionally,
within the SmartGov platform, an SGA Notification Interceptor (SGA-NI) process
(provided with the implementation and described in the previous paragraphs)
should be running, which is responsible for receiving the notifications and placing
them in a persistent store, the SGA EPAQ.

5.5.4.1 Using the IIG Notification Initiator

In order to use the IIG Notification Initiator, an application should import the

IIGNI, IGNIFactory and IIGNIException classes contained in the package, which

174

implement all the necessary functionality. In more detail, the application willing to
send notifications should perform the following steps:

1. Use the newlIIGNI method of the IIGNIFactory class to create a new
object of type IIGNI. Only one instance of the IIGNI class is allowed to
exist at any given time in the context of an application.

2. Invoke the IIGToSGAgentNotification method of the IIGNI object, in
order to actually send the notification. The IIGToSGAgentNotification
method accepts one parameter, the name of the notification to be sent,
for example:

NI.IIGToSGAgentNotification ("dataReady") ;
While performing any of the steps listed above, certain error conditions may
arise; in these cases, an exception of type IIGNIException is thrown, which can
be caught and appropriately handled by the application. Such an exception is
thrown when:

1. the notification name does not correspond to a valid
notification contained in the IIGNI XML configuration file or

2. if there were problems with the communication with SGA-
NI.

In the latter case, the notification is stored in the IIG AdelantePAQ (IIG-APAQ:
outgoing queue for the organizational or third-party information system) and the
IIG dispatcher will attempt to resend this notification.

All the events concerning the notification status are logged using the SGLogger,
described in an earlier paragraph. The SGLogger logs the event of a notification
being sent and the errors that may arise during this process. Since IIG-NI uses
SGLogger facilities, it needs to have access to a property file with the information
necessary for connecting to the SGLogListener. The location of this property file is
specified as a property within the IIG-NI property file. If the SGLogger property
file is not provided, or communication with the logger is not possible, the IIG-NI
will operate successfully but events will not be logged.

Since the IIG-NI sends the notifications to the SGA-NI, it is important for the
applications to be able to locate the SGA-NI entity, which will receive the
notifications and will arrange for the persistent storage of their corresponding
methods. The information necessary to locate the SGA-NI entity that notifications
will be sent to should be provided in a configuration file, whose location is
specified within the IIG-NI property file. Furthermore, the locations of the IIG
AdelantePAQ and SGLogger property files are provided within the IIG-NI property

file.

175

The location of the IIG-NI property file is passed as a parameter to the newIIGNI
method. The IIGNI property file contains the following three lines:

= The file name of the IIGNI configuration file.

= The property file of the IIG-APAQ.

= The property file of the SGLogger.

The property file must have the following format:

IIG.NI.confFile=<configuration file specification>
IIG.AdelantePAQ.propertyFile=<property file specification>
SGLogger.propertyFile=<property file specification>

The property file may also contain comment lines, beginning with the hash (#)

symbol. For example:

Property file for the SG IIGNI
IIG.NI.confFile=c:\\smartgov\\cfg\\IIGNI\\IIGNIConf.xml
IIG.AdelantePAQ.propertyFile=c:\\smartgov\\cfg\\adelantePAQIIG\\APAQIIGConfig. txt

SGLogger.propertyFile=c:\\smartgov\\cfg\\SGLogging\\SGLogConfigIIG. txt

5.54.2 The IIG-NI configuration file

The IIGNI configuration file is an XML document which contains the
communication information associated with a notification in XML format.
This file contains the following information for each notification:
1. The name of the notification
2. The communication information for contacting the SGA-NI listener. In the
case of the TCP/IP protocol, this information consists of the host name
that the SGA-NI listener is run on and port that the SGA-NI listener listens
to.
IIG-NI configuration files are validated against a DTD document, which must be
located in the same directory with the IIG-NI configuration file. If an installation
uses multiple IIG-NI configuration files, which are stored in different directories,
then a copy of the DTD document should be placed in each of these directories.

The DTD contents are as follows:

176

<?xml version="1.0" encoding="UTF-8"?>

<I--The DTD of the lIG-NI configuration file-->

<IELEMENT root (notificationInfo*)>

<IELEMENT notificationInfo (notificationName, comType, comData)>
<IELEMENT notificationName (#PCDATA)>

<IELEMENT comType (#PCDATA)>

<IELEMENT comData (tcplpCom)>

<IELEMENT tcplpCom (address, port)>

<IELEMENT address (#PCDATA)>

<IELEMENT port (#PCDATA)>

An IIG-NI configuration file should contain only the name and not the full path of
the DTD document. As stated above, the DTD document should reside in the
same directory with the document. An example of an IIG-NI XML configuration

file is illustrated bellow.

177

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE root SYSTEM "lIGNIConf.dtd">
<root>
<notificationInfo>
<notificationName>dataReady</notificationName>
<comType>tcplp</comType>
<comData>
<tcplpCom>
<address>hydra.mm.di.uoa.gr</address>
<port>30000</port>
</tcplpCom>
</comData>
</notificationInfo>
<notificationInfo>
<notificationName>datalLost</notificationName>
<comType>tcplp</comType>
<comData>
<tcplpCom>
<address>hydra.mm.di.uoa.gr</address>
<port>30000</port>
</tcplpCom>
</comData>
</notificationInfo>
<notificationInfo>

</root>

5.5.4.3 Extending the 1IG-NI

Currently the IIGNI uses the TCP/IP communication protocol in order to send
notifications to the SGA-NI. All the implementation details for the actual message
transfer are encapsulated into the class IIGNITcplpHandler, contained in the
gr.uoa.di.IIGNI package. This class may be modified (or copied, renamed and
modified) in order to use other communication protocols. The modifications
should be the following:
1. The communication information should be stored in an appropriate XML
file, of the general format described in the following section.
2. The class IIGNITcpIpHandler should be modified accordingly:
a. The following class attributes should be modified to reflect the new

communication information.

178

5.5.4.4

/**The communication type. */

static final String comType = "communicationType";

/**This array contains the names of the elements containing the
communication information. */

static final String[] comElements ={"propertyl", "property2", "property3"}

’

/**This variable contains the number of comInf elements, in this case 2*/

static final int comInfNum=<number of properties>;

For example, for the TCP/IP:

/**The communication type. In this case it is a constant of type
String with value tcplp*/

static final String comType = "tcpIp";

/**This array contains the names of the elements containing the

communication information. */

static final String[] comElements ={"address", "port"}

/**This variable contains the number of comInf elements, in this case 2*/

static final int comInfNum=2;

b. The sendMessage() method should be modified accordingly in order to

C.

be able to send messages with the specified protocol. The libraries
implementing the target protocol should be also imported.

The DTD corresponding to the XML configuration file should be
modified accordingly, to describe the elements required for the new
protocol.

General format of the IIG-NI configuration file

The IIG-NI XML configuration file contains the following information for each

notification:

1. The name of the notification

2. The communication information for the SGANI listener

The general format of the DTD for this document is the following:

179

<?xml version="1.0" encoding="UTF-8"?>

<!--The DTD of the [IG-NI configuration file-->

<IELEMENT root (notificationInfo*)>

<IELEMENT notificationInfo (notificationName, comType, comData)>
<IELEMENT notificationName (#PCDATA)>

<IELEMENT comType (#PCDATA)>

<IELEMENT comData (tcplpCom)>

<IELEMENT newCom (property1, property2)>

<IELEMENT property1 (#PCDATA)>

<IELEMENT property2 (#PCDATA)>

The IIGNI XML configuration file should contain the name of the DTD. The DTD
should be in the same directory with the document. An example of an IIGNI XML

configuration file is the following:

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE root SYSTEM "lIGNIConf.dtd">
<root>
<notificationInfo>
<notificationName>notification1</notificationName>
<comType>communicationType</comType>
<comData>
<newCom>
<property1>property1 value</property1>
<property2>property2 value</property2>
</newCom>
</comData>
</notificationInfo>
<notificationInfo>
<notificationName>datalLost</notificationName>
<comType>communicationType</comType>
<comData>
<newCom>
<property1>property1 value</property1>
<property2>property2 value</property2>
</newCom>
</notificationInfo>

</root>

180

5.5.4.5 The SGA Adelante PAQ property file
The Adelante PAQ property (SGA-APAQ) file is provided as a property in the IIG-

NI property file and contains the necessary information for connecting with the
database where the Adelante PAQ is stored. It contains the following five
properties:
» The user name for connecting with the database where the Adelante PAQ
is stored.
* The name of the database where the Adelante PAQ is stored.
» The password for connecting with the database where the Adelante PAQ is
stored.
= The driver for connecting with the database where the Adelante PAQ is
stored.
* The connection string for connecting with the database where the Adelante
PAQ is stored.

The property file must have the following form:

IIG.AdelantePAQ.username=<username>
IIG.AdelantePAQ.database=<database name>

IIG.AdelantePAQ.password=<password>
IIG.AdelantePAQ.driver=<driver class name>

IIG.AdelantePAQ.connectString=<connection string>

For example,

Property file for the SGA EntraPAQ
IIG.AdelantePAQ.username=smartgov

IIG.AdelantePAQ.database=smartgov
IIG.AdelantePAQ.password=sgl23!
IIG.AdelantePAQ.driver=oracle.jdbc.driver.OracleDriver

IIG.AdelantePAQ.connectString=jdbc:oracle:oci8:@

5.5.5 gr.uoa.di.dispatcherllG Package

The gr.uoa.di.dispatcherIIG package provides facilities for using the IIG
Pending Actions Queue Dispatcher (IIG-PAQUED). The IIG-PAQUED is an
autonomous program that periodically scrutinises the IIG Entra and Adelante
pending actions queues on the SmartGov service delivery platform, extracts
actions that can be carried out, and initiates their execution.

The IIG-PAQUED is started by executing the class
gr.uoa.di.dispatcherIIG.dispatcherIIG. A property file should be provided as
a parameter for the execution of the IIG-PAQUED; the contents of the property
file are described in the following paragraphs. The IIG-PAQUED periodically

181

retrieves all records from the Entra (incoming) and Adelante (outgoing) PAQ and
processes them, accordingly, executing the method described in each PAQ entry.
The periodicity of the scheduler scrutinising the PAQ will be determined by the IT
staff supporting the actual runtime environment, taking into account any
peculiarities and constraints placed by the actual working systems. The period of
invocation may be variant, ranging from minutes to days, depending upon the
processing requirements of each message class. For example, messages related
to warehouse stock updating maybe processed in 10 minutes intervals, while
messages related to certificate applications could be processed in a daily basis.
The time interval during which the IIG-PAQUED remains idle between two
successive inspections of the PAQ is specified by a property in the dispatcher
property file; this property is named IIG.dispatcher.sleepTime. If no such
property is specified, the default sleep interval is used, as set in the static
variable DEFAULT_SLEEP_TIME = 2520000 (42 minutes, expressed in
milliseconds).
While processing the PAQ entries, certain error conditions may arise; in these
cases, an exception of type dispatchellGrException is thrown.
All the events concerning the processing status are logged using the SGLogger,
described in a previous part of this document. The SGLogger logs the following
events:

1. the beginning of the processing

2. the errors that may arise during the execution.
Since the dispatcher uses logging facilities, it needs to have access to a property
file into which the details of the communication with the SGLogListener process
are specified. A special property within the dispatcher property file designates the
location of the dispatcher property file. If the SGLogger property file is not

provided, the dispatcher will operate normally, but events will not be logged.

5.5.5.1 The dispatcher property file

The dispatcher property file contains the following properties:
= the location of the IIG EntraPAQ property file
= the location of the IIG AdelantePAQ property file
* The configuration file of the IIG-NI.
= The property file of the SGLogger.
» The dispatcher sleep time interval in milliseconds

The property file must have the following form:

182

Property file for the IIG dispatcher
IIG.EntraPAQ.propertyFile=<EntraPAQ property file>

IIG.AdelantePAQ.propertyFile=<AdelantePAQ property file>
IIG.NI.confFile=<configuration file name>
SGLogger.propertyFile=<property file name>

IIG.dispatcher.sleepTime=<time in milliseconds>

For example:

Property file for the IIG dispatcher
IIG.EntraPAQ.propertyFile=c:\\smartgov\\cfg\\iig\EntraPAQConfig.txt

IIG.AdelantePAQ.propertyFile= c:\\smartgov\\cfg\\iig\adelantePAQConfig.txt
IIG.NI.confFile=c:\\smartgov\\cfg\\IIGNI\\IIGNIConf.xml
SGLogger.propertyFile=c:\\smartgov\\cfg\\SGLogging\\SGLogConfigSGA. txt
IIG.dispatcher.sleepTime=2520000

5.5.6 gr.uoa.di.dispatcher Package

The gr.uoa.di.dispatcher package provides facilities for using the SGA Pending
Actions Queue Dispatcher (SGA-PAQUED). The SGA-PAQUED is an autonomous
program that periodically scrutinises the SGA Entra and Adelante pending actions
queues on the SmartGov service delivery platform, extracts actions that can be
carried out, and initiates their execution.

The SGA-PAQUED is started by executing the class
gr.uoa.di.dispatcher.dispatcher. A property file should be provided as a
parameter for the execution of the SGA-PAQUED; the contents of the property file
are described in the following paragraphs. The SGA-PAQUED periodically retrieves
all records from the Entra (incoming) and Adelante (outgoing) PAQ and processes
them, accordingly, executing the method described in each PAQ entry.

The periodicity of the scheduler scrutinising the PAQ will be determined by the IT
staff supporting the actual runtime environment, taking into account any
peculiarities and constraints placed by the specific working systems. The period of
invocation may be variant, ranging from minutes to days, depending upon the
processing requirements of each message class. For example, messages related
to warehouse stock updating maybe processed in 10 minutes intervals, while
messages related to certificate applications could be processed in a daily basis.
The time interval during which the SGA-PAQUED remains idle between two
successive inspections of the PAQ is specified by a property in the dispatcher
property file; this property is named SGA.dispatcher.sleepTime. If no such
property is specified, the default sleep interval is used, as set in the static
variable DEFAULT_SLEEP_TIME = 2520000 (42 minutes, expressed in

milliseconds).

183

While processing the PAQ entries, certain error conditions may arise; in these
cases, an exception of type dispatcherException is thrown.
All the events concerning the processing status are logged using the SGLogger,
described in a previous part of this document. The SGLogger logs the following
events:

1. the beginning of the processing

2. the errors that may arise during the execution.
Since the dispatcher uses logging facilities, it needs to have access to a property
file into which the details of the communication with the SGLogListener process
are specified. A special property within the dispatcher property file designates the
location of the dispatcher property file. If the SGLogger property file is not
provided, the dispatcher will operate normally, but events will not be logged.
The dispatcher property file contains five properties, which are the following:

»= the location of the SGA EntraPAQ property file

»= the location of the SGA AdelantePAQ property file

= The configuration file of the SGA.

= The property file of the SGLogger.

» The dispatcher sleep time interval in milliseconds
The property file must have the following form:
Property file for the SG dispatcher
SGA.EntraPAQ.propertyFile=<EntraPAQ property file>
SGA.AdelantePAQ.propertyFile=<AdelantePAQ property file>
SGA.SGAConfFile=<configuration file name>

SGLogger.propertyFile=<property file name>

SGA.dispatcher.sleepTime=<time in milliseconds>
For example:

Property file for the SG dispatcher
SGA.EntraPAQ.propertyFile=c:\\smartgov\\cfg\\iig\EntraPAQConfig.txt
SGA.AdelantePAQ.propertyFile= c:\\smartgov\\cfg\\iig\adelantePAQConfig.txt
SGA.SGAConfFile=c:\\smartgov\\cfg\\sga\\SGAConfFile.txt
SGLogger.propertyFile=c:\\smartgov\\cfg\\SGLogging\\SGLogConfigSGA. txt
SGA.dispatcher.sleepTime=2520000

5.5.7 gr.uoa.di.SGA Package

The gr.uoa.di.sGA package provides facilities for using the SG Agent (SGA), a
class library containing the methods that allow SmartGov applications to submit
requests and retrieve results.

Applications developed within the SmartGov Framework (SGoVApps) delegate all

communications with external IT systems to the SmartGov Agent (SGA). The SGA

184

communicates with the Information Interchange Gateway (IIG) and returns
results to the calling application. A generic communication event is an event that
spans the SmartGov Platform and reaches a 3™ party system. Initiation of
communication may be initiated from the SGoVApp (SmartGov Application) or
from the IT system and each receiving party has the responsibility of checking all
necessary conditions that must hold for the event to complete.

A SGoVApp initiates communication sending requests to an SGA using the
following SGA method:

public String SGAppToSGAgentRequest (long requestId, String
serviceName, String XMLMessage, boolean realTime, boolean

persistent);

The method parameters and their associated semantics are presented in the

following table.

A unique request identifier that serves to
requestId

characterize this request

A symbolic service name that the message refers
serviceName | to. The receiving SGA is expected to forward the

encapsulated xMLMessage to the named service

A message that contains all information that the
named serviceName requires. The SGA does not
XMLMessage
interpret this message, rather it is passed as is to

the next step

Indicates whether the communication event is
happening in real-time and consequently an
immediate response is expected. When this flag is
realTime | set, the SGA does not closes the communication
channel with the SGoVApp but it immediately
forwards the message to the appropriate IIG and

returns the result to the calling SGoVApp

Indicates whether the message should persist in
case of communication errors or other abruptions
persistent | and retransmitted later. If this flag is set, message

is stored in the SGA Adelante Pending Actions

Queue.

In more detail, the application willing to send a request to the SGA should

perform the following steps:

185

5.5.71

Use the newSGAgent method of the SGAgentFactory class to create a new
object of type SGAgent. A property file should be provided as a parameter
to the newSGAgent method; the contents of the property file are described
in the following paragraphs.
Invoke the sGappToSGAgentRequest method of the SGAgent object, in
order to actually make the request. The logMessage method accepts the
parameters mentioned previously, for example:
result = myAgent.SGAppToSGAgentRequest (15,
"getPersonalInfo", "<?xml version="1.0" encoding="utf-8"
?><name>George Georgiou</name> <name>Petros Petriou</name>
<name>Eleni Hatzimixail</name> <name>Costas Tses</name>",

SGA NONREALTIME, SGA PERSISTENT) ;

The SGA property file

The SG Agent property file contains six properties, which are the following:

SGA.SGAServicesConfFile: The path for the XML file that binds the
service names that SGA can serve, with corresponding symbolic names for
IIGs and symbolic names for the communication methods to be used for
the communication between SGA and IIG.

The SGAServices configuration file is validated against a DTD document,
which must be located in the same directory with the SGAServices

configuration file. The DTD contents are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!--DTD XML Schema describing the SGAServices configuration file)-->
<IELEMENT SGAServices (service*)>

<IELEMENT service (serviceName, IGName, methodName+)>
<IELEMENT serviceName (#PCDATA)>

<IELEMENT IIGName (#PCDATA)>
<IELEMENT methodName (#PCDATA)>

An SGAServices configuration file should contain only the name and not
the full path of the DTD document. As stated above, the DTD document
should reside in the same directory with the document. An example of an

SGAServices XML configuration file is illustrated bellow:

186

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE SGAServices SYSTEM "SGAServicesConfFile.dtd">

<SGAServices>

<service>
<serviceName>getPersonallnfo</serviceName>
<lIGName>taxationllG</IIGName>
<methodName>SSLtcplp1</methodName>
<methodName>tcplp2</methodName>
<methodName>localFileStore2</methodName>

</service>

<service>
<serviceName>getPersonallnfo</serviceName>
<lIGName>communityllG</lIGName>
<methodName>tcplp1</methodName>
<methodName>localDataStore1</methodName>
<methodName>SSLtcplp1</methodName>

</service>

<service>
<serviceName>getPersonallnfo2</serviceName>
<lIGName>vatllG</IIGName>
<methodName>tcplp3</methodName>
<methodName>localDataStore3</methodName>
<methodName>localFileStore3</methodName>

</service>

<service>
<serviceName>getTaxPay</serviceName>
<lIGName>taxationllG</IIGName>
<methodName>tcplp1</methodName>
<methodName>localDataStore1</methodName>
<methodName>localFileStore1</methodName>

</service>

<service>
<serviceName>getContact</serviceName>
<lIGName>communityllG</lIGName>
<methodName>tcplp1</methodName>

</service>

</SGAServices>

information required for implementing the designated method.

SGA.SGACommMethConfFile: The path for the XML file that binds the

symbolic names for the communication methods with all the physical level

187

The scACommunicationMethods configuration file is validated against a
DTD document, which must be located in the same directory with the
SGACommunicationMethods configuration file. The DTD contents are as

follows:

<?xml version="1.0" encoding="UTF-8"?>

<!1--DTD XML Schema describing the SGACommunicationMethods configuration file)-->

<IELEMENT commMethods (method*)>

<IELEMENT method (methodName, (tcplpMethod | SSLtcplpMethod | localDataStore | localFileStore))>
<IELEMENT methodName (#PCDATA)>

<IELEMENT tcplpMethod (password, passwordEnc)>

<IELEMENT SSLtcplpMethod (keystorePath,
keystorePassword, keyPassword,
keystoreType, KeyManagerAlgorithm,
SSLVersion, supportedSuites+)>

<IELEMENT localDataStore (connectionStr)>
<IELEMENT localFileStore (fileName)>
<IELEMENT password (#PCDATA)>
<IELEMENT passwordEnc (#PCDATA)>
<IELEMENT keystorePath (#PCDATA)>
<IELEMENT keystorePassword (#PCDATA)>
<IELEMENT keyPassword (#PCDATA)>
<IELEMENT keystoreType (#PCDATA)>
<IELEMENT KeyManagerAlgorithm (#PCDATA)>
<IELEMENT SSLVersion (#PCDATA)>
<IELEMENT supportedSuites (#PCDATA)>
<IELEMENT connectionStr (#PCDATA)>
<IELEMENT fileName (#PCDATA)>

An SGACommunicationMethods configuration file should contain only the
name and not the full path of the DTD document. As stated above, the
DTD document should reside in the same directory with the document. An
example of an SGACommunicationMethods XML configuration file is

illustrated bellow:

188

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE commMethods SYSTEM "SGACommMethConfFile.dtd">
<commMethods>
<method>
<methodName>tcpIpl</methodName>
<tcpIpMethod>
<password>testl</password>
<passwordEnc>plaintextl</passwordEnc>
</tcpIpMethod>
</method>
<method>
<methodName>SSLtcpIpl</methodName>
<SSLtcpIpMethod>
<keystorePath>D:\j2sdkl.4.1 Ol\bin\trustcerts</keystorePath>
<keystorePassword>userpass</keystorePassword>
<keyPassword>userpass</keyPassword>
<keystoreType>JKS</keystoreType>
<KeyManagerAlgorithm>SunX509</KeyManagerAlgorithm>
<SSLVersion>SSLv3</SSLVersion>
<supportedSuites>SSL RSA WITH RC4 128 MD5</supportedSuites>
<supportedSuites>SSL DH anon WITH RC4 128 MD5</supportedSuites>
<supportedSuites>SSL DH anon WITH 3DES EDE CBC_SHA</supportedSuites>
<supportedSuites>SSL DH anon WITH DES CBC SHA</supportedSuites>
<supportedSuites>SSL DH anon EXPORT WITH RC4 40 MD5</supportedSuites>
<supportedSuites>SSL DH anon EXPORT WITH DES40 CBC SHA</supportedSuites>
</SSLtcpIpMethod>
</method>
<method>
<methodName>localDataStorel</methodName>
<localDataStore>
<connectionStr>smartgov:smartgov:sgl23</connectionStr>
</localDataStore>
</method>
<method>
<methodName>localFileStorel</methodName>
<localFileStore>
<fileName>c:\smartgov\filestores\sga\filel.txt</fileName>
</localFileStore>
</method>
<method>
<methodName>localFileStore2</methodName>
<localFileStore>
<fileName> c:\smartgov\filestores\sga\file2.txt</fileName>
</localFileStore>
</method>

</commMethods>

189

There are 4 types of supported communication methods between SGA and

IIG, which are presented below:

1. localFileStore method, where SGA stores the XML Message in a file.
The location and the name of the file are specified in the
SGACommunicationMethods XML configuration file with the following
declaration:

<localFileStore>
<fileName>c:\smartgov\filestores\file.txt</fileName>
</localFileStore>
The file path must be valid for the system that the SGA is run on; on Unix systems
file specification components are separated by forward slashes, whereas on

Windows based systems the separator character is the backslash, and drive
letters should be included or UNC filenames can be used.

2. localDataStore method, where SGA stores the XML Message to a
database. The information for connecting to the database (database
name, username and password) are defined in
SGACommunicationMethods XML configuration file with the following

declaration:
<localDataStore>
<connectionStr>database:username:password</connectionStr >

</localDataStore>

It is important to be noted that the connection string must consist of the name of
the database, the username and password to be used for the connection, given in

the same order as above and separated with a “:” (colon character) from each
other.

3. TCP IP method, where the SGA communicates with the IIG through
TCP/IP sockets. A password and an encrypted password are used for
security reasons, allowing for authentication to be performed by the
receiving IIG. These passwords are defined in
SGACommunicationMethods XML configuration file with the following
declaration:
<tcpIpMethod>

<password>bla</password>
<passwordEnc>blal</passwordEnc>
</tcpIpMethod >

4. TCP IP with SSL method, where the SGA communicates with the IIG
using SSL over TCP/IP. In this case several communication parameters
need to be set, such as the path where keystore is located, the
keystore password, the key password, the keystore type, the key

manager algorithm, the SSL version and the supported cipher suites.

190

All these are defined in SGACommunicationMethods XML configuration

file with the following declaration:
<SSLtcpIpMethod>

<keystorePath>D:\j2sdkl.4.1 0l\bin\trustcerts</keystorePath>

<keystorePassword>userpass</keystorePassword>
<keyPassword>userpass</keyPassword>

<keystoreType>JKS</keystoreType>

<KeyManagerAlgorithm>SunX509</KeyManagerAlgorithm>

<SSLVersion>SSLv3</SSLVersion>

<supportedSuites>SSL RSA WITH RC4 128 MD5</supportedSuites>

</SSLtcpIpMethod >

SGA.SGAIIGConfFile: The path for the XML file that binds the symbolic

name for the IIG with all physical level information required for initiating

communication with the designated IIGs.

The SGAIIG configuration file is validated against a DTD document, which
must be located in the same directory with the SGAIIG configuration file.

The DTD contents are as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!--DTD XML Schema describing the SGAIIG configuration file)-->

<!ELEMENT IIGInfo (IIG*)>

<!ELEMENT IIG (IIGName, address, port, credentials)>
<!ELEMENT IIGName (#PCDATA)>

<!ELEMENT address (#PCDATA)>

<!ELEMENT port (#PCDATA)>

<!ELEMENT credentials (#PCDATA)>

An SGAIIG configuration file should contain only the name and not the full
path of the DTD document. As stated above, the DTD document should

reside in the same directory with the document. An example of a SGAIIG

XML configuration file is illustrated bellow:

191

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE IIGInfo SYSTEM "SGAIIGConfFile.dtd">
<IIGInfo>
<IIG>
<IIGName>taxationIIG</IIGName>
<address>smartgov.mm.di.uoa.gr</address>
<port>5656</port>
<credentials>PASSWORD:passl</credentials>
</IIG>
<IIG>
<IIGName>communityIIG</IIGName>
<address>smartgov2.mm.di.uoa.gr</address>
<port>3000</port>
<credentials>PASSWORD:pass2</credentials>
</IIG>
<IIG>
<IIGName>vatIIG</IIGName>
<address>smartgov3.mm.di.uoa.gr</address>
<port>50000</port>
<credentials>PUBLICKEY:pass3</credentials>
</IIG>

</IIGInfo>

SGA.AdelantePAQConfFile: The path for the configuration file of the SGA
Adelante PAQ, which is actually the configuration file of the dispatcher.
SGA.DatabaseStoreConfFile: The path for the configuration file for the
databaseStore method. For more details see section
“gr.uoa.di.DatabaseStore package”, later in this document.

SGLogger.propertyFile: The path for the property file of the SGLogger.

The SGA property file must have the following form:

Property file for the SG dispatcher
SGA.SGAServicesConfFile=<configuration file specification>

SGA.SGACommMethConfFile=<configuration file specification >

SGA.SGAIIGConfFile=<configuration file specification >

SGA.AdelantePAQConfFile=<configuration file specification >

SGA.DatabaseStoreConfFile=<configuration file specification >

SGLogger.propertyFile=<property file specification >

For example:

192

#Property file for SGA

SGA.SGAServicesConfFile=c:\\smartgov\\conf\\sga\\SGAServicesConfFile.xml

SGA.SGACommMethConfFile=c:\\smartgov\\conf\\sga\\SGACommMethConfFile.xml

SGA.SGAIIGConfFile=c:\\smartgov\\conf\\sga\\SGAIIGConfFile.xml

SGA.AdelantePAQConfFile=c:\\smartgov\\conf\\dispatcher\\dispatchCfg.txt

SGA.DatabaseStoreConfFile=c:\\smartgov\\conf\\sga\\DatabaseStoreConfFile.txt

SGLogger.propertyFile=c:\\smartgov\\conf\\SGLogging\\SGLogCfgSGA. txt

5.5.7.2

The SGA Adelante PAQ property file

The Adelante PAQ (SGA-APAQ) property file is provided as a property in the SGA

property file and

database where the Adelante PAQ is stored.

properties:

contains the necessary information for connecting with the

It contains the following five

» The user name for connecting with the database where the Adelante PAQ

is stored.

* The name of the database where the Adelante PAQ is stored.

» The password for connecting with the database where the Adelante PAQ is

stored.

» The driver for connecting with the database where the Adelante PAQ is

stored.

= The connection string for connecting with the database where the Adelante
PAQ is stored.

The property file must have the following form:

SGA.AdelantePAQ.
SGA.AdelantePAQ.

SGA.AdelantePAQ.
SGA.AdelantePAQ.
SGA.AdelantePAQ.

For example,

Property file

SGA.AdelantePAQ.
SGA.AdelantePAQ.
SGA.AdelantePAQ.
SGA.AdelantePAQ.

SGA.AdelantePAQ

5.5.8

username=<username>
database=<database name>

password=<password>
driver=<driver class name>

connectString=<connection string>

for the SGA EntraPAQ
username=smartgov

database=smartgov
password=sgl23!

driver=oracle.jdbc.driver.OracleDriver

.connectString=jdbc:oracle:oci8:@

gr.uoa.di.SGACIlient Package

The gr.uoa.di.SGAClient package provides facilities for communicating with IIG
through TCP/IP sockets. This package is used by gr.uoa.di.SGA package, when

the communication with the IIG requires the use of TCP/IP sockets.

193

In order to use gr.uoa.di.SGAClient, an SGAClientFactory must be created
first and then through the newsGaclient method to create an sGaclient. This
method takes as input parameters:

The address of the IIG Server that listens for connections.

The port number where the IIG Server listens for connections.
Successful creation of the sGaclient signifies that the communication between
SGA and IIG has been established and both sides are ready to exchange
information. Messages from SGA can be sent to IIG Server through the
sendMessage Mmethod. This method accepts as input parameter the message that
SGA sends to IIG Server and returns the answer from IIG Server, so the
bidirectional communication is achieved.
A sample of the code required to use in order to communicate with IIG Server (or
any server listening for TCP/IP connections in a specific address and port number)

is shown below:

//create the factory
SGAClientFact = new SGAClientFactory();

//create the client

client = SGAClientFact.newSGAClient (address, port.intValue()):;

//send the xmlpacket and get the answer

answer = client.sendMessage (XMLPacket) ;

5.5.8.1 Package gr.uoa.di.SGAClient

5.5.8.1.1public class gr.uoa.di.SGAClient.SGAClientFactory

Constructors public SGAClientFactory()

Creates a new instance of SGAClientFactory

Methods public gr.uoa.di.SGAClient.SGAClient newSGAClient(
String address,
int port)

5.5.8.1.2public class gr.uoa.di.SGAClient. SGAClientException extends

java.lang.Exception

194

Constructors public SGACIlientException()

Creates a new instance of SGAClientException

public SGAClientException(

String message)
Constructs a new exception instance with a given error message.
Parameters

message - The message associated with the exception.

public SGAClientException(

Throwable nestedException)
Constructs a new exception instance that wraps another exception instance.
Parameters

The - exception to be wrapped.

5.5.8.1.3public class gr.uoa.di.SGAClient.SGACIlient

Constructors public SGACIlient(
String address,
int port)
Methods public java.lang.String sendMessage(

String message)

5.5.9 gr.uoa.di.SSLSGACIient Package

The gr.uoa.di.SSLSGAClient package provides facilities for communicating with
IIG through TCP/IP sockets over SSL. This package is used by gr.uoa.di.SGA
package, when the communication with the IIG requires the use of secure TCP/IP
sockets, in order to guarantee both the privacy and the authenticity of the
exchanged messages.
In order to use gr.uoa.di.SSLSGAClient, an SSLSGAClientFactory must be
created first and then through the newssLscGaclient method to create an
SSLSGAClient. This method takes as input parameters:

1. The address of the IIG Server that listens for connections over SSL.

2. The port number where the IIG Server listens for connections over

SSL.

Successful creation of the ssinsGaclient indicates that the communication
between SGA and IIG has been established and both sides are ready to exchange
information. Messages from SGA can be sent to IIG Server through the

sendMessage method. This method accepts as input parameters the message

195

that SGA sends to IIG Server along with information needed for verifying the
client (described in detail later in this chapter) and returns the answer from IIG
Server, completing the bidirectional communication.

A sample of the code required to use in order to communicate with IIG Server (or
any server listening for secure TCP/IP connections in a specific address and port

number) is shown below:

//create the factory
SSLSGAClientFact = new SSLSGAClientFactory();

//create the client

client = SSLSGAClientFact.newSSLSGAClient (address, port.intValue()):;

//send the xmlpacket and get the answer

answer=client.sendMessage (XMLPacket, keystorePath, keystorePassword,

keyPassword,h keystoreType,KeyManagerAlgorithm,SSLVersion, supportedSuites) ;

5.5.9.1 Package gr.uoa.di.SSLSGACIient

5.5.9.1.1public class gr.uoa.di.SSLSGACIlient.SSLSGACIlientFactory

Constructors public SSLSGACIientFactory()
Creates a new instance of SGAClientFactory
Methods public gr.uoa.di.SSLSGACIlient. SSLSGACIlient newSSLSGACIient(

String address,

int port)
Creates a new SGA client that communicates with the IIG server using the Secure Socket
Layer (SSL). The server should be running on the machine indicated by address and listening
on the port designated by port.

5.5.9.1.2public class gr.uoa.di.SSLSGAClient.SSLSGACIlientException
extends java.lang.Exception

Constructors public SSLSGACIientException()
Creates a new instance of SGAClientException

public SSLSGACIientException(String message)
Constructs a new exception instance with a given error message.
Parameters

message - The message associated with the exception.

public SSLSGACIlientException(Throwable nestedException)
Constructs a new exception instance that wraps another exception instance.
Parameters

The - exception to be wrapped.

196

5.5.9.1.3public class gr.uoa.di.SSLSGACIlient.SSLSGACIlient

Constructors public SSLSGACIient(String address, int port)
Creates a new SGA client that communicates with the IIG server using the Secure Socket
Layer (SSL). The server should be running on the machine indicated by address and listening
on the port designated by port.
Methods public java.lang.String sendMessage(
String message,
String keystorePath,
String keystorePassword,
String keyPassword,
String keystoreType,
String KeyManagerAlgorithm,
String SSLVersion,
String[] supportedSuites)
Sends the XML message specified in message to the 1IG server to which the SGA client is
connected. In addition to the XML message, the method accepts a number of parameters
related to the Secure Socket Layer and specify the path to the keystore, the keystore
password, the type of the keystore, the algorithm used by the key manager, the SSL version

and the suite of cryptographic algorithms that may be used for the transfer of this message.

5.5.10 gr.uoa.di.DatabaseStore Package

The gr.uoca.di.DatabaseStore package provides facilities for using a database
as a store in IIG for the data coming from SGoVApp. This package is used by
gr.uoa.di.SGA package, when the communication with the IIG requires data
storage to a local database (store to local data store method).
In order to use gr.uoa.di.DatabaseStore, SGA has to create first a
DatabaseStoreFactory and then through the newbDatabaseStore method to
create a DatabaseStore. This method accepts the following input parameters:

1. property file: the file path to the property file for the DatabaseStore

package. This file contains two properties as shown below:

DatabaseStore.driver=oracle.jdbc.driver.OracleDriver

DatabaseStore.connectString=jdbc:oracle:oci8:@

The first property (DatabaseStore.driver) defines which driver to be
used for the connection with the database. Since in this example an
oracle database has been used, the corresponding driver is defined by
the string oracle.jdbc.driver.OracleDriver. If another database is
used, such as SQL Server, the administrator must set this property to
the appropriate value for the communication to succeed. The second
property (DatabaseStore.connectString) should be also adjusted

accordingly to suite the specific DBMS used.

197

2. database name: the name of the database where the data will be
stored. The connection is an ODBC connection, so the database name
is the ODBC source name that refers to the desired database.

3. The username: the username to be used during the connection with
the database.

4. The password: the password to be used during the connection with the
database.

A sample of the code required to use in order to communicate with the database

and insert a record is shown below:

//create the factory

databaseStoreFact = new databaseStoreFactory();

//create the databaseStore
databaseStoreInstance=databaseStoreFact.newDatabaseStore (DatabaseStoreConfFile, Ddataba

se, DuserName, Dpassword) ;

//open the connection

theConn = databaseStoreInstance.openConnectionWithDatabase () ;

//typeCat long requestId to int requestId
reqldLong = new Long(requestId);

//insert into database the corresponding record
databaseStoreInstance.insertIntoDatabase (theConn, regIdLong.intValue (), serviceName, XMLM

essage, realTime, persistent) ;

//close the connection

databaseStoreInstance.closeConnectionToDatabase (theConn) ;

The gr.uoa.di.DatabaseStore package provides also facilities for manipulating
the specific database, such as connecting with the database, record insertion,
deletion, conditional and unconditional retrieval, retrieval of specific record fields,
and disconnecting from the database. The database is assumed to have a table
named “databaseTable” and a table named “autokeys”. The structure of these

tables is presented in Appendix A.

In the following paragraphs the methods for manipulating the database are
presented in detail, grouped by class. This API may be used for building custom
applications that manipulate the pending actions queue, e.g. an administrative
application for viewing the queue contents, deleting queue entries that are

considered outdated etc.
1. public class gr.uoa.di.DatabaseStore.databaseStoreFactory

which is the factory for databaseStore objects

198

Constructors public databaseStoreFactory()
Methods public gr.uoa.di.DatabaseStore.databaseStore newDatabaseStore(String
propertyFile, String database, String username, String

password)

Factory method that acts as a virtual constructor for

databaseStore.
Parameters

propertyFile - The databaseStore property file

database - The name of the database

username - The username to be used during the connection with the
database

password - The password to be used during the connection with the
database
Returns

gr.uoa.di.DatabaseStore.databaseStore
Throws

databaseStoreException - If the databaseStore creation failed

2. public class gr.uoa.di.DatabaseStore.databaseStore

which is the class for databaseStore objects
Constructors public databaseStore (String propFile,String database,String

username,String password)
Parameters

propFile — The databaseStore property file

database - The name of the database

username - The username to be used during the connection with the
database

password - The password to be used during the connection with the

database

199

Methods

public Connection openConnectionWithDatabase()
Opens a connection with the database using the property file, the database
name, the username and the password defined in the constructor.
Returns
Connection - The connection with the database
Throws

databaseStoreException - If the connection with the database fails

public void closeConnectionToDatabase(Connection conn)
Closes the connection conn with the database.
Parameters
conn - The opened connection with the database that must be closed
Returns
Nothing
Throws

databaseStoreException - If the disconnection with the database fails

public void insertIntoDatabase(Connection conn, int requestld, String
serviceName, String XMLPacket, boolean realTime, boolean
persistent)
Inserts into the database a record with the given values.
Parameters
conn - The opened connection with the database
requestld - The id of the request that requires the store in the database
serviceName - The name of the service that requires the store in the
database
XMLPacket — The XMLPacket from SGovApp
realTime - A flag indicating whether the service is synchronous or not
persistent — A flag indicating whether the service is persistent or not
Returns
Nothing
Throws

databaseStoreException - If the insertion into the database fails

public ResultSet retrieveFromDatabase(Connection conn, int
databaseTableld)
Retrieve from the database a record with primary key databaseTableld.
Parameters

conn - The opened connection with the database

databaseTableld - The id of the record that must be retrieved
Returns

ResultSet - The record with primary key databaseTableld
Throws

—dﬁbabaseSfefeBceeﬁHeﬁ—}the—refﬁara—Freﬁrbhe—dﬁtabafgafails

public ResultSet retrieveAllFromDatabase(Connection conn)

3. public class gr.uoa.di.DatabaseStore.databaseStoreException
extends java.lang.Exception
This class models the exceptions thrown by the databaseStore.
Constructors public databaseStoreException()

Creates a new instance of dispatcherIIGException

public databaseStoreException (String message)
Constructs a new exception instance with a given error message.
Parameters

message - The message associated with the exception.

public databaseStoreException (Throwable nestedException)
Constructs a new exception instance that wraps another exception
instance.

Parameters

nestedException The exception to be wrapped.

5.5.11 gr.uoa.di.llGServer Package

The gr.uoca.di.IIGServer package provides facilities for intercepting and
handling TCP/IP communication, in the form of messages sent by the SGA. The
IIG Sever is an autonomous program that continuously runs on the Information
Interchange Gateway and listens for requests for a specific service. The IIG
Server responds to these requests and, if necessary, forwards the results to the
calling service.

The IIG Server performs the following actions:

1. Listens to a specified port for incoming requests.

2. Upon receiving a request, starts a new thread that forwards the handle of
the request to IIGMyP through the gr.uca.di.11cMyP package, that it will
be described in detail later in this chapter.

Gets the result of the request from IIGMyP.

4. Sends the result back to the calling service.

The IIG Server is started by executing the class IIGServer, providing as
parameter the port to which the IIG Server will listen and the location of the

IIGMyP property file, described in the following paragraphs.

java gr.uoa.di.IIGServer.IIGServer <port number> <IIGMyP property file>

For example,

java gr.uoa.di.IIGServer.IIGServer 7878 c:\smartgov\conf\iig\iigMyPconfig.txt

201

The IIG Server creates a server socket, and listens to the given port, for incoming
requests. These requests are received in the form of text messages. Upon
receiving a request, the IIG Server starts a new thread that will serve the request
calling the gr.uoca.di.I1IGMyP package. The IIG Server gets the answer from
IIGMyP and sends the answer back to SGA.
The IIG Server uses the SGLogger, which is described in another part of this
document, to log information on the following events:

1. receive a request from SGA

2. failure to start the thread

3. failure while executing the thread
Since IIG Server uses SGLogger facilities, it needs to have access to a property
file with the information necessary for connecting to the SGLoglListener. The
location of this property file is specified as a property within the IIGMyP property
file.

5.5.12 gr.uoa.di.SSLIIGServer Package

The gr.uoa.di.SSLIIGServer package provides facilities for intercepting and
handling TCP/IP communication over SSL, in the form of messages sent by the
SGA. The SSLIIG Sever is an autonomous program that continuously runs on the
Information Interchange Gateway and listens for requests for a specific service.
The SSLIIG Server responds to these requests and, if necessary, forwards the
results to the calling service.

The SSLIIG Server performs the following actions:

1. Listens to a specified port for incoming requests.

2. Upon receiving a request, starts a new thread that forwards the handle of
the request to IIGMyP through the gr.uca.di.116MyP package, that it will
be described in detail later in this chapter.

Gets the result of the request from IIGMyP.

4. Sends the result back to the calling service.

The SSLIIG Server is started by executing the class SSLIIGServer, providing as
parameter the location of the SSL XML configuration file and the location of the

IIGMyP property file, described in the following paragraphs.
java gr.uoa.di.SSLIIGServer.SSLIIGServer <SSL XML configuration file> <IIGMyP property file>
For example,

java gr.uoa.di.SSLIIGServer.SSLIIGServer c:\SG\SSLPropertyFile.xml c:\SG\IIGMyPPropertyFile.txt
The port number to which the SSLIIG Server will listen for connections is defined

in the SSL XML configuration file. The SSL XML configuration file contains except

202

from the information about the port, all the other necessary information to obtain
a secure connection over the SSL layer, i.e.:

1. Port: the port number to which the SSLIIG Server will listen for
connections.

KeystorePath: the file path for the keystore file.
KeystorePassword: the password for the keystore file.

4. KeyPassword: the password for the keys. All keys in the keystore should
have the same password, not necessarily equal to the password of the
keystore.

KeystoreType: the type for the keystore.
6. SSLVersion: the version of the SSL protocol supported.
SupportedSuites: the supported suites for the SSL communication
The SSL XML configuration file is validated against a DTD document, which must
be located in the same directory with the SSL XML configuration file. The DTD

contents are as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!1--DTD describing the SSL XML document for SSLIIGServer-->
<IELEMENT serverinfo (port, keystorePath, keystorePassword, keyPassword, keystoreType,
KeyManagerAlgorithm, SSLVersion, supportedSuites+)>
<IELEMENT port (#PCDATA)>

<IELEMENT keystorePath (#PCDATA)>

<IELEMENT keystorePassword (#PCDATA)>

<IELEMENT keyPassword (#PCDATA)>

<IELEMENT keystoreType (#PCDATA)>

<IELEMENT KeyManagerAlgorithm (#PCDATA)>

<IELEMENT SSLVersion (#PCDATA)>

<IELEMENT supportedSuites (#PCDATA)>

An SSL XML configuration file should contain only the name and not the full path
of the DTD document. As stated above, the DTD document should reside in the
same directory with the document. An example of a SSL XML configuration file is

illustrated bellow:

203

<?xml version="1.0" encoding="utf-8"?>

<IDOCTYPE serverinfo SYSTEM "serverinfo.dtd">

<serverinfo>
<port>5858</port>
<keystorePath>D:\j2sdk1.4.1_01\bin\user.keystore</keystorePath>
<keystorePassword>userpass</keystorePassword>
<keyPassword>userpass</keyPassword>
<keystoreType>JKS</keystoreType>
<KeyManagerAlgorithm>SunX509</KeyManagerAlgorithm>
<SSLVersion>SSLv3</SSLVersion>
<supportedSuites>SSL_RSA_WITH_RC4_128 MD5</supportedSuites>
<supportedSuites>SSL_DH_anon_WITH_RC4_128 MD5</supportedSuites>
<supportedSuites>SSL_DH_anon_WITH_3DES_EDE_CBC_SHA</supportedSuites>
<supportedSuites>SSL_DH_anon_WITH_DES_CBC_SHA</supportedSuites>
<supportedSuites>SSL_DH_anon_EXPORT_WITH_RC4_40_MD5</supportedSuites>
<supportedSuites>SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA</supportedSuites>

</serverinfo>

The SSLIIG Server creates a server socket, and listens to the given port, for
incoming requests. These requests are received in the form of text messages.
Upon receiving a request, the SSLIIG Server starts a new thread that will serve
the request calling the gr.uoa.di.IIGMyP package. The SSLIIG Server gets the
answer from IIGMyP and sends the answer back to SGA. It is important to note
that in order for the SSLIIG Server to understand the end of the message
received from SGA, the message must end with the string “</xMLPacket>" in a
separate line.
The SSLIIG Server uses the SGLogger, which is described in another part of this
document, to log information on the following events:

1. receive a request from SGA

2. failure to start the thread

3. failure while executing the thread
Since SSLIIG Server uses SGLogger facilities, it needs to have access to a
property file with the information necessary for connecting to the SGLogListener.
The location of this property file is specified as a property within the IIGMyP
property file.

5.5.13 Prerequisites for using SSL communication

The SSL communications library can be used to protect the data secrecy, integrity
and the authenticity of peer parties. More specifically, the following features are

provided:

204

1. data secrecy: even if an eavesdropper captures the data, these are in an
incomprehensible and thus useless form.

2. data integrity: if a malicious party attempts to inject data into the
communication channel or alter the data exchanged, the tampering will be
detected and rejected by the communication layer.

3. peer party authenticity: certain encryption algorithms (or ciphers) are able to
guarantee the identity of the communicating parties. In particular, all ciphers
except the ones whose names include the none literal are able to
guarantee peer party authenticity. This is accomplished by either a prior
exchange of keys and certificates or by relying on a trusted third party to
testify for the peer party identity (a certification authority).

Organisations not willing to use a third party for the purpose of peer

authentication may generate their own keys and certificates and install them. For

the purposes of certificate creation, the command batches mkcerts (for Unix
environments) and mkcerts.bat (for Windows environments) are provided.

System administrators can edit these scripts to modify the appropriate

parameters (in particular, the entity distinguished name should be modified; it is

also recommended -though not mandatory- that the passwords are modified too)
and then execute them. Execution of these command batches will generate two
files, namely cert-keystore and client-keystore. The former file should be
installed on the server running the SSL IIG Server, and the keystore element of
the SSL XML configuration file should be edited to point to the file. The latter
should be installed on the clients that should access the server, and the
keystorePath element of the relevant ssLtcpIpMethod declarations in file SGA
communication methods configuration file should be edited to point to this file.

Finally, both in the SSL XML configuration file and in the sSSLtcpIpMethod

declarations in file SGA communication methods configuration file, the encryption

algorithm designation sSL DHE DSS WITH DES CBC_ SHA should be included in the
supported cipher suites, since the generated keys are suitable only for this cipher.

The generation of suitable keys and certificates for use with other ciphers can be

performed by editing the command batches and adding the appropriate options to

the invocations of the keytool command.

5.5.14 gr.uoa.di.llGMyP package

The gr.uoa.di.IIGMyP package provides facilities for processing the SGA
requests received from either IIG Server or SSLIIG Server. This package is used

by gr.uoca.di.IIGServer Or gr.uoca.di.SSLIIGServer package The IIGMyP

205

accepts these requests from IIG Server or SSLIIG Server, processes them and
forwards the results to the corresponding IIG Server or SSLIIG Server.
More specific the IIGMyp performs the following actions:

1. Receives a request from IIG Server or SSLIIG Server. The request is
assumed to be in XML format.

2. Parses the XML request and validates it against the XML schema used for
this message exchange.

3. The symbolic service name is checked to verify that this IIGMyP supports
the service specified.

4. The security credentials of SGA are checked to verify that the SGA that
sends the request for the service name is qualified to do so.

5. If the service requested is synchronous, the IIGMyP serves the request.
For this purpose the IIGMyP looks up in the IIG MyP XML communication
file the information concerning the method associated with the request.
The options available for serving a request are:

execution of a Java method.

a
b. execution of an OS-level program.

o

storage of the request to a database
d. storage of the request to an OS file.

6. Attempts to serve the request using the designated methods.

Sends the result of the method back to the calling IIG Server or SSLIIG
Server.

8. If the service requested is asynchronous, the IIGMyP stores the request in
EntraPAQIIG and delegates the responsibility of request handling to the
dispatcher. This approach frees the communication channel and offloads
the IIG, facilitating the processing of urgent, i.e. real-time, messages.
Another advantage of this approach is that further processing of messages
in the PAQ can be aligned with local IT system policies.

In order to verify that the originator of the request is valid, IIGMyP looks up in
the IIGSecurityFile the information needed for the verification. The file path for
IIGSecurityFile is defined in IIGMyP property file, via property
IIGMyP.IIGSecurityFile.

The IIGSecurityFile XML file is validated against a DTD document, which must be
located in the same directory with the IIGSecurityFile XML file. The DTD contents

are as follows:

206

<?xml version="1.0" encoding="UTF-8"?>

<IELEMENT IIGSecurity (1IGCredentials*)>

<IELEMENT lIGCredentials (serviceName, credentiallnfo+)>
<IELEMENT serviceName (#PCDATA)>

<IELEMENT credentiallnfo (IPAddress, credentials)>
<IELEMENT IPAddress (#PCDATA)>

<IELEMENT credentials (#PCDATA)>

An IIGSecurityFile XML file should contain only the name and not the full path of
the DTD document. As stated above, the DTD document should reside in the
same directory with the document. An example of a IIGSecurityFile XML file is

illustrated bellow:

207

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE lIGSecurity SYSTEM "lIGSecurity.dtd">
<lIGSecurity>
<lIGCredentials>
<serviceName>getTaxPay</serviceName>
<credentiallnfo>
<IPAddress>10.10.10.2</IPAddress>
<credentials>PUBLICKEY:key1</credentials>
</credentiallnfo>
<credentiallnfo>
<IPAddress>10.10.10.3</IPAddress>
<credentials>PASSWORD:pass2</credentials>
</credentiallnfo>
</lIGCredentials>
<lIGCredentials>
<serviceName>getContact</serviceName>
<credentiallnfo>
<IPAddress>10.10.10.4</IPAddress>
<credentials>PUBLICKEY:key3</credentials>
</credentiallnfo>
<credentiallnfo>
<IPAddress>10.10.10.5</IPAddress>
<credentials>PASSWORD:pass4</credentials>
</credentiallnfo>
</lIGCredentials>
<lIGCredentials>
<serviceName>getPersonallnfo</serviceName>
<credentiallnfo>
<IPAddress>10.10.10.6</IPAddress>
<credentials>PUBLICKEY:key5</credentials>
</credentiallnfo>
<credentiallnfo>
<IPAddress>10.10.10.7</IPAddress>
<credentials>PASSWORD:pass6</credentials>
</credentiallnfo>
<credentiallnfo>
<IPAddress>10.10.10.8</IPAddress>
<credentials>PASSWORD:pass7</credentials>
</credentiallnfo>
</lIGCredentials>
</1IGSecurity>

For each service available through a specific IIG the corresponding IIGSecurityFile

XML file contains the following information:

208

1.

IPAddress: the IP address of the SGA that is allowed to send a request for
the specific service to the specific IIG Server or SSLIIG Server.

Credentials: the SGA credentials that verify the authentication of the SGA.
These credentials can have the form either of a password or of a public
key. For the first case the credentials must be defined by the string
“"PASSWORD:SGApassword”. It is important to be noted that the keyword
“PASSWORD” and the value of the password must be given in the same
order and separated with “:” from each other. For the verification of the
SGA, a string comparison between the password given in IIGSecurityFile
XML file and the password received from SGA is performed. If both
passwords are identical the verification of SGA is successful. When
authentication is to be performed by means of a public key, the credentials
must be specified using a string of the format "PUBLICKEY:SGApublickey”.
It is important to be noted that the public key specification should follow
the format designated above i.e. the keyword “"PUBLICKEY"” followed by a
colon and the actual value of the public key, in that order. No algorithm is
currently provided authenticating an SGA by means of a public key;
however, the method checkPublKeyData (String publikKeyl, String
publikKey2) within the class gr.uoca.di.IIGMyP.checkPublicKey iS
provided as a placeholder. Administrators may provide a suitable
implementation for comparing two public keys, achieving thus the desired

authentication scheme.

For a specific service, it is possible to specify multiple credentials for

authenticating a single IP address. In such a case, it the credentials presented by

the SGA should match at least one of the credentials designated in the

configuration file, for the authentication to be considered successful.

The IIGMyP uses the SGLogger, which is described in another part of this

document, to log information on the following events:

1.
2.
3.

4,
5.
6.

receiving of a request, either from an IIG Server or an SSLIIG Server.
success or failure of the XML message validation.

success or failure of the verification whether the service specified in the
XML message is supported by the IIGMyP.

success or failure of the SGA authentication process.

success or failure of the execution of the requested service.

end of the request processing.

Since IIGMyP uses SGLogger facilities, it needs to have access to a property file

with the information necessary for connecting to the SGLogListener. The location

209

of this property file is specified as a property within the IIGMyP property file,

described in the next paragraph.

5.5.14.1 The IIGMyP property file

The IIGMyP property file is used by either gr.uoa.di.IIGServer or
gr.uoa.di.SSLIIGServer package when the IIG/SSLIIG Server is started and
contains seven properties, which are the following:

1. IIGMyP.IIGServicesConfFile: The path for the XML file that binds the
service names that IIG can serve, with corresponding a SEP name and a
list of methods to be used for the communication between IIG and SEP.
The IIGServices configuration file is validated against a DTD document,
which must be located in the same directory with the IIGServices

configuration file. The DTD contents are as follows:

<?xml version="1.0" encoding="UTF-8"?>

<I--DTD describing the 1IG Services Configuration XML document-->
<IELEMENT IIGServices (service*)>

<IELEMENT service (serviceName, SEPName, methodName+)>
<IELEMENT serviceName (#PCDATA)>

<IELEMENT SEPName (#PCDATA)>

<IELEMENT methodName (#PCDATA)>

An IIGServices configuration file should contain only the name and not the
full path of the DTD document. As stated above, the DTD document should
reside in the same directory with the document. An example of an

IIGServices XML configuration file is illustrated bellow:

210

2.

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE IIGServices SYSTEM "lIGServicesConfFile.dtd">
<lIGServices>
<service>
<serviceName>getPersonallnfo</serviceName>
<SEPName>taxationllG</SEPName>
<methodName>localDataStore1</methodName>
</service>
<service>
<serviceName>getPersonallnfo1</serviceName>
<SEPName>communityllG</SEPName>
<methodName>executeJavaProcedure2</methodName>
<methodName>localFileStore2</methodName>
<methodName>executeCommand1</methodName>
<methodName>localFileStore1</methodName>
<methodName>localDataStore1</methodName>
<methodName>executeJavaProcedure1</methodName>
</service>
<service>
<serviceName>getPersonallnfo1</serviceName>
<SEPName>vatlIG</SEPName>
<methodName>executeCommand3</methodName>
<methodName>localDataStore3</methodName>
<methodName>localFileStore3</methodName>
</service>
<service>
<serviceName>getContact</serviceName>
<SEPName>communityllG</SEPName>
<methodName>executeCommand4</methodName>
</service>

</lIGServices>

IIGMyP.IIGCommMethConfFile: The path for the XML file that binds the
symbolic name for each method used to serve requests with all the
physical level information required for implementing the designated
method.

The IIGCommMethConfFile configuration file is validated against a DTD
document, which must be located in the same directory with the

IIGCommMethConfFile configuration file. The DTD contents are as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!--DTD describing the lIGCommunicationMethods XML document-->
<IELEMENT commMethods (method*)>

<IELEMENT method (methodName, (javaProcedure | execCommand | localDataStore | localFileStore))>
<IELEMENT methodName (#PCDATA)>

<IELEMENT javaProcedure (objectPath, className, procedureName)>
<IELEMENT execCommand (info)>

<IELEMENT localDataStore (connectionStr)>

<IELEMENT localFileStore (fileName)>

<IELEMENT objectPath (#PCDATA)>

<IELEMENT className (#PCDATA)>

<IELEMENT procedureName (#PCDATA)>

<IELEMENT info (#PCDATA)>

<IELEMENT connectionStr (#PCDATA)>

<IELEMENT fileName (#PCDATA)>

An IIGCommunicationMethods configuration file should contain only the
name and not the full path of the DTD document. As stated above, the
DTD document should reside in the same directory with the document. An
example of an IIGCommunicationMethods XML configuration file is

illustrated bellow:

212

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE commMethods SYSTEM "llIGCommMethConfFile.dtd">
<commMethods>
<method>
<methodName>executeJavaProcedure1</methodName>

<javaProcedure>

</javaProcedure>

</method>

<method>
<methodName>executeCommand1</methodName>

<execCommand>

</execCommand>

</method>

<method>
<methodName>localDataStore1</methodName>

<localDataStore>

</localDataStore>

</method>

<method>
<methodName>localFileStore1</methodName>

<localFileStore>

</localFileStore>
</method>

</commMethods>

<objectPath>c:\\smartgov\SEPs\tests.jar</objectPath>
<className>gr.uoa.di.testJavaProcedure</className>

<procedureName>testingMethod</procedureName>

<info>test3</info>

<connectionStr>smartgov:smartgov:sg123</connectionStr>

<fileName>c:\smartgov\filestores\file 1.txt</fileName>

There are 4 types of supported methods that IIG may use to serve a

request, which are presented below:

localFileStore method, where the IIG stores the XML Message in
a file, whose location and filename is specified in the
IIGCommunicationMethods XML configuration file by means of a

localFileStore element, e.g.:
<localFileStore>
<fileName>c:\smartgov\filestores\file.txt</fileName>

</localFileStore>
localDataStore method, where the IIG stores the XML Message in
a database. The information for connecting to the database, i.e. the

database name, username and password are defined in the

213

3.

IIGCommunicationMethods XML configuration file by means of a

localDataStore element e.g.:
<localDataStore>
<connectionStr>database:username:password</connectionStr >

</localDataStore>

It is important to be noted that the connection string must follow the
format designated above, i.e. list the database name, user name and
password, in that order, separating successive elements using the
colon (:) character.

execCommand method, where the IIG executes an operating
system-level command. The actual command to be executed is
specified in the info element within the IIGCommunicationMethods

XML configuration file, e.g.:
<execCommand>
<info>command2</info>

</execCommand>
Service programmers should note that when an external command
is executed, the SGA receives a message indicating SUCCESS, but
it has also the contents of the output and error file created during
the execution. So, if the execution of the command has failed, this
will be reported in the error file. Therefore, the SGA has to check
what the error file contains, in order to check the success of the
execution.
javaProcedure method, where the IIG executes a Java
procedure. The actual java procedure to be executed is specified by
means of a procedureName element within the
IIGCommunicationMethods XML configuration file, e.g.:
<javaProcedure>
<objectPath>gr.uoa.di.testJavaProcedure</objectPath>
<className>gr.uoa.di.testJavaProcedure</className>
<procedureName>testingMethod</procedureName>

</javaProcedure>

IIGMyP.IIGSEPConfFile: The path for the XML file that binds the symbolic
name for the SEP with all physical level information required for initiating
executing the specified SEP.

The IIGSEPG configuration file is validated against a DTD document, which
must be located in the same directory with the IIGSEP configuration file.

The DTD contents are as follows:

214

<?xml version="1.0" encoding="UTF-8"?>

<!--DTD describing the SG 1IG SEP Configuration File-->
<IELEMENT SEPInfo (SEP*)>

<IELEMENT SEP (SEPName, commandPath, workingDirectory, parameters, inputFile, outputFile,
errorFile, envVariable*)>

<IELEMENT SEPName (#PCDATA)>

<IELEMENT commandPath (#PCDATA)>

<IELEMENT workingDirectory (#PCDATA)>

<IELEMENT parameters (#PCDATA)>

<IELEMENT inputFile (#PCDATA)>

<IELEMENT outputFile (#PCDATA)>

<IELEMENT errorFile (#PCDATA)>

<IELEMENT envVariable (envVariableName, envVariableValue)>
<IELEMENT envVariableName (#PCDATA)>

<IELEMENT envVariableValue (#PCDATA)>

An IIGSEP configuration file should contain only the name and not the full
path of the DTD document. As stated above, the DTD document should
reside in the same directory with the document. An example of an IIGSEP

XML configuration file is illustrated bellow:

215

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE SEPInfo SYSTEM "lIIGSEPConfFile.dtd">
<SEPInfo>
<SEP>
<SEPName>taxationllG</SEPName>
<commandPath>java taxationllG</commandPath>
<workingDirectory>Z:\smartgov\wp\wp06\api\sga</workingDirectory>
<parameters>-cp tax.jar</parameters>
<inputFile>C:\taxation\input.txt</inputFile>
<outputFile>C:\taxation\output.txt </outputFile>
<errorFile> C:\taxation\error.txt</errorFile>
</SEP>
<SEP>
<SEPName>vatlIG</SEPName>
<commandPath>vatliIG</commandPath>
<workingDirectory> Z:\smartgov\wp\wp06\api\sga</workingDirectory>
<parameters> </parameters>
<inputFile> </inputFile>
<outputFile> C:\VAT\output.txt </outputFile>
<errorFile> C:\VAT\error.txt </errorFile>
<envVariable>
<envVariableName>EnvVariable1</envVariableName>
<envVariableValue>EnvVariableValue1</envVariableValue>
</envVariable>
<envVariable>
<envVariableName>EnvVariable2</envVariableName>
<envVariableValue>EnvVariableValue2</envVariableValue>
</envVariable>
</SEP>
</SEPInfo>

IIGMyP.IIGSecurityFile: The path for the IIGSecurity XML file that is
used for the SGA verification and has been described in detail above.
IIGMyP.EntraPAQConfFile: The path for the configuration file of the IIG-
EPAQ. For more details see the section “gr.uoa.di.dispatcherlIG Package”.
IIGMyP.SEPDatabaseStoreConfFile, The path for the configuration file of
the SEP Data Store. For more details see the section
“gr.uoa.di.SEPDatabaseStore Package”.

IIGMyP.Logger.propertyFile: The path for the property file of the
SGLogger.

IIGMyP.XMLPacketPath: The containing folder for the file XMLPacket.dtd,
specified using the URI notation. If the file is located on the file system,
rather than a web server, the prefix file:/// should be pre-pended to

the folder path; additionally, the forward slash (/) should be always used

216

as the path component separator, rather than the back slash (\), even in
Windows-based installations.

Thegeneric format for the IIG Server property file is as follows:
#Property file for IIG Server
IIGMyP.IIGServicesConfFile=<configuration file specification>
IIGMyP.IIGCommMethConfFile=<configuration file specification>
IIGMyP.IIGSEPConfFile=<configuration file specification>
IIGMyP.IIGSecurityFile=<configuration file specification>
IIGMyP.EntraPAQConfFile=<configuration file specification>
IIGMyP.SEPDatabaseStoreConfFile==<configuration file specification>
IIGMyP.Logger.propertyFile=<property file specification>

IIGMyP.XMLPacketPath=<containing folder for XMLPacket.dtd in URI notation>

For example:

#Property file for IIG Server

IIGMyP.IIGServicesConfFile=c:\\smartgov\\conf\\IIG\\IIGSrvCfg.xml
IIGMyP.IIGCommMethConfFile=c:\\smartgov\\conf\\IIG\\IIGCommMethCfg.xml

IIGMyP.IIGSEPConfFile=c:\\smartgov\\conf\\IIG\\IIGSEPCfg.xml
IIGMyP.IIGSecurityFile=c:\\smartgov\\conf\\IIG\\IIGSecurity.xml
IIGMyP.EntraPAQConfFile=c:\\smartgov\\cfg\\IIG\\EntraPAQIIGCfg. txt
IIGMyP.SEPDatabaseStoreConfFile=c:\\smartgov\\conf\\IIG\\SEPDbCfg.txt
IIGMyP.Logger.propertyFile=c:\\smartgov\\conf\\IIG\\SGLogCfgIIG. txt
IIGMyP.XMLPacketPath=file:///C:/smartgov/conf/IIG

During the processing of the request, IIGMyP tries to execute all the available
methods that are defined for the specific service in the XML configuration files, as
stated above. The success of only one type of the methods (localFileStore,
localDataStore, execCommand, javaProcedure) is enough for the request
execution to be considered successful. Errors that may occur in each of the
executed methods are being captured and, in the case that all methods fail, the
associated error descriptions are sent back as reply to the calling IIG Server or
SSLIIG Server, which in turn forwards this reply to the requesting SGA. Thus, the
SGA can examine the reply to determine the reason for the failure, and possibly
take appropriate remedial activities. In case that at least one method succeeds,
IIGMyP sends back a success message to the calling IIG Server or SSLIIG Server.
Special care should be taken in the handling of replies when an operating system-
level program is executed. In this case, it is not possible to determine whether
the external program has succeeded or failed, thus the IIGMyP sends back a reply
indicating successful execution, but additionally arranges so that the normal
output and error messages emitted by the program to be bundled within the

message. The calling SGA should examine these contents to determine whether

217

the external program execution was actually successful, taking into account the

semantics and expected behaviour of the executed program.

5.5.14.2 The IIG Entra PAQ property file
The IIG EntraPAQ (IIG-EPAQ) property file is provided as a property in the IIG-

MyP property file and contains the necessary information for connecting with the
database where the Entra PAQ is stored. It contains the following four properties:
» The user name for connecting with the database where the Entra PAQ is
stored.
» The name of the database where the Entra PAQ is stored.
» The password for connecting with the database where the Entra PAQ is
stored.
= The driver for connecting with the database where the Entra PAQ is stored.
» The connection string for connecting with the database where the Entra
PAQ is stored.

The property file must have the following form:

IIG.EntraPAQ.username=<username>
IIG.EntraPAQ.database=<database name>

IIG.EntraPAQ.password=<password>

ITIG.EntraPAQ.driver=<driver class name>

IIG.EntraPAQ.connectString=<connection string>

For example

Property file for the SGA EntraPAQ
IIG.EntraPAQ.username=smartgov
IIG.EntraPAQ.database=smartgov
IIG.EntraPAQ.password=sgl23
IIG.EntraPAQ.driver=oracle.jdbc.driver.OracleDriver

IIG.EntraPAQ.connectString=jdbc:oracle:oci8:(

5.5.15 gr.uoa.di.SEPDatabaseStore Package

The gr.uoa.di.SEPDatabaseStore package provides facilities for servicing
incoming requests by means of storing the incoming XML packet within a
database. This package is used by gr.uoca.di.IIGMyP package, when the service
method designated for a service is that of storing data to a local database
(store_to_local_data_store method).

In order to use the facilities provided by the gr.uoca.di.SEPDatabaseStore

package, the IIGMyP creates first a SEPDatabaseStoreFactory object and then

218

employs the newSEPDatabaseStore method to create a SEPDatabaseStore
object. The newSEPDatabaseStore method accepts the following input
parameters:

1. configuration file i.e. file path to the configuration file for the
SEPatabaseStore package. The generic format for this file is as
follows:

SEP.DatabaseStore.driver=<driver class name>
SEP.DatabaseStore.connectString=<connection string>
For example,

Property file for the SEPDatabaseStore

DatabaseStore.driver=oracle.jdbc.driver.OracleDriver

DatabaseStore.connectString=jdbc:oracle:ocis

The first property (sep.patabasestore.driver) defines which driver to be
used for the connection with the database. Since in this example an
Oracle database has been used, the corresponding driver is defined by
the string oracle.jdbc.driver.OracleDriver. If another database is
used, such as SQL Server, the administrator must set this property to
the appropriate value for the communication to succeed. The second
property (SEP.DatabaseStore.connectString) should be also
adjusted accordingly to suite the specific DBMS used.

2. database name, which is the name of the database where the data will
be stored. The connection is an ODBC connection, so the database
name is the ODBC source name that refers to the desired database.

3. The username: the username to be used during the connection with
the database.

4. The password: the password to be used during the connection with the
database.

A sample of the code required to use in order to communicate with the database

and insert a record is shown below:

219

//create the factory
SEPDbStoreFact = new SEPDatabaseStoreFactory();

//create the databaseStore
SEPDatabaseStoreInstance = SEPDbStoreFact.newSEPDatabaseStore (

SEPDatabaseStoreConfFile, Ddatabase, DuserName, Dpassword);

//open the connection

theConn = SEPDatabaseStorelInstance.openConnectionWithDatabase();

//insert into database the corresponding record
SEPDatabaseStoreInstance.insertIntoDatabase (theConn, serviceName, decodedXMLMessage,

realTime) ;

//close the connection

SEPDatabaseStoreInstance.closeConnectionToDatabase (theConn) ;

The gr.uoa.di.SEPDatabaseStore package also provides facilities for
manipulating the specific database, such as connecting to the database, inserting
records, deleting records, retrieving all records, retrieving a specific record,
retrieving specific fields from a record, and finally disconnecting from the
database. The database is assumed to have a table named “SEPDatabaseTable”
and a table named “autokeys”. The structure of these tables is presented in
Appendix A.

The facilities provided by the package may be used to write custom, specialised
tools for managing the entries stored in the database, e.g. for reading the records
and taking the relevant actions. To this end, the API provided by the

gr.uoa.di.SEPDatabaseStore is documented in the following paragraphs.

5.5.15.1 Package gr.uoa.di.SEPDatabaseStore

5.5.15.1.1 public class
gr.uoa.di.SEPDatabaseStore.SEPDatabaseStoreFactory

Constructors public SEPDatabaseStoreFactory()
Creates a new instance of DatabaseStoreFactory

220

Methods

public gr.uoa.di.SEPDatabaseStore.SEPDatabaseStore newSEPDatabaseStore(

String propFile,
String database,
String username,
String password)
Factory method that acts as a virtual costructor for adelantePAQ.

Parameters

propFile - The property file containing necessary parameters for adelantePAQ

Throws

adelantePAQException - If the adelantePAQ creation failed

5.5.15.1.2 public

gr.uoa.di.SEPDatabaseStore.SEPDatabaseStoreException

extends java.lang.Exception

Constructors

public SEPDatabaseStoreException()

Creates a new instance of DatabaseStoreException

public SEPDatabaseStoreException(String message)
Constructs a new exception instance with a given error message.
Parameters

message - The message associated with the exception.

public SEPDatabaseStoreException(Throwable nestedException)

class

Constructs a new exception instance that wraps another exception instance.

Parameters

The - exception to be wrapped.

5.5.15.1.3 public class gr.uoa.di.SEPDatabaseStore.SEPDatabaseStore

Constructors

Methods

public SEPDatabaseStore(
String propfFile,
String Ddatabase,
String Dusername,
String Dpassword)
Creates a new instance of SEPDatabaseStore.

public java.sql.Connection openConnectionWithDatabase()

Opens a connection to the database specified by the parameters passed to the constructor.

public void insertintoDatabase(
Connection conn,
String serviceName,
String XMLMessage,
boolean realTime)

Inserts into the database a new record, mimicking the

execution

221

via

a

store_to_local_data_store method of a request for “serviceName”, having the XMLMessage

as parameter and its real time flag set to realTime.

public java.sql.ResultSet retrieveFromDatabase(

Connection conn,

int SEPdatabaseTableld)
This method retrieves from the database the record whose identifier matches the parameter
SEPdatabaseTableld.

public java.sql.ResultSet retrieveAllFromDatabase(Connection conn)

This method retrieves from the database all the records.

public int getSEPDatabaseTableld(ResultSet resultRecord)
This method returns the SEPDatabaseTableld from a specific result set.

public java.lang.String getServiceName(ResultSet resultRecord)

This method returns the service name from a specific result set.

public java.lang.String getXMLMessage(ResultSet resultRecord)
This method returns the XML message from a specific result set.

public int getRealTime(ResultSet resultRecord)

This method returns the real time flag from a specific result set.

public java.lang.String getTimeStamp(ResultSet resultRecord)
This method returns the timestamp from a specific result set. This is equal to the time that the
record was inserted in the database.

public void deleteFromDatabase(Connection conn, int SEPdatabaseTableld)
This method deletes from the database the record whose identifier matches the parameter
SEPdatabaseTableld.

public void closeConnectionToDatabase(Connection conn)

Closes the connection to the database.

222

5.6 Database objects documentation - I1I1G and SGA Entra and Adelante PAQ Structure

The SmartGov platform requires the implementation of the IIG and SGA Pending Action Queues (PAQs) in order to function properly.
These are implemented as database tables, the structure of which is presented later in this document. For each PAQ a java package was
developed for its management. The class methods provided in these packages are used by the SmartGov processes, which need to insert,

retrieve and delete entries from the PAQs.

5.6.1 The autokeys table

In order to provide to each database table a unique identifier, which will generate new values for the table primary key, the autokeys

table must be created. It should contain the following fields:

Name Time Descriptions Restrictions
keyName VARCHAR2(32) The name of the key, which must be unique. NOT NULL,
PRIMARY KEY
keyValue NUMBER(38) The current value of the key. It contains the latest | NOT NULL
value of the primary key of the respecting database
table.

It is not necessary to insert initial values for the primary keys of each table when creating the autokeys table. Key records with 0 as
initial value are inserted automatically when a requested key is not found in the table. However, if the need arises to set a key to a
specific initial value, it should be verified that no records exist with the designated key and value greater or equal than the desired key
value. When it has been verified that no such record exists, a new tuple should be inserted in the autokeys table using an insert

statement of the following form:

insert into autoKeys values('APAQ IIG',0);

223

5.6.2 SGA Entra PAQ

The SGA Entra PAQ is used for the storage of incoming notifications and their associated method descriptions. When the SGA Notification
Interceptor (gr.uoa.di.SGANI package) receives a notification name from the IIG Notification Initiator (gr.uoa.di.IIGNI package), it
retrieves from the SGA-NI configuration file the information of the method associated with this notification. Then it inserts the method

information along with the notification name and a time stamp to the SGA Entra PAQ. The SGA Entra PAQ is periodically scrutinized by

the SGA dispatcher (gr. uoa.di.dispatcher package), which executes the method associated with each notification.

Name Time Descriptions Restrictions
entraPAQId NUMBER(38) Unique identifier that serves to characterize the record | NOT NULL,
in the SGA Entra PAQ PRIMARY KEY
XMLMethodDescription | VARCHAR2(4000) The description in XML format of the method | NOT NULL
associated with this notification
SGtimestamp VARCHAR2(22) The date and time when this record is inserted in the | NOT NULL
SGA Adelante PAQ.
NotificationName VARCHAR2(500) A symbolic name for the notification event. NOT NULL

5.6.3 SGA Adelante PAQ

The SGA Adelante PAQ is used for the storage of requests that the SGA could not send to the appropriate IIG. When the SGA receives a
request in the form of a symbolic service name, it retrieves from the SGA configuration file the information associated with the service. If
the communication methods for the specific service fail, the request message is inserted in the SGA Adelante PAQ, along with the service

name, the real time and persistent indicators and a time stamp. The SGA Adelante PAQ is periodically scrutinized by the SGA dispatcher

(gr. uoa.di.dispatcher package), which attempts to resend the requests.

224

Name

Time

Description

Restrictions

adelantePAQId

NUMBER(38)

Unique identifier that serves to characterize the record
in the SGA Adelante PAQ

NOT NULL,
PRIMARY KEY

requestld

NUMBER(38)

A unique request identifier that serves to characterize

this request

NOT NULL

serviceName

VARCHAR2(500)

A symbolic service name that the message refers to.
The receiving SGA is expected to forward the

encapsulated XMLPacket to the named service

NOT NULL

XMLPacket

VARCHAR2(4000)

A message that contains all information that the
named serviceName requires. The SGA does not
interpret this message, rather it is passed as is to the

next step

NOT NULL

realTime

NUMBER(2)

Indicates whether the communication event is
happening in real-time and consequently an
immediate response is expected. When this flag is set,
the SGA does not close the communication channel
with the SgovApp but it immediately forwards the
message to the appropriate IIG and returns the result

to the calling SgoVApp

NOT NULL

persistent

NUMBER(2)

Indicates whether the message should persist in case of
communication errors or other abruptions and retransmitted later. If

this flag is set, message is stored in the Pending Actions Queue.

NOT NULL

225

Name Time Description Restrictions

SGtimestamp VARCHAR2(22) The date and time when this record is inserted in the | NOT NULL
SGA Adelante PAQ.

5.6.4 IIG Entra PAQ

The IIG Entra PAQ is used for the storage of non real-time messages received from the SGA. When a non real time message is received,
that is a message where the realTime indicator is not set, it is stored in the Entra Pending Actions Queue (PAQ). Storage takes place as
soon as the message reaches the IIG and after the first stage of the IIG-MYP has been completed and therefore it has been identified that
it is not a real-time message. This way, the communication channel is freed as soon as possible and the IIG is free to process urgent, i.e.
real-time, messages. The IIG dispatcher (gr.uoa.di.dispatcherllG.dispatcherlIG) scrutinizes periodically the IIG Entra PAQ and processes

the messages.

226

Name Time Description Restrictions
entraPAQId NUMBER(38) Unique identifier that serves to characterize the record | NOT NULL,
in the IIG Entra PAQ PRIMARY KEY
serviceName VARCHAR2(500) A symbolic name referring to a business operation. It | NOT NULL
should be the same name used in the initial request
XMLMessage VARCHAR2(4000) | The same as the XMLPacket part of the original | NOT NULL
request.
realTime NUMBER(2) The same meaning and value as in original request. | NOT NULL
The SGA expects to receive “immediate” answer from
the IIG. The IIG should process the message as soon
as it receives it and reply accordingly.
SGtimestamp VARCHAR2(22) The date and time the record was inserted in the IIG | NOT NULL
Entra PAQ

5.6.5 IG Adelante PAQ

The IIG Adelante PAQ is used for the storage of failed outgoing notifications. When the IIG Notification Initiator (gr.uoa.di.IIGNI package)
attempts to send a notification to the SGA Notification Interceptor (gr.uoa.di.SGANI package, it retrieves from the IIG-NI configuration
file the communication information associated with this notification. If the communication fails, the IIG-NI inserts the notification name
along with a time stamp to the IIG Adelante PAQ. The IIG Adelante PAQ is periodically scrutinized by the IIG dispatcher

(gr.di.uoa.dispatcher package), which executes the method associated with each notification.

227

Name Time Description Restrictions
adelantePAQId NUMBER(38) Unique identifier that serves to characterize the record | NOT NULL

in the IIG Adelante PAQ PRIMARY KEY
notificationName VARCHAR2(500) A symbolic name for the notification event. NOT NULL
SGtimestamp VARCHAR2(22) The date and time the record was inserted in the IIG | NOT NULL

Adelante PAQ

5.6.6 databaseTable

This table is used as the persistent storage medium for the SGA localDataStore method.

Name Time Description Restrictions
databaseTableld NUMBER(38) Unique identifier that serves to characterize the record | NOT NULL,
in this table PRIMARY KEY
requestld NUMBER(38) A unique request identifier that serves to characterize | NOT NULL
this request
serviceName VARCHAR2(500) A symbolic service name that the message refers to. NOT NULL
XMLMessage VARCHAR2(4000) A message that contains all information that the | NOT NULL
named serviceName requires.
realTime NUMBER(2) Indicates whether the communication event is | NOT NULL

happening in real-time and consequently an
immediate response is expected. When this flag is set,
the SGA does not close the communication channel

with the SGoVApp but it immediately forwards the

228

Name

Time

Description

Restrictions

message to the appropriate IIG and returns the result
to the calling SGoVApp

persistent

NUMBER(2)

Indicates whether the message should persist in case
of communication errors or other abruptions and
retransmitted later. If this flag is set, message is

stored in the Pending Actions Queue.

NOT NULL

SGtimestamp

VARCHAR2(22)

The date and time the record was inserted in the table

NOT NULL

5.6.7 SEPdatabaseTable

This table is used as the persistent storage medium for the IIG-myP localDataStoremethod.

Name Time Description Restrictions
SEPdatabaseTableld NUMBER(38) Unique identifier that serves to characterize the record | NOT NULL,

in this table PRIMARY KEY
serviceName VARCHAR2(500) A symbolic service name that the message refers to. NOT NULL
XMLMessage VARCHAR2(4000) A message that contains all information that the | NOT NULL

named serviceName requires.

229

Name

Time

Description

Restrictions

realTime

NUMBER(2)

Indicates whether the communication event is happening in real-time
and consequently an immediate response is expected. When this flag
is set, the SGA does not close the communication channel with the
SGoVApp but it immediately forwards the message to the appropriate
IIG and returns the result to the calling SGoVApp

NOT NULL

persistent

NUMBER(2)

Indicates whether the message should persist in case
of communication errors or other abruptions and
retransmitted later. If this flag is set, message is

stored in the Pending Actions Queue.

NOT NULL

SGtimestamp

VARCHAR2(22)

The date and time the record was inserted in the table

NOT NULL

230

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

5.6.8 SQL Commands for creating the database tables

In this section the SQL commands for creating the PAQ database are given. The
commands follow the SQL92 specification, including primary keys and referential
constraints. The IT staff may need to adapt certain features to the requirements of the
DBMS used in the installation, e.g. the VARCHAR2 data type should be substituted for
the VARCHAR data type in an ORACLE installation. Other DBMSs pose limitations on
the length of the VARCHAR columns or the overall length of a single row; these

limitations should be sought after.

CREATE TABLE entraPAQ (
entraPAQId NUMBER(38) NOT NULL,
XMLMethodDescription ~ VARCHAR2(4000) NOT NULL,

SGtimestamp VARCHAR2(22) NOT NULL,
notificationName VARCHAR2(500) NOT NULL,
PRIMARY KEY (entraPAQId)

)i

CREATE TABLE adelantePAQIIG (

adelantePAQId NUMBER(38) NOT NULL,
notificationName VARCHAR2(500) NOT NULL,
SGtimestamp VARCHAR2(22) NOT NULL,

PRIMARY KEY (adelantePAQId)
)

© SMARTGOV Consortium Page 231 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

CREATE TABLE adelantePAQ (

adelantePAQId NUMBER(38) NOT NULL,
requestId NUMBER(38) NOT NULL,
serviceName VARCHAR2(500) NOT NULL,
XMLPacket VARCHAR2(4000) NOT NULL,
realTime NUMBER(2) NOT NULL,
persistent NUMBER(2) NOT NULL,
SGtimestamp VARCHAR2(22) NOT NULL,

PRIMARY KEY (adelantePAQId)
)i

CREATE TABLE entraPAQIIG (

entraPAQId NUMBER(38) NOT NULL,
serviceName VARCHAR2(500) NOT NULL,
XMLMessage VARCHAR2(4000) NOT NULL,
realTime NUMBER(2) NOT NULL,
SGtimestamp VARCHAR2(22) NOT NULL,

PRIMARY KEY (entraPAQId)
);

CREATE TABLE SEPdatabaseTable (

SEPdatabaseTableld NUMBER(38) NOT NULL,
serviceName VARCHAR2(500) NOT NULL,
XMLMessage VARCHAR2(4000) NOT NULL,
realTime NUMBER(2) NOT NULL,
SGtimestamp VARCHAR2(22) NOT NULL,

PRIMARY KEY (SEPdatabaseTableld)
)i

© SMARTGOV Consortium Page 232 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

CREATE TABLE databaseTable (

databaseTableld NUMBER(38) NOT NULL,
requestId NUMBER(38) NOT NULL,
serviceName VARCHAR2(500) NOT NULL,
XMLMessage VARCHAR2(4000) NOT NULL,
realTime NUMBER(2) NOT NULL,
persistent NUMBER(2) NOT NULL,
SGtimestamp VARCHAR2(22) NOT NULL,

PRIMARY KEY (databaseTableld)
);

CREATE TABLE autoKeys (
KeyName VARCHAR2(32) NOT NULL,
KeyValue NUMBER(38) NOT NULL,
PRIMARY KEY (keyName)

)i

5.7 SmartGov System Services

The SmartGov platform incorporates a number of back-end services that need to be
available for the service delivery platform to operate successfully. These services are:

1. Document storage and retrieval. The document storage service allows for
storing the documents submitted by users of the SmartGov services delivered
through the service delivery platform. The documents are stored in an XML
repository. The document retrieval service allows for retrieving documents that
have been submitted by users of the SmartGov services and stored into the
XML repository. Document retrieval may be used for presenting the documents
to the users, forwarding them to the organisational back-end etc.

2. Login validation. Users of the SmartGov service delivery platform must
authenticate themselves to the system, in order to provide a secure and
personalised environment. Authentication is performed by means of entering a
user name and a password, and the login validation service arranges for
verifying that the presented credentials are valid. For authorised users, the
login validation service returns to the service delivery environment the list of

services that the user is registered to.

© SMARTGOV Consortium Page 233 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

The SmartGov communication services configuration files included in the bundle
include the necessary configuration entries for these services. These entries
should not be removed; changes however should be applied to reflect local
settings (IP addresses and ports, file system paths, passwords etc). In the
following paragraphs, the SmartGov System Services are documented.

5.71 Document Storage and Retrieval Services

The document storage service arranges for the persistent storage of the documents
submitted through the Service Delivery Environment. The persistent storage provider
is the SmartGov Project XML repository. Documents that have been persistently stored
may then be retrieved through the document retrieval service for presentation to the
users or further processing. No provision is made at this level for document deletion or
update, facilitating the maintenance of a complete track of submitted documents: in
the case that document deletion is required, the documents should be marked as
deleted (and not physically removed), while for document updating a new version of
the document should be created superseding the existing one. Physical update or
deletion of documents can still be performed by directly accessing the XML repository.

The document storage and retrieval services must be named storeDocument
retrieveDocument, respectively, and must be declared in the relevant configuration
files, both in the service delivery environment and the organisational back-end. Since
the document storage and retrieval services use the XML repository as a persistent
storage provider, they must be able to locate the configuration settings for the XML
repository; these settings should be provided in a property file and the location of this
file should be designated through the property docStore.propertyFile. Documents
stored and retrieved through these services must follow the XML schema presented in

the following figure:

© SMARTGOV Consortium Page 234 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:complexType name="TSE">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="value" type="xs:string" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="RowType">
<xs:sequence>
<xs:element name="tseElement" type="TSE" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="groupElement" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="row" type="RowType" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="groupld" type="xs:string"/>
</xs:complexType>
</xs:element>
</xs:sequence>

</xs:complexType>

<xs:element name="ServiceResults">
<xs:complexType>
<xs:sequence>
<xs:element name="serviceName" type="xs:string"></xs:element>
<xs:element name="userName" type="xs:string"/>
<xs:element name="timestamp" type="xs:string"/>
<xs:element name="row" type="RowType"/>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:schema>

Figure 77 - XML schema for XML documents managed through the storage and

retrieval services

The document storage service accepts as a parameter the XML document that must be
stored, and places the document into the persistent storage. The document retrieval
service accepts as a parameter an XML document specifying which documents are

requested to be retrieved. The specification is made as follows:

© SMARTGOV Consortium Page 235 of 288

http://www.w3.org/2001/XMLSchema

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

1. If the document contains only a <userName> element, all documents submitted
by the user designated by the element value are retrieved and returned.

2. If the document contains a <userName> element and a <serviceName> element,
then all documents submitted by the user and through the specific service
designated by the element values are retrieved and returned.

3. If the document contains a <userName> element, a <serviceName> element and
a <timestamp> element, then a single document is retrieved, the one submitted
by the specific user and through the particular service at the given timestamp.

4, If the document contains a <userName> element, a <serviceName> element a
<timestamp> element and a <createIfNotFound> element whose value is set
to true, then the following actions are taken:

a. The XML repository is queried to locate a document whose <userName>,
<serviceName> and <timestamp> elements have values equal to the
ones specified in the document supplied as a parameter. If such a
document is found, it is retrieved and returned as in case (3) and the
procedure terminates; otherwise step (b) is performed.

b. A Java class named IIGCreateServiceNameDocument iS searched for,
where the ServiceName portion of the class name is set to the actual
name of the service as specified in the <serviceName> element; for
instance, if the value of the service name is TaxReturnForm, then the
name of the class that will be searched for is
IIGCreateTaxReturnFormDocument. The class must implement a
constructor with no parameters and a createDocument method with the

following prototype:

String createDocument (String userName, String serviceName,

String timestamp) ;

If the class is found and it fulfils the aforementioned requirements, then
the createDocument method is invoked to create the document with the
pre-populated fields, which must be adherent to the XML schema
depicted in Figure 77; the values for the pre-populated fields may be
retrieved from files, from database registries or from any other
appropriate source. If the createDocument method throws an exception

or the class IIGCreateServiceNameDocument is not found or if the class

© SMARTGOV Consortium Page 236 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

does not implement the required methods, then the returned document
will only contain values for the <userName>, <serviceName> and
<timestamp> elements. The implementation of the
IIGCreateServiceNameDocument class must be provided by the
organisation’s IT staff. The file containing the implementation should be
included in the CLASSPATH of the IIG.

In the first two cases, the results are returned in an XML document compliant to the

XML schema depicted in Figure 78.

<?xml version="1.0" encoding="utf-8"?>
<results>
<xmlDocument>... </xmIDocument>
<xmlDocument>... </xmIDocument>
<xmlDocument>... </xmIDocument>

</results>

Figure 78 — XML schema for calls returning multiple documents

In cases (3) and four, the XML document returned is compliant to the XML schema
presented in Figure 77. For case (3) in particular, if no matching document is found
then the empty string is returned.

The storeDocument method, besides storing the document into the XML document
repository, provides facilities for storing to alternate registries, populating relational
databases etc. More specifically, after storing the document into the XML document
repository, the IIG searches for a class named 1IGStoreServiceNameDocument, where
the ServiceName portion of the class name is set to the actual name of the service as
specified in the <serviceName> element; for instance, if the value of the service name
is TaxReturnForm, then the name of the class that will be searched for is
IIGStoreTaxReturnFormDocument. The class must implement a constructor with no

parameters and a storeDocument method with the following prototype:

void storeDocument (IIGServiceResults XMLdocument) ;

If the class is found and it fulfils the aforementioned requirements, then the
storeDocument method is invoked to perform any data storage, registry population
triggering or any other activities pertinent to the submission of documents of the
specific types. If the class I11GStoreServiceNameDocument is not found or if the class
does not implement the required methods, no action is taken. If any exception occurs

within the execution of the storeDocument method, it is possible that side effects will

© SMARTGOV Consortium Page 237 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

occur, such as partially updated files or incomplete database population; the
implementation of the storeDocument method must include safeguards to provide
resilience against such situations. The IIGServiceResults class is used for storing a
flattened description of the XML document with convenience methods to retrieve
values of specific TSEs, along with facilities to traverse the whole TSE set. The
documentation for the T1IGServiceResults class is provided in the following sections.
The implementation of the IIGStoreServiceNameDocument class must be provided by
the organisation’s IT staff. The file containing the implementation should be included in
the CLASSPATH of the IIG.

5.711 Preparing the Document Storage and Retrieval Service

Before the document storage and retrieval services can be used, the following steps
must be taken:

1. The libraries jaxpl.l.jar, jdbc2.0-stdext.jar, regexp.jar, xalan.jar,
xerces.jar, xmlstoreapi-2.0.0.jar, and =xmlstore-2.0.0.jar must be
included in the class path. If Java(tm) SDK 1.4.x is used, then the libraries
jaxpl.l.jar, jdbc2.0-stdext.jar and xerces.jar are optional.

2. A database and the appropriate user must be created in the RDBMS on top of
which the XML repository will operate.

3. The XML store configuration application should be run, by executing the java
com.archetypon.xml.store.impl.XmlStoreManager class. Using the XML
store configuration the following tasks should be performed:

a. A new document type named serviceResults must be created.

b. For the newly created document type, the following indexes must be

defined:
Index name XPath expression Value type
ServResUsername /serviceResults/userName/text () java.lang.String
ServResServiceName /serviceResults/serviceName/text () java.lang.String
ServResTimestamp /serviceResults/timestamp/text () java.lang.String

4. The configuration must be saved. During this step, the details for
communicating with the RDBMS should be entered in the dialog box that will
appear, to correctly reflect underlying DBMS, type, the JDBC driver to be used,
the server name, user name, password and database.

The document storage and retrieval services are now fully prepared to be used.

© SMARTGOV Consortium Page 238 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

5.71.2 JavaDoc for the Document Storage and Retrieval Service

The JavaDoc for the storage and retrieval services is presented in Figure 79.

Constructors public DocStore()

Methods public static void storeDocument(String servDesc)

This method stores an XML document submitted through a
SmartGov service in the XML repository. The XML document is
contained in the String servDesc. If the
lIGStoreServiceNameDocument class exists and it implements
the method

void storeDocument(String XMLDocument);

then this method is invoked.
Parameters

servDesc - The String containing the XML description.
Throws

DocStoreException - In case of failure to store the XML document

public static java.lang.String retrieveDocument(String docDesc)
This method retrieves the document(s) containing the elements given in the XML
description.
Parameters
docDesc - The XML document specifying the documents to be retrieved.
The specification is made using one the following four methods:
1. <?xml version="1.0" encoding="utf-8"?>
<userName>my user</userName>
2. <?xml version="1.0" encoding="utf-8"?>
<userName>my user</userName>
<serviceName>my user</serviceName>
3. <?xml version="1.0" encoding="utf-8"?>
<userName>my user</userName>
<serviceName>my service</serviceName>
<timestamp>2002/12/31 12:35:32</timestamp>
4. <?xml version="1.0" encoding="utf-8"?>
<userName>my user</userName>
<serviceName>my service</serviceName>
<timestamp>2002/12/31 12:35:32</timestamp>

<createlfNotFound>true</createlfNotFound>

Returns
A String where the results of the search are located.

If username, serviceName and timestamp are given (case 3), the result is the

© SMARTGOV Consortium Page 239 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

requested XML document. Case 4 is an extension of case 3, allowing for creation of
initial documents with pre-populated fields, by invoking the method createDocument
of the class [IGCreateServiceNameDocument (ServiceName is equal to the value of
the serviceName element). The createDocument method prototype is as follows:
String createDocument(String userName, String serviceName, String timestamp);
If not all the elements are provided (cases 1 and 2), the result may contain more than
one documents, which are grouped in an XML document of the following type:
<?xml version="1.0" encoding="utf-8"?>
<results>

<xmlDocument>... </xmIDocument>

<xmlDocument>... </xmIDocument>

<xmIDocument>... </xmIDocument>
</results>
The value of each xmIDocument element is a URL-encoded XML document.
Throws

DocStoreException - In case of failure to retrieve the document(s).

Figure 79 - JavaDoc for document storage and retrieval services

5.71.3 JavaDoc for the lIGServiceResults

public class gr.uoa.di.llGServiceResults.lIGServiceResults

The lIGServiceResults class represents a flattened XML service results document for interfacing with legacy
systems. APl is provided both for construction and querying
Constructors public lIGServiceResults()

Creates a new instance of [IGServiceResults

Methods public gr.uoa.di.llGServiceResults.lIGServiceResults setServiceName(
String serviceName)
This method sets the serviceName element of the flattened representation of the
XML document.
Parameters
serviceName - the value of the serviceName element of the XML
document
Returns

the updated flattened representation of the XML document

public gr.uoa.di.llGServiceResults.liGServiceResults setUserName(

© SMARTGOV Consortium Page 240 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

String userName)
This method sets the userName element of the flattened representation of the XML
document.
Parameters

userName - the value of the userName element of the XML document
Returns

the updated flattened representation of the XML document

public gr.uoa.di.llGServiceResults.lIGServiceResults setTimestamp(

String timestamp)
This method sets the timestamp element of the flattened representation of the XML
document.
Parameters

timestamp - the value of the timestamp element of the XML document
Returns

the updated flattened representation of the XML document

public java.lang.String getUserName()
This method queries the userName element of the respective XML document
Returns

the value of the userName element

public java.lang.String getServiceName()
This method queries the serviceName element of the respective XML document
Returns

the value of the serviceName element

public java.lang.String getTimestamp()
This method returns the timestamp element of the respective XML document
Returns

the value of the timestamp element

public gr.uoa.di.llGServiceResults.liIGServiceResults addElement(
Node theTSE)
This method adds a Node element that should represent a TSE not embedded into
a group into the flattened document description.
Parameters
theTSE - the DOM node element to be inserted
Returns

the flattened description with the TSE appended to it

© SMARTGOV Consortium Page 241 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

public gr.uoa.di.llGServiceResults.liIGServiceResults addElement(
Node theTSE,
String groupName,
int groupRow)
This method adds a Node element that should represent a TSE embedded into a
group into the flattened document description.
Parameters
theTSE - the DOM node element to be inserted
groupName - the group to which the TSE belongs
groupRow - the row within the group that the TSE appears
Returns

the flattened description with the TSE appended to it

public int size()
Queries the number of TSE values within the flattened description
Returns

the number of TSE values within the flattened description

public java.lang.String elementNameAt(int index)
Queries the name of the TSE whose value is stored at a specific position
Parameters
index - the position to be queried
Returns
the name of the TSE

public int elementValuelndexAt(int index)
Queries the value index of the TSE value stored at a specific position
Parameters
index - the position to be queried
Returns

the value index of the TSE value

public java.lang.String elementValueAt(int index)
Queries the value of the TSE value stored at a specific position
Parameters
index - the position to be queried
Returns
the TSE value

© SMARTGOV Consortium Page 242 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

public java.lang.String elementGroupNameAt(int index)
Queries the group name of the TSE value stored at a specific position
Parameters
index - the position to be queried
Returns

the group to which the TSE value belongs

public int elementGroupRowAt(int index)
Queries the group row of the TSE value stored at a specific position
Parameters
index - the position to be queried
Returns

the group row of the TSE value

public int getElementindex(String elementName)
Queries the position in which the first value of a TSE with a given name is stored
Parameters
elementName - the TSE name to search for
Returns
the index of the first TSE value; if no TSE with the designated name exists,

-1 is returned

public java.lang.String getElementValue(String elementName)
Queries the first value of a TSE with a given name
Parameters
elementName - the TSE name to search for
Returns
the first TSE value; if no TSE with the designated name exists, null is

returned

5.7.2 Login Validation Service

The login validation service provides the functionality for authenticating users, before
they are allowed to access the services deployed through the SmartGov platform. User
authentication is performed through a user name-password scheme: users enter their
credentials, and the login validation service verifies that these credentials are correct.
If the credentials are invalid, an appropriate failure indication is returned; if, however
the presented credentials are valid, a success indication is returned, complemented

with the services that the user is registered to use.

© SMARTGOV Consortium Page 243 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

The login validation service must be named loginvalidation and must be declared in
the relevant configuration files, both in the service delivery environment and the
organisational back-end. User credentials and service profiles are stored in a DBMS,
thus the login validation service needs to access certain information regarding its
connection with the database (software driver, server address etc). This information
should be stored in a property file and the property Loginvalidation.propertyFile

must be set to point to this file. Example contents of the file are depicted in Figure 80:

Property file for the login validation service
LoginValidation.DBusername=smartgov
LoginValidation.DBpassword=smartgov
LoginValidation.DBname=smartgov
LoginValidation.DBdriver=oracle.jdbc.driver.OracleDriver

LoginValidation.DBconnectString=jdbc:oracle:oci8:@

Figure 80 - Property file for login validation service

A request for validating the credentials supplied by the user should be made by
invoking the 1oginvalidation service with an XML document that must adhere to the
following DTD:

<?xml version="1.0" encoding="UTF-8"?>
<IELEMENT validationRequest (userName, password)>
<IELEMENT userName(#PCDATA)>

<IELEMENT password (#PCDATA)>

For example:

<?xml version="1.0" encoding="UTF-8"?>
<validationRequest>
<userName>aUser</userName>

<password>aPassword</password>

</validationRequest>

This request will check if the credentials (aUser, aPassword) are valid. Normally the
request should be characterised as real-time and non-persistent since the
authentication process must be carried out immediately. The reply returned to such a

request will adhere to the following DTD:

© SMARTGOV Consortium Page 244 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

<?xml version="1.0" encoding="UTF-8"?>

<IELEMENT validationResult (resultType, userlD?, fullName?, serviceName*)>
<IELEMENT resultType(#PCDATA)>

<IELEMENT userID(#PCDATA)>

<IELEMENT fullName(#PCDATA)>

<IELEMENT serviceName(#PCDATA)>

In more detail, if the presented credentials are not valid, the reply will contain only the
<resultType> element and the value of this element will be set to failure, as

illustrated in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<validationResult>
<resultType>failure</resultType>

</validationResult>

Figure 81 - Reply for a validation request presenting invalid credentials

If, however, the presented credentials are valid, the value of the <resultType>
element will be set to success, and the element will be followed by the <user1id> and
<fullName> elements, which will in turn be followed by a list of <serviceName>
elements, one for each service that the user is registered to use. An example of a reply

to successful validation request is illustrated in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<validationResult>
<resultType>success</resultType>
<userlD>42</user|D>
<fullName>Zaphod Beeblebrox</fullName>
<serviceName>incomeTaxService</serviceName>
<serviceName>VATservice</serviceName>

<serviceName>realEstateTaxService</serviceName>

</validationResult>

5.7.21 Preparing the Login Validation Service

Before the document storage and retrieval services can be used, the following steps
must be taken:
1. a database must be created in an RDBMS. A database user with privileges to

create table in this database must also be created.

© SMARTGOV Consortium Page 245 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

2. the tables SGuserData and SGuserServices must be created in the database

using the following SQL commands?:

create table SGuserData (

userID NUMBER (12) NOT NULL,
userName VARCHAR (64) NOT NULL UNIQUE,
password VARCHAR (64) NOT NULL,
fullName VARCHAR (128) NOT NULL,

PRIMARY KEY (userID)
)i

create table SGuserServices (
userID NUMBER (12) NOT NULL REFERENCES SGuserData (userId),
serviceName VARCHAR(128) NOT NULL,
PRIMARY KEY (userID, serviceName)

);

The population and maintenance of these tables may be performed using any
appropriate tool. For MySQL installations, the phpMyAdmin tool is recommended
(http://sourceforge.net/projects/phpmyadmin/). For Oracle installations, the DBA
studio shipped with Oracle may be used, while in Microsoft SQL Server installations the

SQL Server Enterprise Manager® can be employed to maintain table data.

2 The commands use ANSI SQL 92 syntax. For Oracle databases it is recommended
that the VARCHAR?2 data type is substituted for the VARCHAR data type. For MySQL
and MS SQL Server systems, the NUMBER(12) data type must be replaced by the
INTEGER data type.

© SMARTGOV Consortium Page 246 of 288

http://sourceforge.net/projects/phpmyadmin/

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

6 Conclusions

This deliverable presented the user manual of the front-end, result of the final iteration
of the development phase of the SmartGov platform and focused on the components

developed within work package 5 and 6. ...

© SMARTGOV Consortium Page 247 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

7 References

[D31] State-of-the-Art and Current Situation at Public Authorities,
SmartGov Project Deliverable 31, Stelios Gorilas, George Boukis,
Giorgos Lepouras, Kostas Vassilakis, Akrivi Katifori, John Fraser,
Heredia Larios Segundo, Rafael Canadas Martinez, Gerald Weiss,
Kirstin Karasz, Spyros Argyropoulos and Hilary Coyne
(May 31, 2002) avallable at

[D41] User Reqwrements, Serwces and Platform Specifications,
SmartGov Project Deliverable 41, Akrivi Katifori, Anna Charissi,
George Lepouras, Stathis Rouvas, Costas Vassilakis, Nick Adams,
John Fraser, Segundo Heredia Larios, George Boukis, Stelios
Gorilas, Rafael Canadas Martinez and George Laskaridis, available
(JuIy 31, 2002) at

[D51-61] Low level SpeC|f|cat|ons of SmartGov Services and Applications
and the Knowledge-Based Core Platform, SmartGov Project
Deliverable 51-61, Stelios Gorilas, Pablo Fernadez Pardo, Tomas
Pariente Lobo, Costas Vassilakis, Akrivi Katifori, Anna Charissi,
George Lepouras, Stathis Rouvas, Nick Adams, John Fraser, Ann
Makynthos (February 28 2003) avallable at
rt

[D62] Implementat|on of SmartGov Serwces and Appllcatlons,
SmartGov Project Deliverable 62, Stelios Gorilas, Pablo Fernadez
Pardo, Tomas Pariente Lobo, Costas Vassilakis, Akrivi Katifori,
Anna Charissi, George Lepouras, Nick Adams, John Fraser, Ann
Makynthos, Vassms Stoumpos, avallable (July 31 2003) at
dex.php?

© SMARTGOV Consortium Page 248 of 288

http://www.smartgov-project.org/index.php?category=results&langid=eng
http://www.smartgov-project.org/index.php?category=results&langid=eng
http://www.smartgov-project.org/index.php?category=results&langid=eng
http://www.smartgov-project.org/index.php?category=results&langid=eng

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

Appendix A. Glossary of elements

Transaction Service Elements (TSEs): Transaction Service Elements (TSEs) are
considered as the basic building block of an e-service. They are used to represent basic
data types used within the organization. TSEs are not to be confused with basic data
types as handled by programming languages. They are not just strings, integers, floats
etc: TSEs are conceptual constructs that map onto the organization's practices. A TSE
represents a real-world entity and its attributes model this entity's characteristics in a
self-contained manner. TSEs are defined in an XML format and could contain the
following properties:

Unique identifier

Machine-oriented data type, e.g. integer, string, float etc.

Data type format rules

YV V VYV V

Presentational info, possibly according to dissemination channel, e.g. length of
data, number of decimals, colour, etc.

» Interface definitions for transforming the TSE values from and to different
formats and for communicating with the SmartGov agent they refer to (for
exchange of data with third-party systems)

» Generic name and/or service specific aliases (or handles)

» Generic validation constraints/conditions. Service specific constraints and/or
more detailed ones are considered to belong to the Knowledge Repository.

TSEs are “cloned” when the time comes to implement a new service. The properties of
the cloned TSEs can be overridden with service-specific properties. These properties
are expected to be specialized versions of the properties offered by the generic TSE
they clone, suitable for the service they refer to.

TSE group: TSEs can be grouped arbitrarily forming TSE groups. TSE groups like TSEs
are defined in an XML format and could contain the following properties:

» Unique identifier

» Presentational info, possibly according to dissemination channel

» Interface definitions for communicating with the SmartGov agent they refer to
(for exchange of data with third-party systems)

» Generic name and/or service specific aliases (or handles)

» Generic validation constraints/conditions

» Active code to be executed when they are instantiated

A TSE group cannot be used as an element to form another TSE group.

© SMARTGOV Consortium Page 249 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

TSE Repository: A repository containing all available TSEs and TSE groups. A TSE
repository is needed to coordinate access and to ensure overall consistency, e.g. that
referenced items are not deleted in a later stage.

Integrator: The integrator produces code to be executed in the environment of the
deployment server. It gathers the respective information from the various repositories
and combines them accordingly.

Transaction Service: A set of forms that implement a specific service. It contains
TSEs, validation constraints, pre- and post-conditions and the layout to be used.
Transaction Service Repository: A repository containing all available Transaction
Services.

Layout: Contains static attributes of presentation of a Transaction Service. These
static attributes will include colour schemes, font families and sizes, border
designations etc. A layout may also contain guidelines to the designer about style of
placement of elements on the form, pieces of advice regarding form size, or even
automated checks that scan for guideline violations.

Layout Repository: A repository containing all available Layouts.

Interaction Templates: A template that includes the basic interaction between the
delivered service and the end user. The interaction template may specify:

Style of navigation between forms in multi-form services (back-next-finish, index form
with references to individual forms etc.)

Use of confirmation screens (every form, once before final submittal, never)

Style of error presentations (separate window, within the form etc)

Interaction Templates Repository: A repository containing all available Interaction
Templates.

Process Management Information: Information about flow control, data
control/integrity constraints, user profiles/roles and preconditions/postconditions.
Knowledge Repository:

The knowledge repository will contain all the knowledge items (examples, best
practices, legislation, guidelines) along with structures facilitating access to it, such as
knowledge maps. Items within the knowledge repository may reference or be
referenced from items in other repositories; e.g. an example on filling in a TSE may

reference the specific TSE and/or be referenced from it.

© SMARTGOV Consortium Page 250 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

Appendix B. Validation Rules User’s Guide and
Reference

There are two kinds of rules: compact rules and full rules. Although compact rules
cannot describe any possible full rule, they serve as shortcuts for the most common
rules. All rules are attached to the element they refer to. For example a rule that
checks the validity of a “total income” element is attached to that element. Rules are
also allowed to reference objects “contained” in the element they are attached to; thus

1. rules attached to TSE groups may reference the TSEs within the group

2. rules attached to forms may reference TSEs and TSE groups contained within

the form
3. rules attached to the service may reference any TSE or TSE group within the

service.

B.1 Attaching validation rules to SmartGov entities

For SmartGov platform entities that validation rules may be associated with
(transaction services, forms, TSE groups and TSEs), the user should navigate to the
relevant editing page and open the Validation Rules section. An example for validation

rules attached to forms is illustrated in Figure 82:

© SMARTGOV Consortium Page 251 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

J Form Edition - Microsoft Internet Explorer

d=Eack o~ = - £ ot | Qsearch [GFavortes G0Media £ | Ey-S = [

-
Ui |

£ User: user_sxpert
w CF . £
S Form Edition work =
oM group:

Id. PERSOMNAL_DETAILS_FCORM
[Mame Description [
: Thizs form allows the user to provide personal information about
$ Persanal details hirmzelf/fherself such as name, address, ete < @
@ e e e ®opua sIgaywy s NOU ENITPENEl OTO ¥PATTH va BTaYE NpogwnIkd @
aTangEia
ISpanish = B

Name of the Rule
< walidate_Last_Mame_Chars
& walidate_Last_MName_Length
@ alidate_First_Mame_Chars
¥ walidate_First_Name_Length
vyalidate_Age_Range
@ Married_changed_gctionl

< Married_cChanged_aAdtionz
Add a new rule

=101 x]

¥

—

=
@ T e

Figure 82 - The Validation Rules section in a form

The validation rules section enables the user to add new validation rules or modify
existing validation rules. In order to add a validation rule, the user should click on the
Add a new rule hyperlink, whereas for modifying an existing validation rule the user

should click on the bullet appearing at the left of the rule name in the "name of the

rule” list.

B.2 Working with validation rules

Once the “add a new rule” has been selected or a rule name has been clicked

rule-editing page appears. If a new rule is being added, the page fields will be blank,

otherwise they will be pre-populated with the current rule details. In the rule-editing

page (shown in Figure 83), the following information should be filled in:

on, the

© SMARTGOV Consortium Page 252 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

=10l x|
e Wi . User: user_expert [[0] D
LSk validation rule edition e S - e
sl
Validation rule edition [
Id.
jon Rule Config
Rule code New method
validate at: Back end =]
Statistics
Number of failures @ Enabled © Disabled Execution time @ Enabled 7 Disabled
validation rule edition =
|&] Done {BE Local intranet o

B.3

The m

Figure 83 - Rule editing page

the identity of the new rule (id field)

the specification whether the rule should be validated at the back-end only or at
the front-end and the back-end (there is no option to validate the rule only at
the front-end)

the statistics to be collected for rule execution. Two pre-defined statistics are
supported, namely the total number of failures for the rule and the rule
execution time. For either statistic the user can enable or disable statistics
collections.

Finally, the actual content of the validation rule can be specified. For new rules,
the “new method” hyperlink should be clicked on, whereas for existing rules the
description in the “validation rule configuration” section should be clicked on.

Validation rule method configuration is described in the following section.

Validation rule method configuration

ain editing page for validation rule methods is depicted in Figure 84. The user

first enters the description of the rule; this is a multilingual resource and may be

provided in multiple languages. After entering the rule description, the user should

select

some

the type of the code implementing the validation check. This may be code in

native language (Java or Javascript), or code in the SmartGovLang validation

language; the latter is subdivided in two categories, namely SmartGov full rules and

SmartGov compact rules. Details for each method category are provided in the

followi

ng paragraphs.

© SMARTGOV Consortium Page 253 of 288

IST PROJECT 2001-35399 SMARTGOV

28 July 2003

/3 Method Edition - Microsoft Internet Explorer I oy] 1}
Back + = - (D 7t | Qysearch [GlFavorites iMedia (3 ‘ B-S o dee ﬁ
. " User: user_expert
L P = - 2

Method Edition: P o
Description
Description [
‘ S e narm e s hatid el eont e elEhabet Charatiars o |
Ll
[spanish =] o
[
Method code
Method type:
()
Language to use Usefu|Full Smartsov rule | Code
Code written directly x|
jaus = Frant end = L i
Method Edition: @
|&] Done ,_’_,_ E Local intranet 7

Figure 84 - Validation rule main editing page

B.3.1 Native language validation checks

For a validation check implemented in some native language, the coding language can

be entered (Java and Javascript are the available options), an indication on whether

the code can implement checks for the front-end, back-end or both and the actual

code fragment implementing the validation, either by directly typing it in a relevant
area or by uploading a file with the code. Note that the Integrator does not take into

account validation checks coded in any native language; the IT staff (which will write

the code) should cater for the integration of code into the produced services by

uncompressing the produced war file and modifying the files therein.

© SMARTGOV Consortium Page 254 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

/2 Method Edition - Microsoft Internet Explorer 2 oy] 1}
Back + = - @ [2] & | Qsearch [lFavorites imeda B By & =l = 992 ﬁ
LT " User: user_expert D
S Method Edition S = E=E

Method Edition: P o
Description
[Description [
‘ S e narm e s hatid el eont e elEhabet Charatiars [o [@
Ll
[spanish =] o
[
Method code
Method type: |Frogramming native language = |
Language to use
Language to use Useful for Code
Code written directly x|
jaus = Frant end = L i
Method Edition: @
|&] Done ,_’_,_ E Local intranet 7

Figure 85 - Entering validation methods in native language

B.3.2 SmartGov language compact rules

Compact rule methods can be used to express simple validation checks in a user-
friendly and intuitive manner. Besides the “description” part, which is common for all
rule method types, each compact rule has the following elements:

» a severity designation, which classifies the validation check either as an error or as
a warning. Errors must be corrected before the user continues to the next stage of
the e-service, while a warning is an advisory message to the user. Experience
however has shown that users tend to ignore warning messages so it strongly
recommended that only validation checks with error severity designations are
used.

» a validation message which is the message that will be displayed to the user of the
electronic service, in the case that the validation check fails. This is a multilingual
resource and should be provided in the languages that the e-service target group
uses.

» the type of the compact rule. Six pre-defined compact rule types are provided:

o field between values of two fields, illustrated in Figure 86. In this case the
developer selects the TSE to be checked from a drop down list, and enters the
lower and upper bound in the two adjacent input areas. The e-service user

should provide for the selected TSE a value between the designated limits.

© SMARTGOV Consortium Page 255 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

a Method Edition - Microsoft Internet Explorer

o]
| = |

dmbak - o= - (@ [H] 3| Qoearch GFavontes @veda (| Y- S EIH QD
I > User: user_expert D
Methad Edition S -
Mathod Edition: iR |
Description
ion [
Spanish z t
Method code
Methed type: Carmpact SraartGay rule =
Compact SmartGov rule
Severity: Errar =
[[validation Message [[|
[spanish =1 I | o |
Type: [Field between values of two fields =l
Field [SALaRY_TSE =] should be between [100 and [zo0]
Method Edition: o W
@] Dene [[BEtecaintranst 7

Figure 86 - Compact SmartGovLang validation method editing

e field requires other field, illustrated in Figure 87. In this case the developer
selects two TSEs from respective drop-down lists. If the e-service user provides
a value for the TSE selected in the first drop-down list, then she must provide a
value for the TSE selected in the second drop-down as well.

/3 Method Edition - Microsoft Internet Explorer [3|

GBack + = - £} 7t | Qhsearch [GFavorites SEPMedia ®| B-S = (] ﬁ
1] 5 (24 D
Method Edition \::r:(G l:l

test
group:

Method Edition: @ D

Description

Description |

ISpanish 'I i

Method code

Method type: ICornpact SmartGow rule ;I

Compact SmartGov rule

Severity: I Error - I

[|validation Message ,_,_
| ISpanish;I l | i
Type: IFieId requires other fizld ;I
If field | SALARY_TSE =l has a value then field [PROFESSION_TSE Bl st have sivalussas well

Method Edition: 'E') Q

[
|ﬂ:| Done l_ l_ l_ E Local inkranet i

Figure 87 — Compact SmartGovLang validation method editing

© SMARTGOV Consortium Page 256 of 288

IST PROJECT 2001-35399 SMARTGOV

28 July 2003

e field precludes other field, illustrated in Figure 88. In this case the developer

selects two TSEs from respective drop-down lists. If the e-service user provides
a value for the TSE selected in the first drop-down list, then she must not

provide a value for the TSE selected in the second drop-down.

& Method Edition - Microsoft Internet Explorer o =]}
<aBack - = - () Zat | @hsearch (GFavorites Media §| E-S = 9 @ ﬁ
",t'. User: user expert D
o '_r':‘.'-;JJZJ!.’. Method Edition Work et l:l
- Giov group: st
mMethod Edition: @ D
DescHpltion
DescHpton |
I Spanizh = i i
Method code
Method type: ICornpact SrnartGow rule ;I
Compact SmartGov rule
Severity: I Errar - I
[Validation Message
| ISpanish ;I t
Type: I Field precludes other field ;I
If fiald | STOCK_DIVIDEND_TSE x| has = walue then fisld | SALARY_TSE | rust not have 3 value
Method Edition: @ D l:‘
|@ Done l_ ’_’_ E Local intranet G

Figure 88 - Compact SmartGovLang validation method editing

e field requires other fields, illustrated in Figure 89. In this case the developer

selects one TSEs from a drop-down lists and one or more TSEs from a second

list. If the e-service user provides a value for the TSE selected in the first drop-

down list, then she must provide a value for at least one of the TSEs chosen in

the second list.

© SMARTGOV Consortium Page 257 of 288

IST PROJECT 2001-35399 SMARTGOV

28 July 2003

/3 Method Edition - Microsoft Internet Explorer N =10 x|
GBack + = - £} 2t | Qhsearch [GFavorites SEPMedia ®| B-S = (] i
",t'.' User: user_expert D
ATy 2 s
e s'”JZJ‘(‘Y' Mathod Edition Word: e l:l
AoV group:
Method Edition: @ m
Description
Description |
I Spanish = I i
Method code
Method type: ICornpact SmartGow rule ;I
Compact SmartGov rule
Severity: IError - I
VYalidation Message
ISpanish;I i
Type: IFieId requires some other fields ;I
PROFESSION_TSE -
SALARY_TSE
STOCK_DIVIDEMD_TSE
If field [STOCK_DIVIDEND_TSE =] has a value then at least on= of the fields | OTHER_INCOME_TSE |
mMethod Edition: @ D |:|
[| |[BEvrocalintranet A

|@j Drone

Figure 89 - Compact SmartGovLang validation method editing

value for all of the selected TSEs or for none of them. In other words, it is not
allowed for the e-service user to provide values for some of the TSEs and not

provide values for the remaining ones.

several fields required at the same time, illustrated in Figure 90. In this case
the developer selects a list of TSEs. The e-service user should either provide a

© SMARTGOV Consortium

Page 258 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

/2 Method Edition - Micrasoft Internet Explorer : ol
Goack + = - (D ﬁl Qhzearch (Favorites ShMedia 3| - E0P ﬁ
s User: user_expert |
DS Method Edition work l:l EI

- Gov groupt =7
Method Edition: d
Description
Description
[spanish = o
Method code
Method typa: [compact Smardow rule =
Compact SmartGov rule
Savarity: [Erar -
[[validation Message \
[Tspamsn=] | [o
Type: | several fields required at the same time »|
PROFESSION_TSE -
SALARY_TSE
STOCK_ DIVIDEND_TSE
The user should provide a value for all of the fallowing fields | QTHER_INCOME_TSE j
Method Edition: | 0
|@ Dong ’_ l_ ’_ (B Local intranet S

Figure 90 - Compact SmartGovLang validation method editing

e a condition holds for a field, illustrated in Figure 91. In this case the developer
selects a TSE tsel from a drop-down list, a relational operator rop (=, #, >, >=,
<, <=) then a second field tse2 and finally enters a factor fact. The values
entered by the e-service user for the referenced TSEs must satisfy the condition
tsel rop tse2 * fact; for instance a tax payer’s net income may not be less than
the 80% of her salaries, which can be expressed by NET_INCOME _TSE >=
SALARY_TSE * 0.8.

© SMARTGOV Consortium Page 259 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

43 Method Edition - Microsoft Internet Explorer 101 =l
GBack ~ = - (3 tat ‘ Qsearch [EFavorites GlMedia % | By S =1 9 @ ﬁ
"‘,t’" User: user_expert D
Sz Method Edition work -
- oW group:
Method Edition: [
Description
Descrption
L
I Spanizh = I ﬁ
Method code
Method type: ICompact SrnartGov rule ;I
Compact SmartGov rule
Severibty: I Error -
[Validation Message [
| ISpanish _d i_
Type: IA fizld holds a condition ;I
The fallowing condition rust holds: [NET_INCOME_TSE =l |==1z] [saLarv_Tse =l * ol
Method Edition: D
|&] Done =i Local intranet 4

Figure 91 - Compact SmartGovLang validation method editing

B.3.3 Full Rules

Full rules are a more powerful means of coding validation checks, allowing for a
plethora of tests to be made over the data values and providing facilities for active
behaviour such as automatic value calculation. Full rules have a condition part and an
action part, which may be entered in the respective areas of the validation rule editing
form, when the method type has been set to Full SmartGov rule (see Figure 92). For a
full compact rule, the SmartGov platform evaluates the condition part and then
inspects the result: if this is true then the actions specified in the action part are
taken; if the condition evaluates to false, then no action is taken. In the following, a
rule having a condition part condition and an action part action will be denoted as
condition - action
The condition and action parts of a SmartGovlang full rule are discussed in the

following paragraphs, and examples are given.

© SMARTGOV Consortium Page 260 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

/ Method Edition - Microsoft Internet Explorer) B o]|
GBack v = - (@ 2 A} | Disearch GFavortes Gfimedia (H | By S = H 9 D ﬁ
‘-f:"_ User: user_expert _

e e e e e
AoV group:
Methad Edition: (|
Description
Description
[spanish = o
Method code
Method typa: [Full $mart@av rle =1
Full SmartGov rule
lengthilast_narme) = 0 |
Condition:
arrorMess:age[[(“EN"..“Lalst narme must be specfied.”) |:|
err ("EL”, "Mpénzi va Gobei znifzro,™ 1) &
Method Edition: (|
|’(§| Done _|_ _|E Loncal intranet 4

Figure 92 - Full SmartGovLang rule editing

B.3.3.1 Condition Part — Data types

Any expression that can evaluate to true or false can be used as a condition. So the
literal:
true

Could be used as a condition that would always lead to the execution of the associated
actions. For the majority of cases though we need to access user input on order to
determine if action needs to be taken. To access the user input, we merely use the
corresponding element name. For example, assuming an element “married” the
expression:

married
evaluates to true or false, depending on user input. All user input elements are of type
number, text or boolean, depending on how each user input element is designed. The
married element in the last example must be of type boolean for the condition to be
valid.
Assuming non-boolean elements, valid conditions are relational expressions among
them. Operators can be the ones listed in Table 2 and an example is:

total_income < total_expenses

© SMARTGOV Consortium Page 261 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

which leads to the execution of the action part if the specified total income is less than
the total expenses, for the appropriate “total_income” and “total_expenses” numeric
elements. Another example is:
employment_status = “unemployed”

where the actions are executed if the “employment_status” element (could be a combo
box of 4 values) has the value “unemployed”. Finally, boolean expressions can be
combined to form more complex expressions, as the following one:

married AND (total_income < total_expenses)
which uses the previous expressions to form a new one that evaluates to true only if
both sub-expressions evaluate to true. The full list of boolean operators is presented in
Table 3.
Note the use of parenthesis that specifies that the numeric comparison is the left-
hand-side expression. Omitting the parenthesis would lead to “total_income” being
mistakenly used as a boolean element and form the left-hand-side expression on its

own.

B.3.3.2 Condition Part — Functions

To form even more complex conditions and process user input functions are provided
in SmartgovLang. We can logically divide functions in four types: arithmetic, string,
date and aggregate. Arithmetic functions are listed in
Table 4. An example condition that checks for integer user input is:

fractional(numof_children) = 0.0
where the action part is triggered if the user specified a non-integer number of
children.
One of the most common functions used are string functions that operate on text
elements.
Table 5 shows a list of al available string functions. A typical example checks for no-
user input in a text field:

length(last_name) = 0

which if true means the user entered no last name.
Almost all functions can be written by means of the matches functions. This function
uses a regular expression to test for certain string format. Describing regular

expressions is beyond the scope of this document. Regular expressions are described

© SMARTGOV Consortium Page 262 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

in [Sun]®. Instead of directly using regular expressions, naive users should resort to
using the rest of the functions:
isAlpha(last_name) AND
(startsWith(title, “Dr.”) OR startsWith(title, "Doctor"))
This condition will evaluate to true if the user specified last name consists of only
letters and the user title either starts with “Dr.” or “"Doctor”, capturing the case of the
user being a doctor.
Another common input check has to do with date manipulation, especially validation.
The condition
NOT isValidDate(birth_date)
will trigger the execution of rules if the specified birth date is illegal. The complete list
for date and time functions is given in
Table 6. Note that date and time are always expected to be of the form “yyyy/mm/dd”
and “hh:mm:ss” respectively. A more complex scheme can be employed if
isValidDate(yyyy, dd, ss) and isValidTime(hh, mm, ss) are used instead of the single
argument ones.
Finally, aggregate functions (
Table 7) like min, max, count and sum can be used to compute the aggregate over all

elements in a given form.

B.3.3.3 Action List

An action list is a sequence of actions, with each action being terminated by a semi-
colon (;). An action can either be a message action or a field action. We will visit
available actions them in this order.

The most common action to be taken is to present an error message to the user upon
invalid input. The message can be an error message, a warning message or an
information message, so actions in

Table 8 are used to distinguish between the cases. Different types of messages lead to
different system behavior. For example, an error message will not allow the form to be

submitted, while an information message will.

3 Note that the interpretation of regular expression depends on the execution engine,
which is Java for the back-end and Javascript for the front-end, thus some
incompatibilities in execution may arise. Consult [Sun] and [Javascript] for a thorough
coverage of the interpretations.

© SMARTGOV Consortium Page 263 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

An important aspect of the message actions is the use of a multilingual message. A
multilingual message contains the same message in different languages. For example,
suppose message “sample message” is rewritten in languages “langl”, “lang2” and
“lang4” as “sample message 1”, “sample message 2” and “sample message 4”.
Producing the corresponding warning message is done by:
warningMessage(((“langl”, “sample message 1")
(“lang2”, “sample message 2”) (“lang3”, “sample message 3")))
Notice that all messages are enclosed in parenthesis and every language-dependent
entry is also enclosed in parenthesis. Every entry contains the language identifier and
the translated message separated by commas. Thus, an error message that could be
triggered by the “length(last_name) = 0” condition seen before is:
errorMessage((("EN”, “Last name must be specified.”)
(“EL”, “MNpé&nel va 300¢i enifeT10.”))) ;
The second type of actions is field actions. A field can be enabled or disabled (typically
due to some value in another field), take a new value or take the user input focus. All
these actions are presented in Table 9. Recalling the simple example condition
“married”, it could be necessary that field “spouse_last_name” is enabled or disabled.
Thus, both rules should be added to the enclosing form:
married 2> enableField(spouse_last_name)

A\\V /4

setField(spouse_last_name, ") setFocus(spouse_last_name) ;
and

NOT married > disableField(spouse_last_name) ;
In this manner we enable or disable the “spouse_last_name” dependent on the user
specifying him as single or married. Notice that when the user is married, the
“spouse_last_name” field is enabled, cleared with the empty string and has the user

input focus.

B.4 Reference Tables

Table 2 - Operators and their meaning for operands of type number and text.

Operator | Example Number Operands Text Operands
= El =E2 True for E1 equal to E2, | True for E1 same as E2,
otherwise false. otherwise false.

I= El != E2 | False for E1 equal to E2, | False for E1 same as E2,

otherwise true. otherwise true.

© SMARTGOV Consortium Page 264 of 288

IST PROJECT 2001-35399 SMARTGOV

28 July 2003

Operator | Example Number Operands Text Operands
> El1 > E2 | True for E1 greater than | True for El
E2, otherwise false. lexicographically after E2,
otherwise false.
>= El >=E2 | True for E1 greater or | True for El
equal to E2, otherwise | lexicographically after or
false. same as E2, otherwise
false.
< El <E2 | True for El1 less than | True for El
E2, otherwise false. lexicographically before E2,
otherwise false.
<= El <= E2 | True for E1 less or equal | True for El
to E2, otherwise false. lexicographically before or
same as E2, otherwise
false.
Table 3 Boolean operators.
Operator Example Evaluation
AND E1 AND E2 | True for both E1 and E2 are true,
otherwise false.
OR E1 OR E2 | True if at least on of E1 and E2 is
true, otherwise false.
NOT E1 NOT E2 | True only if E1 is false, otherwise
false.

Table 4 Arithmetic functions.

Function

Evaluation

fractional(x)

int(x)

The integral part of value x. The
expected data type is numeric.
The fractional part of value x. The

expected data type is numeric.

© SMARTGOV Consortium

Page 265 of 288

IST PROJECT 2001-35399 SMARTGOV

28 July 2003

Table 5 String functions.

Function

Evaluation

length(string)
index(string, token)

substr(string, offset, n)

concatenate(stringl, string2)

hasAlphabet(string, alphabet)

matches(string, expression)

isAlphaNumeric(string)

IsAlpha(string)

isNumeric(string)

startsWith(string, prefix)

endsWith(string, postfix)

The number of characters in string.

Returns the position, in characters, numbering
from 1, in string where token first occurs, or
zero if it does not occur at all.

Returns the at most n-character substring of
string that begins at position offset, numbering
from 1.

Returns a string whose value is string1, followed
by string2.

Returns true if the string contains only
characters listed in alphabet, or false, otherwise
Returns true if string matches the regular
expression pattern specified in pattern or false
otherwise. [reg exp specs]

Returns true if string consists of only letters,
spaces, numbers and underscores (“_"),
otherwise false.

Returns true if string consists of only letters,

w o

spaces and underscores (, otherwise false.

Returns true if string consists of only numbers,

otherwise false.

Equivalent to the following expression:
(substr(string, 1, length(prefix)) = prefix)

Equivalent to the following expression:
(substr(string, length(s)-length(postfix),

length(prefix)) = postfix)

Table 6 Date functions.

Function

Evaluation

date()

Returns the current system date in a string

of the form “yyyy/mm/dd".

© SMARTGOV Consortium

Page 266 of 288

IST PROJECT 2001-35399 SMARTGOV

28 July 2003

Function

Evaluation

isValidDate(yyyy,
dd)
isValidDate(string)

mm,

year()
month()

day()

weekDay/()

time()

isValidTime(hh, mm, ss)

isValidTime(string)

Returns true if the given date is valid,
otherwise false.

Returns true if the given date is of the form
“vyyy/mm/dd” and valid, otherwise false.
Returns the current system year.
Returns the current system month.
Returns the current system day in the
month.

Returns the current system week day (1 for
Sunday, 2 for Monday, ..., 7 for Saturday).
Returns the current system time in a string
of the form “hh:mm:ss”.

Returns true if the given time is valid,
otherwise false.

Returns true if the given time is of the form

“hh:mm:ss” and valid, otherwise false.

hour() Returns the current system hour.
minute() Returns the current system minute.
second() Returns the current system second.
Table 7 Aggregate functions.
Function Comments
count(group, Returns the number of rows in a
element) repeating group (table) html table?

sum(group, element)

max(group, element)

min(group, element)

Server side checking?

Returns the sum of the values in the
designated column.

Returns the maximum of the values in
the designated column.

Returns the minimum of the values in

the designated column

© SMARTGOV Consortium

Page 267 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

Table 8 Message actions.

Action Behaviour

errorMessage(multilingual messsage) Uses the current locale to produce
the appropriate error message. The
operation halts.
warningMessage(multilingual messsage) Uses the current locale to produce
the appropriate warning message.
The wuser is asked whether the
operation should continue.
informationMessage(multilingual Uses the current locale to produce

messsage) the appropriate error message. The

operation continues normally.

Table 9 Field actions.

Action Behavior

DisableField(field) Disallows the user to enter values to the
designated form field.

EnableField(field) Allows the user to enter values to the
designated field.

setField(field, value) | Sets the designated field to the specified

value.
SetFocus(field, Moves the input focus to the designated field.
value)
B.5 References
[Sun] Sun Microsystems, JavaDoc for the Pattern class,

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

[Javascript] Netscape Corporation, Javascript Reference (versions 1.3, 1.4 and 1.5),

http://devedge.netscape.com/central/javascript/

© SMARTGOV Consortium Page 268 of 288

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
http://devedge.netscape.com/central/javascript/

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

Appendix C. Front-end databases scripts

User-roles database

MS SQL Server

IF EXISTS (SELECT name FROM master.dbo.sysdatabases WHERE name = N'sgUsers')
DROP DATABASE [sgUsers]
GO

CREATE DATABASE [sgUsers]
GO

use [sgUsers]
GO

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[group users]') and OBJECTPROPERTY (id, N'IsUserTable') = 1)
drop table [dbo].[group users]
GO

if exists (select * from dbo.sysobjects where id = object id(N'[dbo].[groups]"')

and OBJECTPROPERTY (id, N'IsUserTable') = 1)
drop table [dbo].[groups]
GO

if exists (select * from dbo.sysobjects where id = object id(N'[dbo].[roles]')

and OBJECTPROPERTY (id, N'IsUserTable') = 1)
drop table [dbo].[roles]
GO

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[rolescopes]') and OBJECTPROPERTY (id, N'IsUserTable') = 1)
drop table [dbo].[rolescopes]

GO

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[user roles]') and OBJECTPROPERTY (id, N'IsUserTable') = 1)
drop table [dbo].[user roles]

GO

if exists (select * from dbo.sysobjects where id = object id(N'[dbo].[users]')

and OBJECTPROPERTY (id, N'IsUserTable') = 1)

drop table [dbo].[users]

GO

if not exists (select * from master.dbo.syslogins where loginname = N'db user')
BEGIN

declare @logindb nvarchar(132), Q@loginlang nvarchar (132) select @logindb =
N'outUsers', @loginlang = N'us english'
if Q@logindb is null or not exists (select * from master.dbo.sysdatabases
where name = @logindb)
select @logindb = N'master'
if Q@loginlang is null or (not exists (select * from master.dbo.syslanguages
where name = @loginlang) and @loginlang <> N'us english')
select @loginlang = @@language
exec sp addlogin N'db user', null, @logindb, @loginlang
END

© SMARTGOV Consortium Page 269 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

GO

if not exists (select * from dbo.sysusers where name = N'db user' and uid <
16382)

EXEC sp grantdbaccess N'db user', N'db user'
GO

exec sp addrolemember N'db datareader', N'db user'
GO

exec sp addrolemember N'db datawriter', N'db user'
GO

CREATE TABLE [dbo].[group users] (
[group id] [varchar] (15) NOT NULL ,
[smartgov_user_id] [varchar] (15) NOT NULL

)
GO

CREATE TABLE [dbo].[groups] (
[group id] [varchar] (15) NOT NULL ,
[type] [varchar] (8) NOT NULL ,
[outer user system] [varchar] (15) NULL ,
[group name] [varchar] (25) NOT NULL

CREATE TABLE [dbo].[roles] (
[rolescope id] [varchar] (15) NOT NULL ,
[role id] [varchar] (15) NOT NULL ,
[role name] [varchar] (50) NOT NULL

CREATE TABLE [dbo].[rolescopes] (
[rolescope_id] [varchar] (15) NOT NULL ,
[rolescope name] [varchar] (50) NOT NULL
)
GO

CREATE TABLE [dbo].[user roles] (
[group id] [varchar] (15) NOT NULL ,
[smartgov_user id] [varchar] (15) NOT NULL ,
[role_scope_id} [varchar] (15) NOT NULL ,
[role id] [varchar] (15) NOT NULL

CREATE TABLE [dbo].[users] (
[smartgov_user_id] [varchar] (15) NOT NULL ,
[smartgov_user password] [varchar] (15) NOT NULL ,
[outer user id] ([varchar] (15) NOT NULL

)

GO

ALTER TABLE [dbo].[group users] WITH NOCHECK ADD
CONSTRAINT [PK_group_users] PRIMARY KEY CLUSTERED
(
[group id],
[smartgov_user id]

GO

© SMARTGOV Consortium Page 270 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

ALTER TABLE [dbo].[groups] WITH NOCHECK ADD
CONSTRAINT [PK groups] PRIMARY KEY CLUSTERED
(
[group id]
)
GO

ALTER TABLE [dbo].[roles] WITH NOCHECK ADD
CONSTRAINT [PK_roles] PRIMARY KEY CLUSTERED
(
[rolescope id],
[role id]

GO

ALTER TABLE [dbo].[rolescopes] WITH NOCHECK ADD
CONSTRAINT [PK_rolescopeS] PRIMARY KEY CLUSTERED
(
[rolescope id]
)
GO

ALTER TABLE [dbo].[user roles] WITH NOCHECK ADD
CONSTRAINT [PK_user_roleS] PRIMARY KEY CLUSTERED
(

group id],

smartgov_user id],

role scope id],

role id]

[
[
[
[

GO

ALTER TABLE [dbo].[users] WITH NOCHECK ADD
CONSTRAINT [PK users] PRIMARY KEY CLUSTERED
(
[smartgov_user id]

)

GO

/*

* Dumping data for table 'roles'

*/

INSERT INTO roles VALUES ('smartgov', 'admin', 'Administrator');
INSERT INTO roles VALUES ('smartgov',6 'manager', 'Manager');
INSERT INTO roles VALUES ('smartgov', 'expert', 'Domain Expert');

INSERT INTO roles VALUES
INSERT INTO roles VALUES
INSERT INTO roles VALUES
INSERT INTO roles VALUES
INSERT INTO roles VALUES
INSERT INTO roles VALUES

'smartgov', 'staff','IT Staff');
'smartgov', 'worker', 'Service Worker');
'wf ku','editor', 'Editor"');

'wf ku', 'reviewer', 'Reviewer');

'wf ku', 'approver', 'Approver');

'wf ts','editor', 'Editor');

INSERT INTO roles VALUES ('wf ts', 'approver', 'Approver');
/*

* Dumping data for table 'rolescopes'

*/

INSERT INTO rolescopes VALUES ('smartgov', 'SmartGov System');
INSERT INTO rolescopes VALUES ('wf ts', 'Workflow of TS');
INSERT INTO rolescopes VALUES ('wf ku', 'Workflow of KU');

© SMARTGOV Consortium Page 271 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

/*
* Dumping data for table 'users'
*/

INSERT INTO users VALUES
INSERT INTO users VALUES
INSERT INTO users VALUES
INSERT INTO users VALUES

'administrator', 'administrator', 'SmartGov') ;
'user expert', 'user expert', 'SmartGov');
'user manager', 'user manager', 'SmartGov') ;
'user_staff', 'user_staff', 'SmartGov');

/%
* Dumping data for table 'user roles'
*/

INSERT INTO user roles VALUES
INSERT INTO user roles VALUES
INSERT INTO user roles VALUES
INSERT INTO user roles VALUES ')
INSERT INTO user roles VALUES('test', 'user manager',6 'wf ts','editor');

('test','administrator', 'wf ts','editor');
(
(
(
(_
INSERT INTO user roles VALUES('test', 'user staff',6 'wf ku',6 'editor');
(
(
(
(
(

'test','useriexpert',‘wfika','editor');
'test', 'user expert',6 'wf ts', 'editor');
'test', 'user manager', 'wf ku', 'editor

INSERT INTO user roles VALUES('test',6 'user staff','wf ts','editor');

INSERT INTO user roles VALUES ('user system',6 'administrator', 'smartgov', 'admin');
INSERT INTO user roles VALUES ('user system', 'user expert', 'smartgov', 'expert');
INSERT INTO user roles VALUES ('user system', 'user manager', 'smartgov',6 'manager');
INSERT INTO user roles VALUES ('user system', 'user staff','smartgov','staff');

/*

* Dumping data for table 'groups'

*/

INSERT INTO groups VALUES ('user system',6 'us', 'smartgov_outer', 'User System');
INSERT INTO groups VALUES('test','wg',6'',6 'Testing Group');

/%
* Dumping data for table 'group users'
*/

INSERT INTO group users VALUES
INSERT INTO group users VALUES
INSERT INTO group users VALUES
INSERT INTO group users VALUES
INSERT INTO group users VALUES
INSERT INTO group users VALUES
INSERT INTO group users VALUES
INSERT INTO group users VALUES

'test', 'administrator"');
'test', 'user expert');
'test', 'user manager');
'test', 'user staff');

'user system', 'administrator');
'user system', 'user expert');
'user system', 'user manager');
'user system', 'user staff');

CREATE DATABASE smartgov user system;
USE smartgov_user system;

GRANT ALL PRIVILEGES ON *.* TO db user@"%" IDENTIFIED BY 'egov' WITH GRANT
OPTION;

#
Table structure for table 'group users'

#

DROP TABLE IF EXISTS group users;

CREATE TABLE ‘group users (
‘group id’ varchar (15) NOT NULL default '',
‘smartgov_user id® varchar(15) NOT NULL default '',

© SMARTGOV Consortium Page 272 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

PRIMARY KEY ('group_id’, "smartgov_user id’)
) TYPE=MyISAM;

#
Table structure for table 'groups'
#

DROP TABLE IF EXISTS groups;

CREATE TABLE “groups (
‘group id® varchar(15) NOT NULL default '',
‘type® varchar (8) NOT NULL default '',

‘outer user system’ varchar(15) default '',
‘group name’ varchar (25) NOT NULL default '',
PRIMARY KEY ('group id")

) TYPE=MyISAM;

#
Table structure for table 'roles'

#

DROP TABLE IF EXISTS roles;

CREATE TABLE ‘roles’ (
‘rolescope id’ varchar(15) NOT NULL default '',
‘role id’ varchar (15) NOT NULL default '',
‘role name’ varchar (50) NOT NULL default '',
PRIMARY KEY ('rolescope id’, ‘role id")

) TYPE=MyISAM;

#
Table structure for table 'rolescopes'
#

DROP TABLE IF EXISTS rolescopes;

CREATE TABLE “rolescopes (
‘rolescope id® varchar(15) NOT NULL default '',
‘rolescope name’ varchar (50) NOT NULL default '',
PRIMARY KEY (rolescope id")

) TYPE=MyISAM;

#
Table structure for table 'user roles'
#

DROP TABLE IF EXISTS user roles;
CREATE TABLE ‘user roles (

‘group id® varchar(15) NOT NULL default '',

‘smartgov_user id® varchar(15) NOT NULL default '',

‘role scope id' varchar(15) NOT NULL default '',

‘role id’ varchar (15) NOT NULL default '',

PRIMARY KEY ('group id’, 'smartgov_user id’, ‘role scope id", ‘role id")
) TYPE=MyISAM;

#
Table structure for table 'users'

#

DROP TABLE IF EXISTS users;
CREATE TABLE ‘users (
‘smartgov_user id’ varchar(15) NOT NULL default '',

© SMARTGOV Consortium Page 273 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

‘smartgovfuseripassword‘ varchar (15) NOT NULL default '',
‘outer user id' varchar(15) NOT NULL default '',
PRIMARY KEY (' smartgov_user id")

) TYPE=MyISAM;

#
Dumping data for table 'roles'
#

INSERT INTO roles VALUES
INSERT INTO roles VALUES
INSERT INTO roles VALUES
INSERT INTO roles VALUES
INSERT INTO roles VALUES
INSERT INTO roles VALUES
INSERT INTO roles VALUES
INSERT INTO roles VALUES
INSERT INTO roles VALUES
INSERT INTO roles VALUES

"smartgov", "admin", "Administrator") ;
"smartgov", "manager", "Manager") ;
"smartgov", "expert", "Domain Expert");
"smartgov","staff","IT Staff");
"smartgov", "worker", "Service Worker");
"wf ku","editor","Editor");

"wf ku","reviewer", "Reviewer");

"wf ku","approver", "Approver");

"wf ts","editor","Editor");

"wf ts","approver", "Approver");

#

Dumping data for table 'rolescopes'

#

INSERT INTO rolescopes VALUES ("smartgov","SmartGov System");
INSERT INTO rolescopes VALUES ("wf ts","Workflow of TS");
INSERT INTO rolescopes VALUES ("wf ku","Workflow of KU");

#
Dumping data for table 'users'
#

INSERT INTO users VALUES
INSERT INTO users VALUES
INSERT INTO users VALUES
INSERT INTO users VALUES

"administrator","administrator", "SmartGov") ;
"user expert","user expert","SmartGov");
"user manager","user manager","SmartGov") ;
"user staff","user staff","SmartGov");

#
Dumping data for table 'user roles'
#

INSERT INTO user roles VALUES
INSERT INTO user roles VALUES
INSERT INTO user roles VALUES

("test","administrator","wf ts","editor");
("test","user expert","wf ku","editor");
("test","user expert","wf ts","editor");
INSERT INTO user roles VALUES ("test","user manager","wf ku","editor");
INSERT INTO user roles VALUES ("test","user manager","wf ts","editor");
INSERT INTO user roles VALUES ("test","user staff","wf ku","editor");
INSERT INTO user roles VALUES ("test","user staff","wf ts","editor");
INSERT INTO user roles VALUES ("user system","administrator","smartgov","admin");
INSERT INTO user roles VALUES ("user system","user expert","smartgov","expert");
INSERT INTO user roles VALUES ("user system","user manager","smartgov", "manager");
INSERT INTO user roles VALUES ("user system","user staff","smartgov","staff");

#

Dumping data for table 'groups'

#

INSERT INTO groups VALUES ("user system","us","smartgov outer","User System");
INSERT INTO groups VALUES ("test","wg","","Testing Group");

#
Dumping data for table 'group users'
#

© SMARTGOV Consortium Page 274 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

INSERT INTO group users VALUES
INSERT INTO group users VALUES
INSERT INTO group users VALUES
INSERT INTO group users VALUES
INSERT INTO group users VALUES
INSERT INTO group users VALUES
INSERT INTO group users VALUES
INSERT INTO group users VALUES

"test","administrator");
"test", "user expert");
"test", "user manager");
"test", "user staff");

"user system","administrator");
"user system","user expert");
"user_system","user_manager");
"user system","user staff");

Outer users database

MS SQL Server

IF EXISTS (SELECT name FROM master.dbo.sysdatabases WHERE name = N'outUsers')
DROP DATABASE [outUsers]
GO

CREATE DATABASE [outUsers]
GO

use [outUsers]
GO

if exists (select * from dbo.sysobjects where id =

object id(N'[dbo].[outer users]') and OBJECTPROPERTY (id, N'IsUserTable') = 1)
drop table [dbo].[outer users]
GO

if not exists (select * from master.dbo.syslogins where loginname = N'db user')
BEGIN
declare @logindb nvarchar(132), Q@loginlang nvarchar (132) select @logindb =
N'outUsers', @loginlang = N'us english'
if @logindb is null or not exists (select * from master.dbo.sysdatabases
where name = @logindb)
select @logindb = N'master'
if @loginlang is null or (not exists (select * from master.dbo.syslanguages
where name = @loginlang) and @loginlang <> N'us english')
select @loginlang = @@language
exec sp_addlogin N'db user', null, @logindb, @loginlang
END
GO

if not exists (select * from dbo.sysusers where name = N'db user' and uid <
16382)

EXEC sp grantdbaccess N'db user', N'db user'
GO

exec sp addrolemember N'db datareader', N'db user'
GO

exec sp addrolemember N'db datawriter', N'db user'
GO

CREATE TABLE [dbo].[outer users] (
[outer user id] [varchar] (15) NOT NULL ,
[outer_user_first_name] [varchar] (50) NOT NULL ,
[outer user last name] [varchar] (50) NOT NULL ,
[outer user e mail] [varchar] (80) NOT NULL

© SMARTGOV Consortium Page 275 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

)
GO

ALTER TABLE [dbo].[outer users] WITH NOCHECK ADD
CONSTRAINT [PK outer users] PRIMARY KEY CLUSTERED
(

[outer user id]

GO

INSERT INTO outer users

VALUES ('administrator', 'SmartGov', 'Administrator', 'admin@smartgov.com')
INSERT INTO outer users

VALUES ('user staff', 'test', 'staff', 'user staff@smartgov.com')

INSERT INTO outer users

VALUES ('user manager', 'test', 'manager', 'user manager@smartgov.com')
INSERT INTO outer users

VALUES ('user expert', 'expert', 'expert', 'expert@smartgov.com')

CREATE DATABASE smartgov outer users;

USE smartgov outer users;

#

Table structure for table 'outer users'
#

DROP TABLE IF EXISTS outer users;

CREATE TABLE ‘outer users’ (
‘outer user id' varchar(15) NOT NULL default '',

‘outer user first name’ varchar(50) NOT NULL default '',
‘outer user last name’ varchar(50) NOT NULL default '',
‘outer user e mail® varchar(80) NOT NULL default '',
PRIMARY KEY (' outer user id")

) TYPE=MyISAM;

#

Dumping data for table 'outer users'

#

INSERT INTO outer users

VALUES ("administrator", "SmartGov", "Administrator","admin@smartgov.com") ;
INSERT INTO outer users

VALUES ("user staff","test","staff","user staff@smartgov.com");
INSERT INTO outer users

VALUES ("user manager","test", "manager","user manager@smartgov.com");
INSERT INTO outer users

VALUES ("user expert","expert", "expert", "expert@smartgov.com");

XML Repository database

MS SQL Server

IF EXISTS (SELECT name FROM master.dbo.sysdatabases WHERE name = N'xmlStore')
DROP DATABASE [xmlStore]

© SMARTGOV Consortium Page 276 of 288

mailto:admin@smartgov.com
mailto:user_staff@smartgov.com
mailto:user_manager@smartgov.com
mailto:expert@smartgov.com
mailto:admin@smartgov.com
mailto:user_staff@smartgov.com
mailto:user_manager@smartgov.com
mailto:expert@smartgov.com

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

GO

CREATE DATABASE [xmlStore]
GO

use [xmlStore]
GO

if not exists (select * from master.dbo.syslogins where loginname =
N'xmlstore user')
BEGIN
declare @logindb nvarchar(132), @loginlang nvarchar (132) select Q@logindb =
N'xmlStore', @loginlang = N'us english'
if Q@logindb is null or not exists (select * from master.dbo.sysdatabases
where name = @logindb)
select @logindb = N'master'
if Q@loginlang is null or (not exists (select * from master.dbo.syslanguages
where name = @loginlang) and @loginlang <> N'us english')
select @loginlang = @@language
exec sp addlogin N'xmlstore user', null, @logindb, @loginlang

END
GO
if not exists (select * from dbo.sysusers where name = N'xmlstore user' and uid <
16382)
EXEC sp grantdbaccess N'xmlstore user', N'xmlstore user'
GO

exec sp addrolemember N'db datareader', N'xmlstore user'
GO

exec sp addrolemember N'db datawriter', N'xmlstore user'
GO

exec sp addrolemember N'db owner', N'xmlstore user'
GO

MySQL
CREATE DATABASE xmlstore;

GRANT ALL PRIVILEGES ON *.* TO xmlstore user@"%" IDENTIFIED BY 'egov' WITH GRANT
OPTION;

GRANT ALL PRIVILEGES ON *.* TO xmlstore user@locahost IDENTIFIED BY 'egov' WITH
GRANT OPTION;

© SMARTGOV Consortium Page 277 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

Appendix D. IIG / SGA DBs creation script*
MS SQL Server

drop table entraPAQ;

drop table adelantePAQIIG;
drop table adelantePAQ;

drop table entraPAQIIG;

drop table SEPdatabaseTable;
drop table databaseTable;

drop table autoKeys;

CREATE TABLE entraPAQ (
entraPAQId INTEGER NOT NULL,
XMLMethodDescription VARCHAR (4000) NOT NULL,
SGtimestamp VARCHAR (22) NOT NULL,
notificationName VARCHAR(500) NOT NULL,
PRIMARY KEY (entraPAQId)

)

CREATE TABLE adelantePAQIIG (
adelantePAQId INTEGER NOT NULL,
notificationName VARCHAR (500) NOT NULL,
SGtimestamp VARCHAR (22) NOT NULL,
PRIMARY KEY (adelantePAQId)):;

CREATE TABLE adelantePAQ (
adelantePAQId INTEGER NOT NULL,
requestId INTEGER NOT NULL,
serviceName VARCHAR (500) NOT NULL,
XMLPacket VARCHAR (4000) NOT NULL,
realTime INTEGER NOT NULL,
persistent INTEGER NOT NULL,
SGtimestamp VARCHAR (22) NOT NULL,
PRIMARY KEY (adelantePAQId)):;

4 Oracle script has not been tested

© SMARTGOV Consortium Page 278 of 288

IST PROJECT 2001-35399 SMARTGOV

CREATE TABLE entraPAQIIG (
entraPAQId INTEGER NOT NULL,

serviceName VARCHAR (500) NOT NULL,
XMLMessage VARCHAR (4000) NOT NULL,

realTime INTEGER NOT NULL,

SGtimestamp VARCHAR (22) NOT NULL,

PRIMARY KEY (entraPAQId));

CREATE TABLE SEPdatabaseTable (

SEPdatabaseTableId INTEGER NOT NULL,

serviceName VARCHAR (500) NOT NULL,
XMLMessage VARCHAR (4000) NOT NULL,
realTime INTEGER NOT NULL,
SGtimestamp VARCHAR (22) NOT NULL,
PRIMARY KEY (SEPdatabaseTablelId))

CREATE TABLE databaseTable (

databaseTableId INTEGER NOT NULL,
requestId INTEGER NOT NULL,

serviceName VARCHAR (500) NOT NULL,
XMLMessage VARCHAR (4000) NOT NULL,

realTime INTEGER NOT NULL,
persistent INTEGER NOT NULL,

SGtimestamp VARCHAR (22) NOT NULL,
PRIMARY KEY (databaseTableId)

CREATE TABLE autoKeys (

KeyName VARCHAR(32) NOT NULL,

KeyValue INTEGER NOT NULL,
PRIMARY KEY (keyName));

MySQL

drop table entraPAQ;

drop table adelantePAQIIG;
drop table adelantePAQ;
drop table entraPAQIIG;

28 July 2003

© SMARTGOV Consortium Page 279 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

drop table SEPdatabaseTable;
drop table databaseTable;

drop table autoKeys;

CREATE TABLE entraPAQ (
entraPAQId INTEGER NOT NULL,
XMLMethodDescription BLOB NOT NULL,
SGtimestamp VARCHAR (22) NOT NULL,
notificationName BLOB NOT NULL,
PRIMARY KEY (entraPAQId)):;

CREATE TABLE adelantePAQIIG (
adelantePAQId INTEGER NOT NULL,
notificationName BLOB NOT NULL,
SGtimestamp VARCHAR (22) NOT NULL,
PRIMARY KEY (adelantePAQId)):;

CREATE TABLE adelantePAQ (
adelantePAQId INTEGER NOT NULL,
serviceName BLOB NOT NULL,
XMLPacket BLOB NOT NULL,
realTime INTEGER NOT NULL,
persistent INTEGER NOT NULL,
SGtimestamp VARCHAR (22) NOT NULL,
PRIMARY KEY (adelantePAQId));

CREATE TABLE entraPAQIIG (
entraPAQId INTEGER NOT NULL,
serviceName BLOB NOT NULL,
XMLMessage BLOB NOT NULL,
realTime INTEGER NOT NULL,
SGtimestamp VARCHAR (22) NOT NULL,
PRIMARY KEY (entraPAQId));

CREATE TABLE SEPdatabaseTable (
SEPdatabaseTableId INTEGER NOT NULL,
serviceName BLOB NOT NULL,

© SMARTGOV Consortium Page 280 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

XMLMessage BLOB NOT NULL,

realTime INTEGER NOT NULL,
SGtimeStamp VARCHAR (22) NOT NULL,
PRIMARY KEY (SEPdatabaseTableId)):;

CREATE TABLE databaseTable (
databaseTableId INTEGER NOT NULL,
requestId INTEGER NOT NULL,
serviceName BLOB NOT NULL,
XMLMessage BLOB NOT NULL,
realTime INTEGER NOT NULL,
persistent INTEGER NOT NULL,
SGtimestamp VARCHAR (22) NOT NULL,
PRIMARY KEY (databaseTableId));

CREATE TABLE autoKeys (
KeyName VARCHAR(32) NOT NULL,
KeyValue INTEGER NOT NULL,
PRIMARY KEY (keyName));

Oracle

drop table entraPAQ;

drop table adelantePAQIIG;
drop table adelantePAQ;

drop table entraPAQIIG;

drop table SEPdatabaseTable;
drop table databaseTable;

drop table autoKeys;

CREATE TABLE entraPAQ (
entraPAQId NUMBER(38) NOT NULL,
XMLMethodDescription VARCHAR2 (4000) NOT NULL,
SGtimestamp VARCHAR2 (22) NOT NULL,
notificationName VARCHARZ2 (500) NOT NULL,
PRIMARY KEY (entraPAQId)

© SMARTGOV Consortium Page 281 of 288

IST PROJECT 2001-35399 SMARTGOV

CREATE TABLE adelantePAQIIG (

adelantePAQId NUMRBER (38) NOT NULL,

notificationName VARCHAR2 (500)

NOT NULL,

SGtimestamp VARCHAR2 (22) NOT NULL,

PRIMARY KEY (adelantePAQId));

CREATE TABLE adelantePAQ (

adelantePAQId NUMRBER (38) NOT NULL,

requestId NUMBER (38) NOT NULL,

serviceName VARCHAR2 (500) NOT NULL,

XMLPacket VARCHARZ2 (4000) NOT NULL,

realTime NUMBER (2) NOT NULL,
persistent NUMBER (2) NOT NULL,

SGtimestamp VARCHAR2 (22) NOT NULL,

PRIMARY KEY (adelantePAQId));

CREATE TABLE entraPAQIIG (

entraPAQId NUMBER(38) NOT NULL,

serviceName VARCHAR2 (500) NOT NULL,

XMLMessage VARCHARZ2 (4000) NOT NULL,

realTime NUMBER(2) NOT NULL,

SGtimestamp VARCHARZ2 (22) NOT NULL,

PRIMARY KEY (entraPAQId));

CREATE TABLE SEPdatabaseTable (
SEPdatabaseTableId NUMBER(38)

NOT NULL,

serviceName VARCHAR2 (500) NOT NULL,

XMLMessage VARCHARZ2 (4000) NOT NULL,

realTime NUMBER(2) NOT NULL,

SGtimestamp VARCHAR2 (22) NOT NULL,

PRIMARY KEY (SEPdatabaseTableId));

CREATE TABLE databaseTable (

databaseTableId NUMBER (38) NOT NULL,

requestId NUMBER (38) NOT NULL,

serviceName VARCHAR2 (500) NOT NULL,

XMLMessage VARCHARZ2 (4000) NOT NULL,

28 July 2003

© SMARTGOV Consortium Page 282 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

realTime NUMBER (2) NOT NULL,
persistent NUMBER (2) NOT NULL,
SGtimestamp VARCHARZ2 (22) NOT NULL,
PRIMARY KEY (databaseTableId));

CREATE TABLE autoKeys (
KeyName VARCHARZ2 (32) NOT NULL,
KeyValue NUMBER(38) NOT NULL,
PRIMARY KEY (keyName));

© SMARTGOV Consortium Page 283 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

Appendix E.Login DB creation script’
MS SQL Server

CREATE TABLE SGuserData (

userID INTEGER NOT NULL,

userName NVARCHAR (64) NOT NULL UNIQUE,
password NVARCHAR (64) NOT NULL,
fullName NVARCHAR (128) NOT NULL,

PRIMARY KEY (userID)
)

CREATE TABLE SGuserServices (
userID INTEGER NOT NULL REFERENCES SGuserData (userId),
serviceName VARCHAR (128) NOT NULL,

PRIMARY KEY (userID, serviceName))

MySQL

CREATE TABLE SGuserData (
userID INTEGER NOT NULL,
userName VARCHAR (64) NOT NULL UNIQUE,
password VARCHAR (64) NOT NULL,
fullName VARCHAR (128) NOT NULL,

PRIMARY KEY (userID)
)

CREATE TABLE SGuserServices (
userID INTEGER NOT NULL REFERENCES SGuserData (userId),
serviceName VARCHAR(128) NOT NULL,
PRIMARY KEY (userID, serviceName))

> Oracle script has not been tested

© SMARTGOV Consortium Page 284 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

Oracle

CREATE TABLE SGuserData (
userID NUMBER (12) NOT NULL,
userName VARCHAR (64) NOT NULL UNIQUE,
password VARCHAR (64) NOT NULL,
fullName VARCHAR (128) NOT NULL,

PRIMARY KEY (userID)
)

CREATE TABLE SGuserServices (
userID NUMBER (12) NOT NULL REFERENCES SGuserData (userId),
serviceName VARCHAR (128) NOT NULL,

PRIMARY KEY (userID, serviceName)

© SMARTGOV Consortium Page 285 of 288

IST PROJECT 2001-35399 SMARTGOV

Appendix F.Sample
personal details

<?xml version="1.0" encoding="UTF-8"?>

<ServiceResults>

<serviceName>EVAT_AQ</serviceName>

<userName>XXX</userName>
<timestamp>XXX</timestamp>
<row>

<tseElement>

XML document

<name>TSE_EVAT_IS_CORRECTIVE</name>

<value>true</value>
</tseElement>

<tseElement>

<name>TSE_EVAT_CURRENCY</name>

<value>Euro</value>
</tseElement>

<tseElement>

<name>TSE_EVAT_DCL_NO</name>

<value>XXX</value>
</tseElement>

<tseElement>

<name>TSE_EVAT_YEAR</name>

<value>XXX</value>
</tseElement>

<tseElement>

<name>TSE_EVAT_TAX_OFFICE</name>

<value>XXX</value>
</tseElement>

<tseElement>

<name>TSE_EVAT_SUBM_DATE</name>

<value>XXX</value>
</tseElement>

<tseElement>

<name>TSE_EVAT_TRIMESTER</name>

<value>XXX</value>
</tseElement>

<tseElement>

<name>TSE_EVAT_RECEIVING_TAX_OFFICE</name>

<value>XXX</value>
</tseElement>

<tseElement>

28 July 2003

for eVies

© SMARTGOV Consortium

Page 286 of 288

IST PROJECT 2001-35399 SMARTGOV

<name>TSE_EVAT_RECEPTION_DATE</name>
<value>XXX</value>
</tseElement>
<groupElement groupld="TSEG_EVAT_PERIOD">
<row>
<tseElement>
<name>TSE_EVAT_PERIOD_END</name>
<value>XXX</value>
</tseElement>
<tseElement>
<name>TSE_EVAT_PERIOD_BEGIN</name>
<value>XXX</value>
</tseElement>
</row>
</groupElement>
<groupElement groupld="TSEG_EVAT_CONTACT">
<row>
<tseElement>
<name>TSE_EVAT_FILE_NO</name>
<value>XXX</value>
</tseElement>
<tseElement>
<name>TSE_EVAT_REG_AFM</name>
<value>XXX</value>
</tseElement>
<tseElement>
<name>TSE_EVAT_REG_ADDRESS</name>
<value>XXX</value>
</tseElement>
<tseElement>
<name>TSE_EVAT_REG_COMPANY_TITLE</name>
<value>XXX</value>
</tseElement>
<tseElement>
<name>TSE_EVAT_REG_FAX</name>
<value>XXX</value>
</tseElement>
<tseElement>
<name>TSE_EVAT_REG_PHONE</name>
<value>XXX</value>
</tseElement>
<tseElement>
<name>TSE_EVAT_REG_AREA</name>

28 July 2003

© SMARTGOV Consortium Page 287 of 288

IST PROJECT 2001-35399 SMARTGOV 28 July 2003

<value>XXX</value>

</tseElement>

<tseElement>
<name>TSE_EVAT_REG_TK</name>
<value>XXX</value>

</tseElement>

</row>
</groupElement>
</row>

</ServiceResults>

© SMARTGOV Consortium Page 288 of 288

